Próbny egzamin z matematyki z WSiP w trzeciej klasie gimnazjum. Część matematyczno-przyrodnicza. LUTY 2016 Analiza wyników

Save this PDF as:

Wielkość: px
Rozpocząć pokaz od strony:

Download "Próbny egzamin z matematyki z WSiP w trzeciej klasie gimnazjum. Część matematyczno-przyrodnicza. LUTY 2016 Analiza wyników"

Transkrypt

1 Próbny egzamin z matematyki z WSiP w trzeciej klasie gimnazjum Część matematyczno-przyrodnicza LUTY 2016 Analiza wyników

2 Arkusz egzaminu próbnego składał się z 20 zadań zamkniętych różnego typu i 3 zadań otwartych. Zadania sprawdzały umiejętności określone w podstawie programowej kształcenia ogólnego dla III etapu edukacyjnego. Za rozwiązanie wszystkich zadań uczeń mógł otrzymać 29 punktów. Analizy statystyczne wykonano na podstawie wyników egzaminu 4181 uczniów z 129 szkół (wg stanu na dzień 23 marzec 2016). Kartoteka testu Numer zadania Wymagania ogólne Wymagania szczegółowe Punktacja 1 dodaje, odejmuje, mnoży i dzieli liczby wymierne (2.3) 2 I. Wykorzystanie i tworzenie informacji oblicza potęgi liczb wymiernych o wykładnikach naturalnych (3.1) 3 zamienia ułamki zwykłe na ułamki dziesiętne (1.3) zaokrągla rozwinięcia dziesiętne liczb (1.4) 4 III. Modelowanie matematyczne odczytuje współrzędne danych punktów (8.2) 5 oblicza procent danej liczby (5.2) oblicza liczbę na podstawie danego jej procentu (5.3) 6 I. Wykorzystanie i tworzenie informacji przedstawia część pewnej wielkości jako procent lub promil tej wielkości (5.1) 7 mnoży i dzieli pierwiastki drugiego stopnia (4.3)

3 8 oblicza odległość między dwiema liczbami na osi liczbowej (2.1) 9 wyznacza średnią arytmetyczną i medianę zestawu danych (9.4) zapisuje za pomocą wyrażeń algebraicznych związki między różnymi wielkościami (6.1) 10 odczytuje i interpretuje informacje przedstawione za pomocą wykresów funkcji (8.4) 11 IV. Użycie i tworzenie strategii za pomocą równań lub układów równań opisuje i rozwiązuje zadania osadzone w kontekście praktycznym (7.7) 12 oblicza wymiary wielokąta powiększonego lub pomniejszonego w danej skali (10.11) stosuje twierdzenie Pitagorasa (10.7) 13 III. Modelowanie matematyczne analizuje proste doświadczenia losowe i określa prawdopodobieństwa najprostszych zdarzeń w tych doświadczeniach (9.5) 14 IV. Użycie i tworzenie strategii oblicza pole powierzchni i objętość walca, stożka, kuli (11.2) 15 III. Modelowanie matematyczne 16 I. Wykorzystanie i tworzenie informacji oblicza pole powierzchni i objętość graniastosłupa prostego, ostrosłupa, walca, stożka, kuli (także w zadaniach osadzonych w kontekście praktycznym) (11.2) za pomocą równań lub układów równań opisuje i rozwiązuje zadania osadzone w kontekście praktycznym (7.7) 17 rozwiązuje układy równań stopnia pierwszego z dwiema niewiadomymi (7.6)

4 18 I. Wykorzystanie i tworzenie informacji rozpoznaje figury, które mają oś symetrii, i figury, które mają środek symetrii; wskazuje oś symetrii i środek symetrii figury (10.17) 19 III. Modelowanie matematyczne oblicza pola i obwody trójkątów i czworokątów (10.9) 20 III. Modelowanie matematyczne 21 III. Modelowanie matematyczne 22 V. Rozumowanie i argumentacja 23 IV. Użycie i tworzenie strategii korzysta z własności kątów i przekątnych w prostokątach, równoległobokach, rombach i w trapezach (10.8) stosuje twierdzenie Pitagorasa (10.7) za pomocą równań lub układów równań opisuje i rozwiązuje zadania osadzone w kontekście praktycznym (7.7) wyłącza czynnik przed znak pierwiastka oraz włącza czynnik pod znak pierwiastka (4.2) stosuje twierdzenie Pitagorasa (10.7) oblicza pole powierzchni i objętość graniastosłupa prostego, ostrosłupa, walca, stożka, kuli (także w zadaniach osadzonych w kontekście praktycznym) (11.2)

5 WYNIKI UCZNIÓW Z POSZCZEGÓLNYCH WOJEWÓDZTW 45% 40% 35% 30% 25% 20% 15% 10% 5% 0%

6 Numer zadania / max pkt Test województwo max dolnośląskie lubelskie lubuskie łódzkie małopolskie mazowieckie opolskie podkarpackie podlaskie śląskie w pkt. 0,33 0,28 0,42 0,28 0,68 0,71 0,64 0,14 0,47 0,33 0,25 0,631 0,71 0,43 0,21 0,56 0,28 0,41 0,348 0,51 0,31 0,4 0,45 10 w % 33% 28% 42% 28% 68% 71% 64% 14% 47% 33% 25% 63% 71% 43% 21% 56% 28% 41% 35% 51% 10% 20% 11% 34% w pkt. 0,43 0,42 0,51 0,28 0,68 0,7 0,66 0,23 0,41 0,27 0,32 0,682 0,71 0,39 0,18 0,54 0,26 0,38 0,374 0,53 0,32 0,49 0,58 10 w % 43% 42% 51% 28% 68% 70% 66% 23% 41% 27% 32% 68% 71% 39% 18% 54% 26% 38% 37% 53% 11% 24% 15% 36% w pkt. 0,47 0,33 0,39 0,28 0,57 0,8 0,55 0,14 0,41 0,14 0,3 0,741 0,74 0,41 0,21 0,57 0,3 0,46 0,268 0,63 0,36 0,53 0,36 10 w % 47% 33% 39% 28% 57% 80% 55% 14% 41% 14% 30% 74% 74% 41% 21% 57% 30% 46% 27% 63% 12% 27% 9% 34% w pkt. 0,42 0,37 0,46 0,29 0,58 0,8 0,67 0,28 0,4 0,25 0,32 0,635 0,74 0,43 0,14 0,54 0,35 0,47 0,363 0,51 0,22 0,39 0,48 10 w % 42% 37% 46% 29% 58% 80% 67% 28% 40% 25% 32% 63% 74% 43% 14% 54% 35% 47% 36% 51% 7% 20% 12% 35% w pkt. 0,4 0,38 0,42 0,29 0,69 0,74 0,65 0,18 0,39 0,23 0,33 0,699 0,72 0,38 0,2 0,5 0,27 0,45 0,382 0,54 0,3 0,44 0,54 10 w % 40% 38% 42% 29% 69% 74% 65% 18% 39% 23% 33% 70% 72% 38% 20% 50% 27% 45% 38% 54% 10% 22% 14% 35% w pkt. 0,45 0,42 0,45 0,3 0,66 0,79 0,67 0,35 0,45 0,27 0,4 0,688 0,81 0,38 0,2 0,54 0,31 0,48 0,443 0,58 0,4 0,56 0,66 11 w % 45% 42% 45% 30% 66% 79% 67% 35% 45% 27% 40% 69% 81% 38% 20% 54% 31% 48% 44% 58% 13% 28% 16% 39% w pkt. 0,26 0,31 0,36 0,24 0,61 0,65 0,66 0,16 0,29 0,25 0,29 0,606 0,66 0,42 0,1 0,42 0,26 0,4 0,384 0,54 0,2 0,46 0,44 9 w % 26% 31% 36% 24% 61% 65% 66% 16% 29% 25% 29% 61% 66% 42% 10% 42% 26% 40% 38% 54% 7% 23% 11% 31% w pkt. 0,43 0,39 0,43 0,27 0,66 0,76 0,66 0,24 0,38 0,27 0,31 0,693 0,74 0,43 0,2 0,5 0,33 0,5 0,463 0,52 0,32 0,51 0,51 11 w % 43% 39% 43% 27% 66% 76% 66% 24% 38% 27% 31% 69% 74% 43% 20% 50% 33% 50% 46% 52% 11% 25% 13% 36% w pkt. 0,33 0,37 0,42 0,33 0,61 0,72 0,64 0,13 0,31 0,19 0,27 0,707 0,72 0,33 0,16 0,47 0,27 0,34 0,403 0,54 0,28 0,44 0,4 9 w % 33% 37% 42% 33% 61% 72% 64% 13% 31% 19% 27% 71% 72% 33% 16% 47% 27% 34% 40% 54% 9% 22% 10% 32% w pkt. 0,33 0,38 0,47 0,23 0,58 0,69 0,59 0,2 0,36 0,25 0,32 0,614 0,69 0,35 0,18 0,49 0,24 0,43 0,316 0,54 0,24 0,35 0,37 9 w % 33% 38% 47% 23% 58% 69% 59% 20% 36% 25% 32% 61% 69% 35% 18% 49% 24% 43% 32% 54% 8% 18% 9% 32%

7 świętokrzyskie warmińsko-mazurskie wielkopolskie zachodniopomorskie POLSKA w pkt. 0,46 0,35 0,48 0,3 0,56 0,73 0,59 0,16 0,47 0,19 0,36 0,633 0,8 0,42 0,16 0,48 0,32 0,43 0,328 0,57 0,25 0,33 0,35 10 w % 46% 35% 48% 30% 56% 73% 59% 16% 47% 19% 36% 63% 80% 42% 16% 48% 32% 43% 33% 57% 8% 16% 9% 34% w pkt. 0,27 0,3 0,42 0,19 0,57 0,71 0,56 0,19 0,25 0,27 0,29 0,635 0,63 0,38 0,13 0,39 0,27 0,34 0,358 0,58 0,2 0,33 0,35 9 w % 27% 30% 42% 19% 57% 71% 56% 19% 25% 27% 29% 64% 63% 38% 13% 39% 27% 34% 36% 58% 7% 17% 9% 30% w pkt. 0,28 0,33 0,47 0,3 0,66 0,72 0,67 0,2 0,39 0,3 0,34 0,694 0,75 0,32 0,12 0,51 0,28 0,48 0,39 0,56 0,27 0,43 0,44 10 w % 28% 33% 47% 30% 66% 72% 67% 20% 39% 30% 34% 69% 75% 32% 12% 51% 28% 48% 39% 56% 9% 21% 11% 34% w pkt. 0,3 0,43 0,42 0,29 0,64 0,73 0,65 0,21 0,38 0,22 0,36 0,672 0,77 0,39 0,19 0,51 0,28 0,35 0,426 0,52 0,26 0,56 0,49 10 w % 30% 43% 42% 29% 64% 73% 65% 21% 38% 22% 36% 67% 77% 39% 19% 51% 28% 35% 43% 52% 9% 28% 12% 35% w pkt. 0,39 0,38 0,44 0,28 0,64 0,74 0,65 0,23 0,4 0,25 0,33 0,673 0,74 0,39 0,18 0,51 0,29 0,44 0,394 0,55 0,31 0,47 0,51 10 w % 39% 38% 44% 28% 64% 74% 65% 23% 40% 25% 33% 67% 74% 39% 18% 51% 29% 44% 39% 55% 10% 23% 13% 35%

8 Obszary umiejętności Wykorzystywanie i tworzenie informacji Wykorzystywanie i interpretowanie Modelowanie matematyczne Użycie i tworzenie strategii Rozumowanie i argumentacja dolnośląskie 1,96 49% 3,91 43% 2,36 30% 1,12 19% 0,40 20% lubelskie 2,03 51% 4,13 46% 2,40 30% 1,29 22% 0,49 24% lubuskie 2,16 54% 3,72 41% 2,49 31% 1,07 18% 0,53 27% łódzkie 2,18 54% 4,04 45% 2,26 28% 1,23 20% 0,39 20% małopolskie 2,08 52% 3,92 44% 2,43 30% 1,25 21% 0,44 22% mazowieckie 2,23 56% 4,31 48% 2,74 34% 1,44 24% 0,56 28% opolskie 1,78 44% 3,45 38% 2,12 26% 1,15 19% 0,46 23% podkarpackie 2,16 54% 4,10 46% 2,52 31% 1,26 21% 0,51 25% podlaskie 1,90 47% 3,60 40% 2,44 30% 1,00 17% 0,44 22% śląskie 1,99 50% 3,62 40% 2,20 27% 1,04 17% 0,35 18% świętokrzyskie 2,00 50% 3,87 43% 2,41 30% 1,13 19% 0,33 16% warmińsko-mazurskie 1,74 44% 3,44 38% 2,09 26% 1,02 17% 0,33 17% wielkopolskie 2,03 51% 3,94 44% 2,38 30% 1,10 18% 0,43 21% zachodniopomorskie 2,02 50% 3,77 42% 2,46 31% 1,24 21% 0,56 28% POLSKA 2,07 52% 3,96 44% 2,45 31% 1,23 21% 0,47 23%

9 Skala staninowa średnich wyników szkół (w %) Stanin % rozkład modelowy Liczba szkół Zakres % ,5% 22,0% ,1% 26,8% ,9% 29,2% ,3% 31,7% ,8% 35,6% ,7% 38,8% ,9% 42,1% ,2% 47,8% ,9% 53,3% Staniny Liczba szkół: 129 Najniższy wynik [szkoły]: 19,5% Najwyższy wynik [szkoły]: 53,3%

10 Skala staninowa średnich wyników klas (w %) Stanin % rozkład modelowy Liczba klas Zakres % ,4% 21,0% ,1% 25,1% ,2% 28,7% ,8% 32,0% ,1% 35,6% ,7% 39,3% ,4% 45,1% ,2% 50,0% ,1% 61,2% Staniny Liczba klas: 216 Najniższy wynik [klasy]: 17,4% Najwyższy wynik [klasy]: 61,2%

11 Średnie wyniki za poszczególne zadania 80% 70% 60% 50% 40% 30% 20% 10% 0% Numer zadania Poziom trudności 39% 38% 44% 28% 64% 74% 65% 23% 40% 25% 33% 67% 74% 39% 18% 51% 29% 44% 39% 55% 10% 23% 13%

12 Analiza zadań testu Nr zad. Treść zadania Wymagania z Podstawy programowej Informacje o zadaniu 1 dodaje, odejmuje, mnoży i dzieli liczby wymierne (2.3) Numer zadania 1 Poziom wykonalności 39,2% Numer zadania 2 2 I. Wykorzystanie i tworzenie informacji oblicza potęgi liczb wymiernych o wykładnikach naturalnych (3.1) Poziom wykonalności 38,3% 3 zamienia ułamki zwykłe na ułamki dziesiętne (1.3) zaokrągla rozwinięcia dziesiętne liczb (1.4) Numer zadania 3 Poziom wykonalności 44,4%

13 4 III. Modelowanie matematyczne odczytuje współrzędne danych punktów (8.2) Numer zadania 4 Poziom wykonalności 28,3% 5 oblicza procent danej liczby (5.2) oblicza liczbę na podstawie danego jej procentu (5.3) Numer zadania 5 Poziom wykonalności 64,2% umiarkowanie 6 I. Wykorzystanie i tworzenie informacji przedstawia część pewnej wielkości jako procent lub promil tej wielkości (5.1) Numer zadania 6 Poziom wykonalności 74,1% łatwe

14 7 mnoży i dzieli pierwiastki drugiego stopnia (4.3) Numer zadania 7 Poziom wykonalności 64,5% umiarkowanie 8 oblicza odległość między dwiema liczbami na osi liczbowej (2.1) Numer zadania 8 Poziom wykonalności 23,2% 9 wyznacza średnią arytmetyczną i medianę zestawu danych (9.4) zapisuje za pomocą wyrażeń algebraicznych związki między różnymi wielkościami (6.1) Numer zadania 9 Poziom wykonalności 39,7%

15 10 odczytuje i interpretuje informacje przedstawione za pomocą wykresów funkcji (8.4) Numer zadania 10 Poziom wykonalności 25,0%

16 11 IV. Użycie i tworzenie strategii za pomocą równań lub układów równań opisuje i rozwiązuje zadania osadzone w kontekście praktycznym (7.7) Numer zadania 11 Poziom wykonalności 33,4% 12 oblicza wymiary wielokąta powiększonego lub pomniejszonego w danej skali (10.11) stosuje twierdzenie Pitagorasa (10.7) Numer zadania 12 Poziom wykonalności 67,3% umiarkowanie

17 13 III. Modelowanie matematyczne analizuje proste doświadczenia losowe i określa prawdopodobieństwa najprostszych zdarzeń w tych doświadczeniach (9.5) Numer zadania 13 Poziom wykonalności 74,1% łatwe 14 IV. Użycie i tworzenie strategii oblicza pole powierzchni i objętość walca, stożka, kuli (11.2) Numer zadania 14 Poziom wykonalności 38,9% 15 III. Modelowanie matematyczne oblicza pole powierzchni i objętość graniastosłupa prostego, ostrosłupa, walca, stożka, kuli (także w zadaniach osadzonych w kontekście praktycznym) (11.2) Numer zadania 15 Poziom wykonalności 18,3% bardzo

18 16 I. Wykorzystanie i tworzenie informacji za pomocą równań lub układów równań opisuje i rozwiązuje zadania osadzone w kontekście praktycznym (7.7) Numer zadania 16 Poziom wykonalności 51,2% umiarkowanie 17 rozwiązuje układy równań stopnia pierwszego z dwiema niewiadomymi (7.6) Numer zadania 17 Poziom wykonalności 29,0% 18 I. Wykorzystanie i tworzenie informacji rozpoznaje figury, które mają oś symetrii, i figury, które mają środek symetrii; wskazuje oś symetrii i środek symetrii figury (10.17) Numer zadania 18 Poziom wykonalności 43,7%

19 19 III. Modelowanie matematyczne oblicza pola i obwody trójkątów i czworokątów (10.9) Numer zadania 19 Poziom wykonalności 39,4% 20 III. Modelowanie matematyczne korzysta z własności kątów i przekątnych w prostokątach, równoległobokach, rombach i w trapezach (10.8) Numer zadania 20 Poziom wykonalności 54,6% umiarkowanie 21 III. Modelowanie matematyczne stosuje twierdzenie Pitagorasa (10.7) za pomocą równań lub układów równań opisuje i rozwiązuje zadania osadzone w kontekście praktycznym (7.7) Numer zadania 21 Maks. liczba punktów 3 Poziom wykonalności 10,2% bardzo

20 22 V. Rozumowanie i argumentacja wyłącza czynnik przed znak pierwiastka oraz włącza czynnik pod znak pierwiastka (4.2) stosuje twierdzenie Pitagorasa (10.7) Numer zadania 22 Maks. liczba punktów 2 Poziom wykonalności 23,4% 23 IV. Użycie i tworzenie strategii oblicza pole powierzchni i objętość graniastosłupa prostego, ostrosłupa, walca, stożka, kuli (także w zadaniach osadzonych w kontekście praktycznym) (11.2) Numer zadania 23 Maks. liczba punktów 4 Poziom wykonalności 12,8% bardzo

Egzamin Gimnazjalny z WSiP LISTOPAD Analiza wyników próbnego egzaminu gimnazjalnego Część matematyczno-przyrodnicza MATEMATYKA

Egzamin Gimnazjalny z WSiP LISTOPAD Analiza wyników próbnego egzaminu gimnazjalnego Część matematyczno-przyrodnicza MATEMATYKA Egzamin Gimnazjalny z WSiP LISTOPAD 2015 Analiza wyników próbnego egzaminu gimnazjalnego Część matematyczno-przyrodnicza MATEMATYKA Arkusz egzaminu próbnego składał się z 20 zadań zamkniętych różnego typu

Bardziej szczegółowo

Próbny egzamin z matematyki z WSiP w pierwszej klasie gimnazjum LUTY Analiza wyników

Próbny egzamin z matematyki z WSiP w pierwszej klasie gimnazjum LUTY Analiza wyników Próbny egzamin z matematyki z WSiP w pierwszej klasie gimnazjum LUTY 2016 Analiza wyników Arkusz egzaminu próbnego składał się z 20 zadań zamkniętych różnego typu i 3 zadań otwartych. Zadania sprawdzały

Bardziej szczegółowo

Egzamin Gimnazjalny z WSiP STYCZEŃ Analiza wyników próbnego egzaminu gimnazjalnego. Część matematyczno-przyrodnicza MATEMATYKA

Egzamin Gimnazjalny z WSiP STYCZEŃ Analiza wyników próbnego egzaminu gimnazjalnego. Część matematyczno-przyrodnicza MATEMATYKA Egzamin Gimnazjalny z WSiP STYCZEŃ 2017 Analiza wyników próbnego egzaminu gimnazjalnego Część matematyczno-przyrodnicza MATEMATYKA Arkusz egzaminu próbnego składał się z 20 zadań zamkniętych różnego typu

Bardziej szczegółowo

Próbny egzamin z matematyki z WSiP w drugiej klasie gimnazjum. Część matematyczno-przyrodnicza LUTY Analiza wyników

Próbny egzamin z matematyki z WSiP w drugiej klasie gimnazjum. Część matematyczno-przyrodnicza LUTY Analiza wyników Próbny egzamin z matematyki z WSiP w drugiej klasie gimnazjum Część matematyczno-przyrodnicza LUTY 2016 Analiza wyników Arkusz egzaminu próbnego składał się z 20 zadań zamkniętych różnego typu i 3 zadań

Bardziej szczegółowo

Sprawdzian z matematyki z WSiP na zakończenie nauki. w I semestrze pierwszej klasy gimnazjum STYCZEŃ Analiza wyników

Sprawdzian z matematyki z WSiP na zakończenie nauki. w I semestrze pierwszej klasy gimnazjum STYCZEŃ Analiza wyników Sprawdzian z matematyki z WSiP na zakończenie nauki w I semestrze pierwszej klasy gimnazjum STYCZEŃ 2016 Analiza wyników Arkusz egzaminu próbnego składał się z 19 zadań zamkniętych różnego typu i 4 zadania

Bardziej szczegółowo

Egzamin Gimnazjalny z WSiP STYCZEŃ Analiza wyników próbnego egzaminu gimnazjalnego. Część matematyczno-przyrodnicza MATEMATYKA

Egzamin Gimnazjalny z WSiP STYCZEŃ Analiza wyników próbnego egzaminu gimnazjalnego. Część matematyczno-przyrodnicza MATEMATYKA Egzamin Gimnazjalny z WSiP STYCZEŃ 2018 Analiza wyników próbnego egzaminu gimnazjalnego Część matematyczno-przyrodnicza MATEMATYKA Arkusz egzaminu próbnego składał się z 23 zadań różnego. Zadania sprawdzały

Bardziej szczegółowo

STYCZEŃ 2017 Analiza wyników sprawdzianu na zakończenie nauki. w I semestrze drugiej klasy gimnazjum MATEMATYKA

STYCZEŃ 2017 Analiza wyników sprawdzianu na zakończenie nauki. w I semestrze drugiej klasy gimnazjum MATEMATYKA STYCZEŃ 2017 Analiza wyników sprawdzianu na zakończenie nauki w I semestrze drugiej klasy gimnazjum MATEMATYKA Zestaw składał się z 21 zadań zamkniętych różnego typu i 3 zadań otwartych. Zadania sprawdzały

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 - wyniki niskie - wyniki średnie - wyniki wysokie liczba

Bardziej szczegółowo

Wyniki procentowe poszczególnych uczniów

Wyniki procentowe poszczególnych uczniów K la s a IA Próbny egzamin gimnazjalny Wyniki procentowe poszczególnych uczniów 0% 80% 70% 60% 50% 40% 30% Polska (41%) % % 0% nr ucznia 1 2 3 4 5 6 7 8 16 18 1 21 22 24 25 26 27 28 wynik w % 45 65 42

Bardziej szczegółowo

PRÓBNA MATURA z WSIP dla klas 3 LO i 4 TECHNIKUM

PRÓBNA MATURA z WSIP dla klas 3 LO i 4 TECHNIKUM PRÓBNA MATURA z WSIP dla klas 3 LO i 4 TECHNIKUM MARZEC 2018 Analiza wyników próbnego egzaminu maturalnego Poziom podstawowy MATEMATYKA Arkusz próbnego egzaminu maturalnego składał się z 34 zadań. Zadania

Bardziej szczegółowo

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa 3a średnia klasy: 22.52 pkt średnia szkoły: 21.93 pkt średnia ogólnopolska: 14.11 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA

Bardziej szczegółowo

WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM

WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM TEMAT WYMAGANIA SZCZEGÓŁOWE 1. LICZBY I WYRAŻENIA ALGEBRAICZNE 2. System dziesiątkowy 1. Liczby wymierne dodatnie. Uczeń: 1) zaokrągla rozwinięcia dziesiętne

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot KARTA MONITOROWANIA PODSTAWY PROGRAMOWEJ KSZTAŁCENIA OGÓLNEGO III etap edukacyjny PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot matematyka Klasa......... Rok szkolny Imię i nazwisko nauczyciela

Bardziej szczegółowo

Wymagania edukacyjne klasa pierwsza.

Wymagania edukacyjne klasa pierwsza. Wymagania edukacyjne klasa pierwsza. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie liczb. Szacowanie wyników Dodawanie

Bardziej szczegółowo

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 20 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-2 2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 1 1-2 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 0 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 4. Dodawanie i odejmowanie liczb dodatnich 1 1-

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów

Bardziej szczegółowo

Próbny egzamin ósmoklasisty z WSiP

Próbny egzamin ósmoklasisty z WSiP Próbny egzamin ósmoklasisty z WSiP Przygotowanie do egzaminu zewnętrznego z matematyki dla klasy 8 Listopad 208 Analiza wyników Próbny egzamin ósmoklasisty. Matematyka / Opis badania Opis badania 22 liczba

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów Parametry rozkładu

Bardziej szczegółowo

Próbny egzamin ósmoklasisty z WSiP. Przygotowanie do egzaminu zewnętrznego z matematyki dla klasy 7 KWIECIEŃ Analiza wyników

Próbny egzamin ósmoklasisty z WSiP. Przygotowanie do egzaminu zewnętrznego z matematyki dla klasy 7 KWIECIEŃ Analiza wyników Próbny egzamin ósmoklasisty z WSiP Przygotowanie do egzaminu zewnętrznego z matematyki dla klasy 7 KWIECIEŃ 2018 Analiza wyników Arkusz egzaminu próbnego składał się z 22 zadań. Zadania sprawdzały umiejętności

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE Okręgowa Komisja Egzaminacyjna w Gdańsku EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE Osiągnięcia gimnazjalistów z zakresu matematyki

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 3. System rzymski 5-6 WYMAGANIA SZCZEGÓŁOWE

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie Parametry

Bardziej szczegółowo

Próbny egzamin z języka niemieckiego z WSiP w trzeciej klasie gimnazjum. Poziom podstawowy LUTY Analiza wyników

Próbny egzamin z języka niemieckiego z WSiP w trzeciej klasie gimnazjum. Poziom podstawowy LUTY Analiza wyników Próbny egzamin z języka niemieckiego z WSiP w trzeciej klasie gimnazjum Poziom podstawowy LUTY 2016 Analiza wyników Arkusz egzaminu próbnego składał się z 11 zadań zamkniętych. Zadania sprawdzały umiejętności

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie Parametry rozkładu

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie Parametry rozkładu

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów Parametry

Bardziej szczegółowo

Tabela 1. Liczba uczniów z uwzględnieniem rodzaju arkusza i laureatów w poszczególnych klasach

Tabela 1. Liczba uczniów z uwzględnieniem rodzaju arkusza i laureatów w poszczególnych klasach Myszyniec, dnia 13.11.2013r. Analiza wyników egzaminu gimnazjalnego w części matematyczno-przyrodniczej z zakresu matematyki przeprowadzonego w roku szkolnym 2012/2013 w Publicznym Gimnazjum w Myszyńcu

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIEIEŃ 2015 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. Umiejętność

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M2, GM-M4, GM-M5 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2017 Zadanie 1. (0 1) Wymagania szczegółowe Umiejętności z zakresu

Bardziej szczegółowo

Egzamin Gimnazjalny z WSiP STYCZEŃ Analiza wyników próbnego egzaminu gimnazjalnego. Poziom rozszerzony JĘZYK NIEMIECKI

Egzamin Gimnazjalny z WSiP STYCZEŃ Analiza wyników próbnego egzaminu gimnazjalnego. Poziom rozszerzony JĘZYK NIEMIECKI Egzamin Gimnazjalny z WSiP STYCZEŃ 2017 Analiza wyników próbnego egzaminu gimnazjalnego Poziom rozszerzony JĘZYK NIEMIECKI Arkusz egzaminu próbnego składał się z 8 zadań. Zadania sprawdzały umiejętności

Bardziej szczegółowo

Ułamki i działania 20 h

Ułamki i działania 20 h Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIEIEŃ 2015 Zadanie 1. (0 1) 7) stosuje obliczenia na liczbach wymiernych do

Bardziej szczegółowo

Egzamin Gimnazjalny z WSiP STYCZEŃ Analiza wyników próbnego egzaminu gimnazjalnego. Poziom podstawowy JĘZYK NIEMIECKI

Egzamin Gimnazjalny z WSiP STYCZEŃ Analiza wyników próbnego egzaminu gimnazjalnego. Poziom podstawowy JĘZYK NIEMIECKI Egzamin Gimnazjalny z WSiP STYCZEŃ 2017 Analiza wyników próbnego egzaminu gimnazjalnego Poziom podstawowy JĘZYK NIEMIECKI Arkusz egzaminu próbnego składał się z 11 zadań. Zadania sprawdzały umiejętności

Bardziej szczegółowo

Wymagania edukacyjne klasa druga.

Wymagania edukacyjne klasa druga. Wymagania edukacyjne klasa druga. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. POTĘGI Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi Potęgowanie

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

PRÓBNA MATURA z WSIP dla klas 3 LO i 4 TECHNIKUM

PRÓBNA MATURA z WSIP dla klas 3 LO i 4 TECHNIKUM PRÓBNA MATURA z WSIP dla klas 3 LO i 4 TECHNIKUM MARZEC 2018 Analiza wyników próbnego egzaminu maturalnego Poziom rozszerzony MATEMATYKA Arkusz próbnego egzaminu maturalnego składał się z 17 zadań. Zadania

Bardziej szczegółowo

STYCZEŃ 2017 Analiza wyników sprawdzianu na zakończenie nauki. w I semestrze czwartej klasy szkoły podstawowej MATEMATYKA

STYCZEŃ 2017 Analiza wyników sprawdzianu na zakończenie nauki. w I semestrze czwartej klasy szkoły podstawowej MATEMATYKA STYCZEŃ 2017 Analiza wyników sprawdzianu na zakończenie nauki w I semestrze czwartej klasy szkoły podstawowej MATEMATYKA Zestaw składał się z 11 zadań zamkniętych różnego typu i 6 zadań otwartych. Zadania

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów Parametry

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2019 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie i interpretowanie reprezentacji.

Bardziej szczegółowo

Próbny egzamin z języka niemieckiego z WSiP w trzeciej klasie gimnazjum. Poziom rozszerzony LUTY Analiza wyników

Próbny egzamin z języka niemieckiego z WSiP w trzeciej klasie gimnazjum. Poziom rozszerzony LUTY Analiza wyników Próbny egzamin z języka niemieckiego z WSiP w trzeciej klasie gimnazjum Poziom rozszerzony LUTY 2016 Analiza wyników 1 Arkusz egzaminu próbnego składał się z 8 zadań różnego. Zadania sprawdzały umiejętności

Bardziej szczegółowo

1. Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi 1 LICZBA GODZIN LEKCYJNYCH

1. Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi 1 LICZBA GODZIN LEKCYJNYCH TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. POTĘGI 1. Potęga o wykładniku naturalnym 2-3 2. Iloczyn i iloraz potęg o jednakowych podstawach 3. Potęgowanie potęgi

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie Parametry

Bardziej szczegółowo

Myszyniec, dnia 27.10.2014 r.

Myszyniec, dnia 27.10.2014 r. Myszyniec, dnia 27.10.2014 r. Analiza wyników egzaminu gimnazjalnego w części matematyczno-przyrodniczej z zakresu matematyki przeprowadzonego w roku szkolnym 2013/2014 w Publicznym Gimnazjum w Myszyńcu

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE

WYMAGANIA EDUKACYJNE GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie II gimnazjum str. 1 Wymagania edukacyjne niezbędne

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2019 Zadanie 1. (0 1) 2. Liczby wymierne (dodatnie i niedodatnie).

Bardziej szczegółowo

Egzamin Gimnazjalny z WSiP LISTOPAD Analiza wyników próbnego egzaminu gimnazjalnego JĘZYK NIEMIECKI. Poziom rozszerzony

Egzamin Gimnazjalny z WSiP LISTOPAD Analiza wyników próbnego egzaminu gimnazjalnego JĘZYK NIEMIECKI. Poziom rozszerzony Egzamin Gimnazjalny z WSiP LISTOPAD 2015 Analiza wyników próbnego egzaminu gimnazjalnego JĘZYK NIEMIECKI Poziom rozszerzony Arkusz egzaminu próbnego składał się z 8 zadań różnego typu. Zadania sprawdzały

Bardziej szczegółowo

Matematyka Wymagania edukacyjne, kryteria oceniania i sposoby sprawdzania osiągnięć edukacyjnych uczniów

Matematyka Wymagania edukacyjne, kryteria oceniania i sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka Wymagania edukacyjne, kryteria oceniania i sposoby sprawdzania osiągnięć edukacyjnych uczniów Wymagania edukacyjne ogólne 1. Uczeń interpretuje i tworzy teksty o charakterze matematycznym, używa

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie Parametry rozkładu

Bardziej szczegółowo

Egzamin gimnazjalny 2015 część matematyczna

Egzamin gimnazjalny 2015 część matematyczna Egzamin gimnazjalny 2015 część matematyczna imię i nazwisko Kalendarz gimnazjalisty Tydz. Dział start 22.09 29 26.09 Przygotowanie do pracy zapoznanie się z informacjami na temat egzaminu gimnazjalnego

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 34 35 36 37 38 39 4 41 42 43 44 45 46 47 48 49

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny

Wymagania edukacyjne na poszczególne oceny Wymaganiach edukacyjne niezbędne do otrzymania przez ucznia klasy I Gimnazjum poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki, wynikające z programu nauczania: praca zbiorowa

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości; WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP Liczby. TEMAT Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. Mnożenie i dzielenie

Bardziej szczegółowo

Diagnoza wstępna z matematyki Klasa pierwsza szkoły ponadgimnazjalnej

Diagnoza wstępna z matematyki Klasa pierwsza szkoły ponadgimnazjalnej Diagnoza wstępna z matematyki Klasa pierwsza szkoły ponadgimnazjalnej 1 Cel: Uzyskanie informacji o poziomie wiedzy i umiejętności uczniów, które pozwolą efektywniej zaplanować pracę z zespołem klasowym.

Bardziej szczegółowo

MATEMATYKA - gimnazjum - cele i wymagania z podstawy programowej

MATEMATYKA - gimnazjum - cele i wymagania z podstawy programowej MATEMATYKA - gimnazjum - cele i wymagania z podstawy programowej 1. Cel: Liczby wymierne dodatnie. 1) odczytuje i zapisuje liczby naturalne dodatnie w systemie rzymskim (w zakresie do 3000); 2) dodaje,

Bardziej szczegółowo

Egzamin gimnazjalny z matematyki 2016 analiza

Egzamin gimnazjalny z matematyki 2016 analiza Egzamin gimnazjalny z matematyki 2016 analiza Arkusz zawierał 23 zadania: 20 zamkniętych i 3 otwarte. Dominowały zadania wyboru wielokrotnego, w których uczeń wybierał jedną z podanych odpowiedzi. W pięciu

Bardziej szczegółowo

Egzamin Gimnazjalny z WSiP STYCZEŃ Analiza wyników próbnego egzaminu gimnazjalnego. Poziom podstawowy JĘZYK ROSYJSKI

Egzamin Gimnazjalny z WSiP STYCZEŃ Analiza wyników próbnego egzaminu gimnazjalnego. Poziom podstawowy JĘZYK ROSYJSKI Egzamin Gimnazjalny z WSiP STYCZEŃ 2017 Analiza wyników próbnego egzaminu gimnazjalnego Poziom podstawowy JĘZYK ROSYJSKI Arkusz egzaminu próbnego składał się z 11 zadań. Zadania sprawdzały umiejętności

Bardziej szczegółowo

Egzamin Gimnazjalny z WSiP LISTOPAD Analiza wyników próbnego egzaminu gimnazjalnego JĘZYK NIEMIECKI. Poziom podstawowy

Egzamin Gimnazjalny z WSiP LISTOPAD Analiza wyników próbnego egzaminu gimnazjalnego JĘZYK NIEMIECKI. Poziom podstawowy Egzamin Gimnazjalny z WSiP LISTOPAD 2015 Analiza wyników próbnego egzaminu gimnazjalnego JĘZYK NIEMIECKI Poziom podstawowy Arkusz egzaminu próbnego składał się z 11 zadań różnego typu. Zadania sprawdzały

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. Umiejętność

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 ZĘŚĆ 2. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIEIEŃ 2016 Zadanie 1. (0 1) 1. Liczby wymierne dodatnie. Uczeń: 7) stosuje

Bardziej szczegółowo

Egzamin Gimnazjalny z WSiP STYCZEŃ Analiza wyników próbnego egzaminu gimnazjalnego. Część humanistyczna JĘZYK POLSKI

Egzamin Gimnazjalny z WSiP STYCZEŃ Analiza wyników próbnego egzaminu gimnazjalnego. Część humanistyczna JĘZYK POLSKI Egzamin Gimnazjalny z WSiP STYCZEŃ 2017 Analiza wyników próbnego egzaminu gimnazjalnego Część humanistyczna JĘZYK POLSKI Arkusz egzaminu próbnego składał się z 20 zadań zamkniętych różnego typu i 2 zadań

Bardziej szczegółowo

Regulamin XVI Regionalnego Konkursu Matematycznego "Czas na szóstkę"

Regulamin XVI Regionalnego Konkursu Matematycznego Czas na szóstkę Regulamin XVI Regionalnego Konkursu Matematycznego "Czas na szóstkę" 1. Konkurs jest przeznaczony dla uczniów klas III gimnazjum oraz dla klas VII i VIII szkół podstawowych. 2. Organizatorzy: - Zespół

Bardziej szczegółowo

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI.

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI. MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 6 h Liczby. Rozwinięcia

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów Parametry

Bardziej szczegółowo

Regulamin XV Regionalnego Konkursu Matematycznego Czas na szóstkę

Regulamin XV Regionalnego Konkursu Matematycznego Czas na szóstkę Regulamin XV Regionalnego Konkursu Matematycznego Czas na szóstkę 1. Konkurs jest przeznaczony dla uczniów klas II - III gimnazjum oraz dla klas VII szkół podstawowych. 2. Organizatorzy: - Zespół Szkół

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 liczba punktów - wyniki niskie - wyniki średnie - wyniki wysokie Parametry rozkładu wyników

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M, GM-M4, GM-M5, GM-M6 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie

Bardziej szczegółowo

Próbny egzamin z języka rosyjskiego z WSiP w trzeciej klasie gimnazjum. Poziom podstawowy LUTY Analiza wyników

Próbny egzamin z języka rosyjskiego z WSiP w trzeciej klasie gimnazjum. Poziom podstawowy LUTY Analiza wyników Próbny egzamin z języka rosyjskiego z WSiP w trzeciej klasie gimnazjum Poziom podstawowy LUTY 2016 Analiza wyników 1 Arkusz egzaminu próbnego składał się z 11 zadań. Zadania sprawdzały umiejętności określone

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-MX4 KWIECIEŃ 2019 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji.

Bardziej szczegółowo

Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej)

Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej) Wymagania programowe z matematyki - Klasa 3 obowiązujące w od roku szkolnego 2013/2014 UWAGA! Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej) znajomością

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 - wyniki niskie - wyniki średnie - wyniki wysokie liczba punktów

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 5 4.5 4 3.5 procent uczniów 3 2.5 2 1.5 1.5 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 liczba punktów - wyniki niskie - wyniki średnie

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 liczba punktów - wyniki niskie - wyniki średnie - wyniki

Bardziej szczegółowo

III etap edukacyjny MATEMATYKA

III etap edukacyjny MATEMATYKA III etap edukacyjny MATEMATYKA Cele kształcenia wymagania ogólne I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o charakterze matematycznym, używa języka matematycznego do

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2016/2017 MATEMATYKA

PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2016/2017 MATEMATYKA PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2016/2017 MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o. Zadanie 1. (0 1) 1. Liczby wymierne dodatnie. Uczeń: 7) stosuje obliczenia na

Bardziej szczegółowo

Przedmiotowe zasady oceniania matematyka

Przedmiotowe zasady oceniania matematyka Gimnazjum nr 1 im. Jana Pawła II w Polkowicach Przedmiotowe zasady oceniania matematyka Ogólne cele oceniania z matematyki w gimnazjum: - informowanie ucznia o stopniu opanowania przez niego umiejętności

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI MATEMATYKA WOKÓŁ NAS WSiP

WYMAGANIA EDUKACYJNE Z MATEMATYKI MATEMATYKA WOKÓŁ NAS WSiP WYMAGANIA EDUKACYJNE Z MATEMATYKI MATEMATYKA WOKÓŁ NAS WSiP KLASA 1 Główne działy podstawy programowej Liczby wymierne dodatnie Liczby wymierne (dodatnie i niedodatnie) Hasła programowe Cztery działania

Bardziej szczegółowo

KONKURSY PRZEDMIOTOWE MKO DLA UCZNIÓW WOJEWÓDZTWA MAZOWIECKIEGO

KONKURSY PRZEDMIOTOWE MKO DLA UCZNIÓW WOJEWÓDZTWA MAZOWIECKIEGO KONKURSY PRZEDMIOTOWE MKO DLA UCZNIÓW WOJEWÓDZTWA MAZOWIECKIEGO w roku szkolnym 2013/2014 Program merytoryczny konkursu z matematyki dla gimnazjum I. CELE KONKURSU 1. Wyłanianie uczniów uzdolnionych matematycznie.

Bardziej szczegółowo

KONKURSY PRZEDMIOTOWE MKO DLA UCZNIÓW WOJEWÓDZTWA MAZOWIECKIEGO w roku szkolnym 2013/2014. Program merytoryczny konkursu z matematyki dla gimnazjum

KONKURSY PRZEDMIOTOWE MKO DLA UCZNIÓW WOJEWÓDZTWA MAZOWIECKIEGO w roku szkolnym 2013/2014. Program merytoryczny konkursu z matematyki dla gimnazjum I. CELE KONKURSU KONKURSY PRZEDMIOTOWE MKO DLA UCZNIÓW WOJEWÓDZTWA MAZOWIECKIEGO w roku szkolnym 2013/2014 Program merytoryczny konkursu z matematyki dla gimnazjum 1. Wyłanianie uczniów uzdolnionych matematycznie.

Bardziej szczegółowo

Próbny egzamin z języka polskiego z WSiP w trzeciej klasie gimnazjum. część humanistyczna LUTY Analiza wyników

Próbny egzamin z języka polskiego z WSiP w trzeciej klasie gimnazjum. część humanistyczna LUTY Analiza wyników Próbny egzamin z języka polskiego z WSiP w trzeciej klasie gimnazjum część humanistyczna LUTY 2016 Analiza wyników Arkusz egzaminu próbnego składał się z 20 zadań zamkniętych różnego typu i 2 zadań otwartych.

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne stopnie szkolne klasa III

Wymagania edukacyjne na poszczególne stopnie szkolne klasa III Wymagania edukacyjne na poszczególne stopnie szkolne klasa III Rozdział 1. Bryły - wie, czym jest graniastosłup, graniastosłup prosty, graniastosłup prawidłowy - wie, czym jest ostrosłup, ostrosłup prosty,

Bardziej szczegółowo

MATEMATYKA DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ

MATEMATYKA DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ MATEMATYKA DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT 1. LICZBY I DZIAŁANIA Liczby. Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie

Bardziej szczegółowo

ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO w GIMNAZJUM nr 1 KWIECIEŃ 2012. WYNIKI ZESTAWU W CZĘŚCI matematycznej

ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO w GIMNAZJUM nr 1 KWIECIEŃ 2012. WYNIKI ZESTAWU W CZĘŚCI matematycznej ANALIZA WYNIKÓW EGZAMINU GIMNAZJALNEGO w GIMNAZJUM nr 1 KWIECIEŃ 2012 WYNIKI ZESTAWU W CZĘŚCI matematycznej Dane statystyczne o uczniach (słuchaczach) przystępujących do egzaminu gimnazjalnego Liczbę uczniów

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne, - szacować wartości

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII Uczeń na ocenę dopuszczającą: - zna znaki używane do zapisu liczb w systemie rzymskim, - umie zapisać i odczytać liczby naturalne dodatnie w systemie rzymskim

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać

Bardziej szczegółowo

Egzamin Gimnazjalny z WSiP LISTOPAD Analiza wyników próbnego egzaminu gimnazjalnego. Część humanistyczna. Język polski

Egzamin Gimnazjalny z WSiP LISTOPAD Analiza wyników próbnego egzaminu gimnazjalnego. Część humanistyczna. Język polski Egzamin Gimnazjalny z WSiP LISTOPAD 2015 Analiza wyników próbnego egzaminu gimnazjalnego Część humanistyczna Język polski Arkusz egzaminu próbnego składał się z 20 zadań zamkniętych różnego typu i 2 zadań

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 liczba punktów - wyniki niskie - wyniki średnie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE OCENY

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE OCENY WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA V Wymagania konieczne i podstawowe - na ocenę dopuszczającą i dostateczną. Uczeń powinien umieć: dodawać i odejmować w pamięci liczby dwucyfrowe

Bardziej szczegółowo

PRÓBNA MATURA z WSIP dla klas 3 LO i 4 TECHNIKUM

PRÓBNA MATURA z WSIP dla klas 3 LO i 4 TECHNIKUM PRÓBNA MATURA z WSIP dla klas 3 LO i 4 TECHNIKUM LUTY 2019 Analiza wyników próbnego egzaminu maturalnego Poziom podstawowy MATEMATYKA Opis badania 34 liczba zadań w arkuszu 25 liczba zadań zamkniętych

Bardziej szczegółowo