KARTOTEKA ARKUSZA GM A1-XII/05
|
|
- Emilia Lipińska
- 8 lat temu
- Przeglądów:
Transkrypt
1 KARTOTEKA ARKUSZA GM A1-XII/05 Numer 1 Numer obszaru i standardu oraz nazwa sprawdzanej umiejętności Uczeń: w formie diagramu 2 II/2 operuje informacją Nazwa sprawdzanej czynności Uczeń: Forma Liczba punktów do uzyskania za zadanie porównuje liczby oblicza jakim procentem jednej liczby jest druga liczba określa rodzaj zależności między populacjami określa co to jest zapylenie wskazuje informacje, które nie dotyczą procesu rozmnażania wegetatywnego 6 II/2 operuje informacją wyznacza amplitudę temperatur 7 II/2 operuje informacją określa czas trwania klimatycznego lata w formie tabeli I/2 wykonuje obliczenia w różnych sytuacjach praktycznych III/1 wskazuje prawidłowości w procesach, w funkcjonowaniu układów i systemów porównuje liczby wskazuje wzór sumaryczny glicerolu rozpoznaje wodorotlenki oblicza stężenie procentowe roztworu określa warunki stosowania bezpiecznika 13 III/3 posługuje się funkcjami wskazuje medianę 14 w formie wykresu wskazuje odcinek odpowiadający topnieniu lodu
2 15 rozpoznaje glebę 16 I/3 posługuje się własnościami figur wskazuje figurę osiowosymetryczną 17 I/2 wykonuje obliczenia w różnych sytuacjach praktycznych wykonuje obliczenia z zastosowaniem porównania różnicowego WW I/3 posługuje się własnościami figur oblicza długość drogi jaką pokonało koło 19 rozpoznaje reakcję syntezy 20 w formie rysunku rozpoznaje figury podobne 21 I/3 posługuje się własnościami figur wskazuje trzy odcinki, które mogą być bokami trójkąta 22 III/2 posługuje się językiem symboli i wyrażeń wyraża pole wielokąta za pomocą wyrażenia algebraicznych algebraicznego 23 III/4 stosuje zintegrowaną wiedzę do objaśniania zjawisk przyrodniczych rozpoznaje zjawisko osmozy 24 III/3 posługuje się funkcjami oblicza wartość funkcji 25 I/3 posługuje się własnościami figur zamienia akry na ary 26 III/3 posługuje się funkcjami w formie mapy w formie mapy III/4 stosuje zintegrowaną wiedzę do objaśniania zjawisk przyrodniczych III/1 wskazuje prawidłowości w procesach, w funkcjonowaniu układów i systemów zapisuje zależność między dwoma wielkościami i oblicza wartość jednej z nich KO 0-2 rozpoznaje państwo na mapie Europy KO 0-1 dopasowuje klimat do obszaru jego występowania KO 0-1 wskazuje bezpośrednie i pośrednie przyczyny stosowania freonu L 0-2 oblicza koszt zużycia energii elektrycznej RO 0-3 rozumie przyczyny i sposoby korygowania krótkowzroczności L 0-2
3 32 III/1 wskazuje prawidłowości w procesach, w funkcjonowaniu układów i systemów 33 II/2 operuje informacją 34 IV/4 tworzy i realizuje plan rozwiązania 35 III/4 stosuje zintegrowaną wiedzę do objaśniania zjawisk przyrodniczych 36 IV/4 tworzy i realizuje plan rozwiązania oblicza przyspieszenie w ruchu jednostajnie przyspieszonym analizuje informacje z układu okresowego pierwiastków dotyczące glinu stosuje twierdzenie Pitagorasa i porównanie ilorazowe do obliczenia pola prostokąta RO 0-2 L 0-3 RO 0-3 podaje przyczyny i skutki fizycznego wietrzenia skał KO 0-2 rozwiązuje zadanie z zastosowaniem obliczeń procentowych, oblicza objętość prostopadłościanu, wykorzystuje dzielenie z resztą RO 0-4
4 KLUCZ ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZADAŃ ARKUSZA GM A1-XII/05 ZADANIA ZAMKNIĘTE (WW) Numer Odpowiedź poprawna C A B A B A C C D B B C D B A D B A A A B B B D C ZADANIA OTWARTE Uwagi ogólne: Jeśli w zadaniu przyznawane są punkty za bezbłędne obliczenia (wykonanie), to uczeń otrzymuje je tylko wtedy, gdy stosuje poprawną metodę rozwiązania. Jeśli uczeń mimo polecenia zapisz obliczenia nie przedstawił żadnych obliczeń, a napisał poprawną odpowiedź, to nie otrzymuje punktu za rozwiązanie. Za każde poprawne i pełne rozwiązanie przyznajemy maksymalną liczbę punktów należnych za zadanie. Uczeń w trakcie obliczeń może nie zapisywać jednostek, ale jeżeli je pisze, to oceniamy ich poprawność. Sprawdzając prace uczniów z dysleksją rozwojową, stosujemy w punktowaniu wszystkich zadań otwartych punkty 1., 2., 3., 5., 7., 10., 11., 13., 14., 15., 16. z katalogu typowych błędów dyslektycznych. Numer Odpowiedź poprawna typowa Odpowiedzi dopuszczalne mimo usterek Odpowiedzi niedopuszczalne Zasady przyznawania punktów y = x zapisanie poprawnego wzoru (zaliczamy każdą poprawną zależność między wielkościami x i y) p I sposób 35 = x 15x = 165 x = 11 II sposób = : 15 = 11 Po 11 miesiącach poprawne wyznaczenie liczby miesięcy (niezależnie od pierwszego kryterium)
5 p. Norwegia Dania prawidłowe podanie nazwy państwa, przez które przebiega izoterma 0 o C. kontynentalny A śródziemnomorski B dziura ozonowa, zniszczenie warstwy ozonowej czerniak, rak skóry, choroby nowotworowe poparzenia W = E = P t = = (Wh) obliczenie pracy bez podania wzoru Wh = 51,1 kwh 51,1 0,40 = 20,44 zł podanie dwóch lub więcej liter dla jednego obszaru grzybica, łuszczyca, wysypka, zaczerwienienie podanie samego wzoru, bez podstawienia liczb wskazanie właściwych obszarów dla wskazanych klimatów poprawne uzupełnienie pierwszej luki poprawne uzupełnienie drugiej luki poprawna metoda obliczenia wykonanej pracy brak zamiany jednostek poprawna metoda obliczenia kosztów zużytej energii błędna zamiana jednostek poprawność rachunkowa 31 Obraz powstaje przed siatkówką lub b) Soczewka wklęsła w okularach lub e) km 1000 m m 36 = 36 = 10 h 3600 s s km 36 h 10m = 36 36s m = 10 s podanie kilku przyczyn podanie kilku sposobów bez jednostki poprawne uzupełnienie pierwszej luki poprawne uzupełnienie drugiej luki zamiana km m na h s 32 a = V t = 10 : 3 = m 2 s V a = t wynik bez jednostki a = 3,(3) lub a = 3,3 podanie samego wzoru, bez podstawienia liczb obliczenie wartości przyspieszenia (punkt przydzielamy niezależnie od poprawnej zamiany jednostek)
6 33 0-3p. Numer grupy 13 Numer okresu 3 Liczba powłok elektronowych 3 Liczba elektronów walencyjnych 3 Al 2 O 3 wskazanie numeru grupy i okresu wskazanie liczby powłok elektronowych i elektronów walencyjnych III Al II podanie wzoru tlenku 2 O p. b = 3a a 2 + (3a) 2 = 30 2 a 2 + 9a 2 = a 2 = 900 a 2 = 90 a = 90 = 3 10 P = = Jeżeli uczeń pisze: a 2 + 3a 2 = 900 a 2 + 9a 2 = 900 otrzymuje 1p za pierwsze kryterium Jeżeli uczeń pisze: a 2 + 3a 2 = 900 4a 2 = 900 otrzymuje (0,0,...) cm podanie wzoru bez podstawienia liczb podanie poprawnej zależności miedzy bokami a, b i d poprawne obliczenie długości boków prostokąta (przy poprawnej metodzie w kryterium 1) obliczenie powierzchni kartki z jednostką (punktujemy niezależnie od kryterium 1 i 2) 35 częste zmiany temperatury powietrza mechaniczne działanie korzeni roślin zamarzanie i rozmarzanie wody w szczelinach skał tworzenie skał okruchowych zwietrzelina rumowisko zmiany temperatury zmiany klimatyczne pękanie skał niszczenie skał kruszenie skał wiatr woda, śnieg, deszcz warunki środowiskowe ujemne temperatury zmniejszanie się skał obniżanie się skał tworzenie jaskiń wyżłobienia podanie przyczyny fizycznego wietrzenia skał (jeżeli uczeń umieścił inne informacje, które nie są w sprzeczności z główną przyczyną, otrzymuje 1p) podanie skutku fizycznego wietrzenia skał (jeżeli uczeń umieścił inne informacje, które nie są w sprzeczności z głównym skutkiem, otrzymuje 1p)
7 36 0-4p 20% z 90 = 18 cm poprawna metoda wyznaczenia wysokości skrzynki V = = cm 3 poprawne metoda obliczenia objętości skrzynki : 1000 = 38,88 dm 3 zamiana cm 3 na litry 38,88 : 5 = 7,776 8 worków wyznaczenie liczby worków (przy poprawnych metodach i poprawnej zamianie jednostek) i poprawność rachunkowa w całym zadaniu
Obudowa dydaktyczna arkusza egzaminacyjnego (A1)
PÓBNY EGZAMIN GIMNAZJALNY W CZĘŚCI MATEMATYCZNO - PRZYRODNICZEJ Obudowa dydaktyczna arkusza egzaminacyjnego (A1) OKE Kraków, 7 grudnia 2005 30 OPIS ARKUSZA GM A1-XII/05 Zestaw egzaminacyjny z zakresu przedmiotów
SCHEMAT PUTNKTOWANIA ZADAŃ (A1) Z ZAKRESU PRZEDMIOTÓW MATEMATYCZNO PRZYRODNICZYCH PRÓBNY EGZAMIN GIMNAZJALNY
SCHEMAT PUTNKTOWANIA ZADAŃ (A) Z ZAKRESU PRZEDMIOTÓW MATEMATYCZNO PRZYRODNICZYCH PRÓBNY EGZAMIN GIMNAZJALNY Z a d a n i a z a m k n i ę t e Numer 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 3 4 5 zadania odpowiedź
A. Arkusz standardowy GM-A1, B1, C1 oraz arkusze przystosowane: GM-A4, GM-A5, GM-A6 1.
GM Charakterystyka arkuszy egzaminacyjnych A. Arkusz standardowy GM-A1, B1, C1 oraz arkusze przystosowane: GM-A4, GM-A5, GM-A6 1. Zestaw egzaminacyjny z zakresu przedmiotów matematyczno-przyrodniczych
C A C A D A A C D A C C C B B C A D B D A C B B B
KLUCZ DO ZADAŃ ZAMKNIĘTYCH Zadania WW 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 C A C A D A A C D A C C C B B C A D B D A C B B B PROPOZYCJA SCHEMATU PUNKTOWANIA ODPOWIEDZI DO ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2019 Zadanie 1. (0 1) 2. Liczby wymierne (dodatnie i niedodatnie).
Sprawdzian z matematyki w pierwszym semestrze nauki w szóstej klasie szkoły podstawowej Praga. Instrukcja dla nauczyciela oceniającego test
Sprawdzian z matematyki w pierwszym semestrze nauki w szóstej klasie szkoły podstawowej Praga Instrukcja dla nauczyciela oceniającego test Celem badania jest zdiagnozowanie poziomu umiejętności matematycznych
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie i interpretowanie reprezentacji.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIEIEŃ 2015 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. Umiejętność
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M2, GM-M4, GM-M5 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M, GM-M4, GM-M5, GM-M6 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie
EGZAMIN GIMNAZJALNY 2010
entralna Komisja Egzaminacyjna w Warszawie EGZAMIN GIMNAZJALNY 2010 część matematyczno-przyrodnicza Klucz punktowania zadań (arkusz dla uczniów bez dysfunkcji i z dysleksją rozwojową) KWIEIEŃ 2010 Zadania
Kartoteka testu Wyspa Robinsona
Kartoteka testu Wyspa Robinsona Nr zadania Obszar standardów wymagań egzaminacyjnych Sprawdzana umiejętność (z numerem standardu) Uczeń: Uczeń: Sprawdzana czynność ucznia 1. Czytanie odczytuje tekst użytkowy
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP SZKOLNY
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP SZKOLNY Numer zadania Poprawna odpowiedź Liczba punktów. B 2. C 3. D 4. D 5. B 6. B 7. D 8. C 9. A 0. C. B 2. A 3. P,
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIEIEŃ 2016 Zadanie 1. (0 1) 1. Liczby wymierne dodatnie. Uczeń: 7) stosuje
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2019 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z arkusza egzaminacyjnego OMAP-Q00-1904 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (2 pkt) Podstawa programowa
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z arkusza egzaminacyjnego OMAP-800 KWIECIEŃ 2019 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 3) Podstawa programowa
DIAGNOZA PRZED EGZAMINEM W TRZECIEJ KLASIE GIMNAZJUM PIERWSZY PRÓBNY EGZAMIN CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA RUCH W PRZYRODZIE
Sprawdź Swoją Szkołę DIAGNOZA PRZED EGZAMINEM W TRZECIEJ KLASIE GIMNAZJUM PIERWSZY PRÓBNY EGZAMIN CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA RUCH W PRZYRODZIE Instrukcja dla nauczyciela oceniającego test WYDAWNICTWA
UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY DATA URODZENIA UCZNIA dzień miesiąc rok dysleksja miejsce na naklejkę z kodem PRÓBNY EGZAMIN W TRZECIEJ KLASIE GIMNAZJUM Z ZAKRESU PRZEDMIOTÓW MATEMATYCZNO- GRUDZIEŃ
UZGODNIONY SCHEMAT PUNKTOWANIA Próbny egzamin gimnazjalny z zakresu przedmiotów matematyczno-przyrodniczych
UZGODNIONY SCHEMAT PUNKTOWANIA Próbny egzamin gimnazjalny z zakresu przedmiotów matematyczno-przyrodniczych ZADANIA ZAMKNIĘTE Numer zadania odpowiedź poprawna 1 4 5 6 7 8 9 10 11 1 1 14 15 16 17 18 19
SCHEMAT PUNKTOWANIA zadań w arkuszu GM-A1, GM-A4 z części matematyczno przyrodniczej w 2006 r.
SCHEMAT PUNKTOWANIA zadań w arkuszu GM-A1, GM-A4 z części matematyczno przyrodniczej w 006 r. ZADANIA ZAMKNIĘTE Numer poprawne 1 4 5 6 7 8 9 10 11 1 1 14 15 16 17 18 19 0 1 4 5 A B C B C D C D A B B C
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-MX4 KWIECIEŃ 2019 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. Umiejętność
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2017 Zadanie 1. (0 1) Wymagania szczegółowe Umiejętności z zakresu
Mgr Kornelia Uczeń. WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa
Mgr Kornelia Uczeń WYMAGANIA na poszczególne oceny-klasa VII-Szkoła Podstawowa Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej
Sprawdzian diagnozujący z matematyki w klasie IV. Kartoteka I/ 2.1; 2.3 C P KO 4 II. /12.3 C P L 3 II. /12.4 C P WW 1
Sprawdzian diagnozujący z matematyki w klasie IV Kartoteka Nr zad. Sprawdzana umiejętność Uczeń: Wymagania z podstawy programowej ogólne/ szczegółowe Kategoria celów Poziom wymagań Typ zad. Liczba pkt.
Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A
Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A Imię i nazwisko. Klasa. Drogi uczniu! Masz przed sobą test sprawdzający Twoją wiedzę i umiejętności, które nabyłeś na wcześniejszych
SPRAWDZIAN Rozwiązania zadań i schematy punktowania. (Zestaw zadań dla uczniów słabosłyszących i niesłyszących)
SPRAWDZIAN 2014 Rozwiązania zadań i schematy punktowania (Zestaw zadań dla uczniów słabosłyszących i niesłyszących) KWIEIEŃ 2014 Obszar standardów egzaminacyjnych Sprawdzana umiejętność (z numerem standardu)
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z przykładowego arkusza egzaminacyjnego (EO_Q) GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (2 pkt) II.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M2, GM-M4, GM-M5 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i
Diagnoza wstępna z matematyki Klasa pierwsza szkoły ponadgimnazjalnej
Diagnoza wstępna z matematyki Klasa pierwsza szkoły ponadgimnazjalnej 1 Cel: Uzyskanie informacji o poziomie wiedzy i umiejętności uczniów, które pozwolą efektywniej zaplanować pracę z zespołem klasowym.
odczytuje z diagramów dane, zapisane za pomocą ułamków zwykłych, ułamków dziesiętnych lub liczb całkowitych odczytuje dane z procentowych diagramów:
Matematyka Klasa V Wymagania programowe podstawowe Uczeń : zapisuje słownie i czyta duże liczby zapisane w systemie dziesiątkowym porównuje liczby naturalne i porządkuje je rosnąco lub malejąco, używa
WYMAGANIA na poszczególne oceny-klasa I Gimnazjum
WYMAGANIA na poszczególne oceny-klasa I Gimnazjum Oceny z plusem lub minusem otrzymują uczniowie, których wiadomości i umiejętności znajdują się na pograniczu wymagań danej oceny głównej. (Znaki + i -
Kartoteka zestawu zadań Pies
Numer zadania Uczeń: Kartoteka zestawu zadań Pies Sprawdzana czynność Numer standardu Forma zadania 1 określa tematykę fragmentu tekstu popularnonaukowego 1 1.1 WW 2 sytuuje wydarzenie we właściwym okresie
Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132
Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów
1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 008 R.. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki..
Wymagania edukacyjne z matematyki- klasa 4
Wymagania edukacyjne z matematyki- klasa 4 Rozdział Wymagania podstawowe konieczne (ocena dopuszczająca) Podstawowe (ocena dostateczna) rozszerzające (ocena dobra) Wymagania ponadpodstawowe dopełniające
KRYTERIA WYMAGAŃ NA POSZCZEGÓLNE OCENY SZKOLNE. Przedmiot: matematyka. Klasa: 5
KRYTERIA WYMAGAŃ NA POSZCZEGÓLNE OCENY SZKOLNE Przedmiot: matematyka Klasa: 5 OCENA CELUJĄCA Rozwiązuje nietypowe zadania tekstowe wielodziałaniowe. Proponuje własne metody szybkiego liczenia. Rozwiązuje
Więcej arkuszy znajdziesz na stronie: arkusze.pl SPRAWDZIAN Klucz punktowania zadań. (zestawy zadań dla uczniów bez dysfunkcji)
SPRWDZIN 2013 Klucz punktowania zadań (zestawy zadań dla uczniów bez dysfunkcji) KWIEIEŃ 2013 Obszar standardów egzaminacyjnych Sprawdzana umiejętność (z numerem standardu) Uczeń: Uczeń: Sprawdzana czynność
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Klasa IV Rozdział Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca) podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające
DATA URODZENIA UCZNIA
WPISUJE UCZEŃ UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA DATA URODZENIA UCZNIA dzień miesiąc rok dysleksja PRÓBNY EGZAMIN W TRZECIEJ KLASIE GIMNAZJUM Z ZAKRESU PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Instrukcja
SCHEMATY PUNKTOWANIA ROZUMOWANIE I WYKORZYSTYWANIE WIEDZY W PRAKTYCE Zadanie 1.
SCHEMATY PUNKTOWANIA ROZUMOWANIE I WYKORZYSTYWANIE WIEDZY W PRAKTYCE Zadanie 1. I. Ustalenie sposobu obliczenia pola prostokąta Uczeń zapisuje odpowiednie działania lub zapisuje wzór na pole prostokąta.
Zajęcia wyrównawcze klasa III b, c gim.
Zajęcia wyrównawcze klasa III b, c gim. Cele nauczania: Głównym celem zajęć jest wyrównanie braków z matematyki oraz poprawa wyników nauczania i kształcenia. Cele szczegółowe: 1. Rozwijanie umiejętności
WYMAGANIA EDUKACYJNE
GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie II gimnazjum str. 1 Wymagania edukacyjne niezbędne
Klucz odpowiedzi i schemat punktowania do próbnego zestawu egzaminacyjnego z zakresu przedmiotów matematyczno-przyrodniczych luty 2004 r.
Z a d a n i a z a m k n i ę t e Klucz odpowiedzi i schemat punktowania do próbnego zestawu egzaminacyjnego z zakresu przedmiotów matematyczno-przyrodniczych luty 004 r. Numer zadania odpowiedź poprawna
Próbny egzamin z matematyki z WSiP w trzeciej klasie gimnazjum. Część matematyczno-przyrodnicza. LUTY 2016 Analiza wyników
Próbny egzamin z matematyki z WSiP w trzeciej klasie gimnazjum Część matematyczno-przyrodnicza LUTY 2016 Analiza wyników Arkusz egzaminu próbnego składał się z 20 zadań zamkniętych różnego typu i 3 zadań
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Klasa 4 Dział 1. Liczby. Uczeń: gromadzi dane; porządkuje dane; przedstawia dane interpretuje dane odczytuje dane w tabelach, na przedstawione w tekstach, przedstawione
WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R. TEMAT 1.LICZBY I DZIAŁANIA
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Sprytne rachunki. 4. Szacowanie wyników działań. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności
Wymagania na poszczególne oceny szkolne. Matematyka
Wymagania na poszczególne oceny szkolne Matematyka Klasa IV Wymagania Wymagania ponad Dział 1. Liczby naturalne Zbieranie i prezentowanie danych gromadzi dane (13.1); odczytuje dane przedstawione w tekstach,
Katalog wymagań na poszczególne stopnie szkolne klasa 3
Katalog wymagań na poszczególne stopnie szkolne klasa 3 I. GRANIASTOSŁUPY I OSTROSŁUPY 6 5 4 3 2 Wskazuje wśród wielościanów graniastosłupy proste i pochyłe. Wskazuje na modelu lub rysunku krawędzie, wierzchołki,
Przedmiotowe zasady oceniania Matematyka. Wymagania edukacyjne na poszczególne oceny
Przedmiotowe zasady oceniania Matematyka Wymagania edukacyjne na poszczególne oceny Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie
SZCZEGÓŁÓWE KRYTERIA OCENIANIA MATEMATYKA KL 4 Temat Wymagania podstawowe Wymagania ponadpodstawowe konieczne (ocena dopuszczająca)
SZCZEGÓŁÓWE KRYTERIA OCENIANIA MATEMATYKA KL 4 Temat Wymagania Wymagania ponad Dział 1. Liczby. Uczeń: 1. Zbieranie i prezentowanie danych gromadzi dane; odczytuje dane przedstawione w tekstach, tabelach,
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IV Dział I. Liczby naturalne część 1 Jak się uczyć matematyki Oś liczbowa Jak zapisujemy liczby Szybkie dodawanie Szybkie odejmowanie Tabliczka mnożenia Tabliczka
Kartoteka zestawu zadań Wisła
Kartoteka zestawu zadań Wisła Obszar standardów wymagań egzaminacyjnych Sprawdzana umiejętność (z numerem standardu) Uczeń: Uczeń: Sprawdzana czynność Forma 1. 1. Czytanie odczytuje tekst poetycki (1.1)
WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów
WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH Sposoby sprawdzania wiedzy i umiejętności uczniów 1. Odpowiedzi ustne. 2. Sprawdziany pisemne. 3. Kartkówki. 4. Testy.
MATEMATYKA. klasa IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA
2017-09-01 MATEMATYKA klasa IV Podstawa programowa przedmiotu SZKOŁY BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawności rachunkowa. 1) Wykonywanie nieskomplikowanych obliczeń w pamięci lub w działaniach
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacyjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 011/01 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA KLUCZ ODPOWIEDZI I SCHEMAT OCENIANIA ZADAŃ ARKUSZ GM-M1-1 KWIECIEŃ 01 Zadania zamknięte
OCENIANIE ARKUSZA POZIOM PODSTAWOWY
Numer zadania.. Etapy rozwiązania zadania OCENIANIE ARKUSZA POZIOM PODSTAWOWY Zapisanie ceny wycieczki po podwyżce, np. x + 5% x, gdzie x oznacza pierwotną cenę wycieczki. Liczba punktów. Zapisanie równania:
Wyniki procentowe poszczególnych uczniów
K la s a IA Próbny egzamin gimnazjalny Wyniki procentowe poszczególnych uczniów 0% 80% 70% 60% 50% 40% 30% Polska (41%) % % 0% nr ucznia 1 2 3 4 5 6 7 8 16 18 1 21 22 24 25 26 27 28 wynik w % 45 65 42
OGÓLNE KRYTERIA OCENIANIA DLA KLASY IV
OGÓLNE KRYTERIA OCENIANIA DLA KLASY IV LICZBY NATURALNE - umie dodawać i odejmować pamięciowo w zakresie 100 bez przekraczania progu dziesiątkowego, - zna tabliczkę mnożenia i dzielenia w zakresie 100,
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V Uczeń na ocenę dopuszczającą potrafi: - Oszacować wyniki obliczeń na liczbach dziesiętnych w kontekście zakupów. - Korzystać z gotowego planu. - Narysować prostokąt
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA ARKUSZ GM-M7-142 KWIECIEŃ 2014 Liczba punktów za zadania zamknięte i otwarte:
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne tzn.: 1. posiada i
Radomski Ośrodek Doskonalenia Nauczycieli, Radomski Oddział SNM Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A
Radomski Ośrodek Doskonalenia Nauczycieli, Radomski Oddział SNM Test diagnostyczny dla uczniów klas pierwszych szkół ponadgimnazjalnych Wersja A Imię i nazwisko. Klasa. Drogi uczniu! Masz przed sobą test
Osiągnięcia opisane w podstawie programowej obowiązujące do sprawdzianu klas VI:
Hanna MAREK Samorządowy Ośrodek Doradztwa Metodycznego i Doskonalenia Nauczycieli w Łomży Materiał uzupełniający dotyczący monitorowania osiągnięć uczniów Przykład sprawdzianu łącznie z obudową dla nauczyciela
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. Zgodnie z przyjętymi założeniami w programie nauczania
SPRAWDZIAN 2013. Klucz punktowania zadań. (zestawy zadań dla uczniów bez dysfunkcji)
SPRWDZIN 2013 Klucz punktowania zadań (zestawy zadań dla uczniów bez dysfunkcji) KWIEIEŃ 2013 Obszar standardów egzaminacyjnych Sprawdzana umiejętność (z numerem standardu) Uczeń: Uczeń: Sprawdzana czynność
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015
EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIEIEŃ 2015 Zadanie 1. (0 1) 7) stosuje obliczenia na liczbach wymiernych do
Wymagania na poszczególne oceny szkolne
1 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ TEMAT 1.LICZBY I DZIAŁANIA
TEMAT.LICZBY I DZIAŁANIA LICZBA GODZ. LEKCYJN YCH. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ I. Liczby
Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner
Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner Ocenę dopuszczającą otrzymuje uczeń, który: definiuje pojęcie potęgi o wykładniku naturalnym,
Kryteria ocen z matematyki w klasie IV
Kryteria ocen z matematyki w klasie IV odejmuje liczby w zakresie 100 z przekroczeniem progu dziesiętnego, zna kolejność wykonywania działań, gdy nie występuję nawiasy, odczytuje współrzędne punktu na
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
Określenie wymagań edukacyjnych z matematyki w klasie II
Określenie wymagań edukacyjnych z matematyki w klasie II Potęgi Na ocenę dopuszczającą uczeń : Zna i rozumie pojęcie potęgi o wykładniku naturalnym, zna wzory na mnożenie i dzielenie potęg o tych samych
SZCZEGÓŁOWE KRYTERIA OCENIANIA UCZNIÓW W ZAKRESIE TREŚCI PROGRAMOWYCH Z MATEMATYKI W KLASACH IV i V ZESPOŁU SZKÓŁ W ŚWILCZY
SZCZEGÓŁOWE KRYTERIA OCENIANIA UCZNIÓW W ZAKRESIE TREŚCI PROGRAMOWYCH Z MATEMATYKI W KLASACH IV i V ZESPOŁU SZKÓŁ W ŚWILCZY KLASA IV Uczeń otrzymuje ocenę celującą gdy: potrafi samodzielnie wyciągać wnioski,
Sprawdzian umiejętności matematycznych po klasie V szkoły podstawowej
Sprawdzian Sprawdzian umiejętności matematycznych po klasie V szkoły podstawowej Grupa A Powodzenia!... imi i nazwisko ucznia 1 a) Zapisz liczby cyframi arabskimi. XIX XXIV b) Zapisz liczby cyframi rzymskimi.
Wymagania edukacyjne z matematyki dla klasy VII
Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Ocenę dopuszczającą otrzymuje uczeń, który: rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne,
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z próbnego arkusza egzaminacyjnego OMAP-100-1812 GRUDZIEŃ 2018 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) Podstawa
Wymagania na poszczególne oceny szkolne
1 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
WOJEWÓDZKI KONKURS MATEMATYCZNY
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 08/09 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje punkt. Numer zadania Poprawna odpowiedź...
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII Uczeń na ocenę dopuszczającą: - zna znaki używane do zapisu liczb w systemie rzymskim, - umie zapisać i odczytać liczby naturalne dodatnie w systemie rzymskim
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ 1) ocenę celującą otrzymuje uczeń, który spełnił wymagania na ocenę bardzo dobrą oraz: - umie zapisać i odczytać w
Wymagania na poszczególne oceny szkolne
Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane poszczególnym
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP WOJEWÓDZKI
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH KLUCZ ODPOWIEDZI DO ARKUSZA ETAP WOJEWÓDZKI Numer Poprawna odpowiedź Liczba punktów zadania 1. A 1 2. B 1 3. C 1 4. A 1 5. B 2 6. A 2 7. D 2 8. D 2 9.
STANDARDY WYMAGAŃ W ZAKRESIE WIEDZY MATEMATYCZNEJ UCZNIA KLASY IV W ROZBICIU NA OCENY
STANDARDY WYMAGAŃ W ZAKRESIE WIEDZY MATEMATYCZNEJ UCZNIA KLASY IV W ROZBICIU NA OCENY Treści i umiejętności Zakres opanowanej wiedzy i posiadane umiejętności w rozbiciu na poszczególne oceny celująca bardzo
II. Działania na liczbach naturalnych. Uczeń:
TEMAT 1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z 14. II. 2017. I. Liczby naturalne w dziesiątkowym
Rozkład materiału nauczania. Klasa 5
1 Rozkład materiału nauczania. Klasa 5 Temat 1 2 Wakacje, wakacje... i po wakacjach 3 Systemy zapisywania liczb 4 5 Rachunek pamięciowy Dodawanie i mnożenie LICZBY NATURALNE (20 h) 1 2. 3 ) wykonuje proste
Wymagania edukacyjne z matematyki w klasie IV
Wymagania edukacyjne z matematyki w klasie IV Na ocenę dopuszczającą uczeń potrafi: Dodawać i odejmować w pamięci liczby dwucyfrowe. Obliczyć wartości wyrażeń arytmetycznych z zachowaniem kolejności wykonywania