Kilka zagadnień dotyczących Sztucznej inteligencji.
|
|
- Bartłomiej Dziedzic
- 8 lat temu
- Przeglądów:
Transkrypt
1 Kilka zagadnień dotyczących Sztucznej inteligencji. Artykuł pobrano ze strony eioba.pl Jest tu kilka zagadnień dotyczących SI. Autor przygotowania: Magister inżynier Ireneusz Łukasz Dzitkowski Wałcz, dnia: r. Kilka zagadnień kluczowych dotyczących Sztucznej Inteligencji i systemów ekspertowych. Systemy ekspertowe programy komputerowe, które rozwiązują specjalistyczne problemy z pewnej dziedziny, zastępując eksperta - człowieka. Na podstawie zgromadzonej wiedzy potrafią również wnioskować i podejmować decyzje. Ogólnie zalicza się je do dziedziny zwanej sztuczną inteligencją. Podział systemów ekspertowych (ze względu na możliwość ingerencji człowieka w produkowane przez system rozwiązanie): -systemy doradcze podpowiadają rozwiązanie pomagając podjąć decyzję człowiekowi prezentują rozwiązanie jakiegoś problemu, ale do użytkownika należy jego ocena, oraz to czy je zaakceptuje, czy odrzuci; -podejmujące decyzję bez ingerencji i kontroli człowieka stosowane do sterowania skomplikowanymi urządzeniami w warunkach wykluczających lub mocno ograniczających możliwości człowieka; -systemy krytykujące dokonują analizy pewnego problemu i jego rozwiązania, a następnie komentują to rozwiązanie; System ekspertowy składa się z następujących, niezależnych fizycznie, lecz współpracujących ze sobą, elementów: -baza wiedzy znajdują się w niej wszelkie informacje z zakresu wybranej dziedziny: wiedza faktograficzna (fakty), wiedza o wnioskowaniu (zbiór reguł), wiedza o sposobach rozwiązywania problemu (meta - wiedza) musi być ona zapisana w postaci sformalizowanej, zrozumiałej dla mechanizmu wnioskującego i pozwalającej
2 na prześledzenie sposobu dojścia systemu do rozwiązania -maszyna wnioskująca na podstawie zgromadzonej wiedzy wyszukuje rozwiązanie postawionego problemu jest ona oddzielona od bazy wiedzy, dzięki czemu działa tak samo w systemach ekspertowych dla dowolnej dziedziny jak i w szkieletowych systemach ekspertowych; algorytm wyszukiwania zawiera szereg strategii przeszukiwań, heurystyk i metod wnioskowania strategie wyznaczają kolejne kroki przeszukiwań, heurystyki pomagają zoptymalizować przestrzeń poszukiwań, a metody decydują w jaki sposób zachodzi proces myślenia (wnioskowane wstecz, w przód, czy inne); -procedury objaśniania objaśniają strategię wnioskowania, sposób dojścia do rozwiązania i pokazują dokładniejsze dane o rozwiązaniu; -interfejs do porozumiewania się z użytkownikiem umożliwia komunikację człowieka z systemem (pracę interaktywną) służy do zasięgania informacji u użytkowania, przedstawiania wygenerowanego wyniku oraz udzielania wyjaśnień na temat procesu wnioskowania konstrukcja i wygląd interfejsu zależy od języka programowania, za pomocą którego stworzono system ekspertowy oraz systemu operacyjnego, w którym on działa; -moduły zdobywania i modyfikacji wiedzy pozyskiwanie wiedzy pozwala na automatyczne ulepszanie systemu; Systemy ekspertowe najlepiej nadają się do zastosowania w tych dziedzinach, które są słabo sformalizowane, w których trudno jest sformułować teorie oparte na matematyce lub ścisłe algorytmy działania. Przykładami mogą być: rolnictwo,medycyna, geologia, prawo, zarządzanie, robotyka, chemia. Do rozwiązywania problemów, dla których istnieją algorytmy numeryczne, stosowanie systemów ekspertowych jest nieopłacalne, gdyż programy algorytmiczne są na ogół szybsze i prowadzą do optymalnego rozwiązania, podczas gdy systemy ekspertowe nie muszą prowadzić do rozwiązań optymalnych a jedynie akceptowalnych przez użytkownika systemu. Niektóre istniejące systemy ekspertowe: -MACSYMA służy do rozwiązywania problemów matematycznych i całkowania; wykorzystywany w MIT przez fizyków plazmy, pozyskiwanie wiedzy przez przeprogramowanie; uznawany za bardzo efektywny;
3 -DENDRAL służy do identyfikacji związków chemicznych, stosowany w USA, pozyskiwanie wiedzy przez przeprogramowanie, uznawany za bardzo efektywny; -PROSPECTOR służy do interpretacji danych dotyczących zasobów geologicznych (poszukiwanie złóż minerałów), mocno rozbudowany system pozyskiwania wiedzy, rezultaty dobre; -REACTOR służy do diagnostyki siłowni jądrowych; uznany za dobry; System ekspertowy może być tworzony przy użyciu dowolnego języka programowania (Basic, Algol, Fortran, Pascal, C, C+ i in.), jednakże tworzenie tworzenie systemu w tych językach od podstaw może być bardzo czasochłonne, stąd opracowano specjalne języki programowania przeznaczone do tworzenia systemów ekspertowych, np.: -LISP LISt Processing -PROLOG PROgrammation LOGique -OPS5 Official Production System -CLIPS C Language Integrated Production System Zawierają one w sobie maszynę wnioskującą (z wyjątkiem LISP-u), a także wyspecjalizowane narzędzia ułatwiające tworzenie systemu, zawierające interfejs użytkownika, blok pozyskiwania wiedzy, blok wyjaśnień i inne. Takie narzędzia są nazywane systemami szkieletowymi można je traktować jako systemy ekspertowe z pustą bazą wiedzy, której zapełnienie zmienia je w konkretny system ekspertowy. Takie podejście znakomicie ułatwia i przyśpiesza tworzenie systemów ekspertowych. Test Turinga (angielskie Turing test) to eksperyment definiujący maszynę myślącą, zaproponowany przez A. Turinga. W myśl testu Turinga maszynę można uznać za naśladującą dostatecznie dobrze procesy myślowe, jeśli człowiek prowadzący z nią dialog (nie poinformowany o tym, że rozmawia z maszyną), nie będzie w stanie odróżnić rozmowy z maszyną od rozmowy z drugim człowiekiem. PC-Shell jest pierwszym polskim - w pełni komercyjnym - szkieletowym systemem ekspertowym. PC-Shell powstał jako rezultat wcześniejszych doświadczeń uzyskanych podczas budowy systemu PC-Expert ( ) oraz Diagnosta MC (1988). PC-Shell otrzymał dwa wyróżnienia na Międzynarodowych Targach Oprogramowania SOFTARG w roku 1994 oraz W roku 1997 system otrzymał nagrodę II-go stopnia w konkursie na najlepszy program targów SOFTARG. System był wielokrotnie prezentowany na konferencjach i seminariach,
4 zarówno w kraju jak i za granicą.pc-shell jest dziedzinowo-niezależnym narzędziem- służącym do budowy systemów ekspertowych. Może być zastosowany w dowolnej dziedzinie: począwszy od bankowości i finansów a na zastosowaniach technicznych kończąc. Typowe obszary zastosowań systemu PC-Shell to: systemy doradcze i wspomagania decyzji, -dydaktyka (wyższe uczelnie i szkoły średnie). System może być między innymi wykorzystywany w takich dziedzinach jak: -analizy finansowe (ekonomiczne), -analizy wniosków kredytowych w bankach, -doradztwo podatkowe, -dzięki otwartej architekturze może być łatwo zintegrowany z Systemami Informowania Kierownictwa, służąc np. do automatycznej analizy wskaźników ekonomicznych, - technika, np. do analizy danych pomiarowych. Dziedzinowa niezależność systemu PC-Shell oznacza, że nie dziedzina a raczej klasa problemów decyduje o powodzeniu zastosowania tego systemu. System PC-Shell jest szczególnie predysponowany do rozwiązywania następujących klas problemów: analiza (interpretacja) danych klasyfikacja, diagnostyka, finanse i bankowość, inwestycje, marketing, technika, dydaktyka, komponent dla systemów SIK, analizatorów, arkuszy kalkulacyjnych, komponent programów edukacyjnych. PC-Shell jest dziedzinowo niezależny, stąd zakres jego zastosowań jest bardzo szeroki. Bowiem nie dziedzina a klasa problemów decyduje o powodzeniu zastosowania systemu PC-Shell. System PC-Shell jest systemem o architekturze hybrydowej, tj. łączącej w sobie różne metody rozwiązywania problemów i reprezentacji wiedzy. Interesującą właściwością systemu
5 PC- Shell jest między innymi wbudowany, w pełni zintegrowany, symulator sieci neuronowej. Inną istotną cechą systemu PC-Shell jest jego struktura tablicowa, co umożliwia podzielenie dużej bazy wiedzy na mniejsze moduły - zorientowane tematycznie, tzw. źródła wiedzy. Dzięki hybrydowej architekturze, w systemie PC-Shell występują obok siebie różne metody reprezentowania wiedzy: deklaratywna w formie reguł i faktów, trójka: obiekt, atrybut, wartość, imperatywna w formie programu algorytmicznego, wiedza w formie tekstów, wiedza rozproszona w sieci neuronowej, możliwość podzielenia bazy wiedzy na pewną liczbę źródeł wiedzy. System PC-Shell jest wyposażony we własny język reprezentacji wiedzy. Język ten dzięki przyjętym rozwiązaniom, w tym blokowej strukturze, cechują: elastyczność, czytelność, pełne rozdzielenie wiedzy eksperckiej i procedur sterowania, łatwość nauczania. Graf jest zbiorem połączonych ze sobą wierzchołków. Są one podstawowym obiektem rozważań teorii grafów. Za pierwszego teoretyka i badacza grafów uważa się Leonarda Eulera. Grafy dzielimy na: - prosty, nieskierowany: jest to uporządkowana para (V, E), gdzie V jest niepustym zbiorem, zaś E rodziną dwuelementowych podzbiorów zbioru wierzchołków V, zwanych krawędziami. - skierowany, digraf: jest to uporządkowana para (V, A), gdzie V jest zbiorem wierzchołków, zaś A jest zbiorem uporządkowanych par różnych wierzchołków ze zbioru V, zwanych krawędziami skierowanymi. - mieszany: jest to uporządkowana trójka (V, E, A) zdefiniowana jak wyżej, czyli może zawierać zarówno krawędzie jak i krawędzie skierowane. Metody przeszukiwania Bardzo istotne przy badaniu grafów są algorytmy przeszukiwania, które polegają na
6 odwiedzaniu wierzchołków w wyznaczonym celu. Może nim być sprawdzenie czy istnieje połączenie pomiędzy wierzchołkami lub znalezienie najkrótszej drogi pomiędzy nimi. Podstawowe algorytmy to: 1. BFS (Breadth First Search) - algorytm przeszukiwania wszerz Algorytm zaczyna od korzenia i odwiedza wszystkie połączone z nim węzły. Następnie odwiedza węzły połączone z tymi węzłami i tak dalej, aż do odnalezienia celu. Algorytm BFS: 1. Utwórz kolejkę. 2. Zapisz do kolejki wierzchołek początkowy. 3. Oznacz wierzchołek S jako odwiedzony. 4. Dopóki kolejka jest niepusta wykonuj: 4.1.Pobierz z kolejki wierzchołek i nazwij go S. 4.2.Jeśli S jest poszukiwanym wierzchołkiem końcowym, to zwróć SUKCES i zakończ algorytm. 4.3.Jeśli S nie jest poszukiwanym wierzchołkiem końcowym, to zapisz do kolejki wszystkie nieodwiedzone wierzchołki sąsiadujące z S. 5. Zwróć BRAK ROZWIĄZANIA i zakończ algorytm. Ponieważ trzeba utrzymywać listę węzłów które się już odwiedziło, złożoność pamięciowa przeszukiwania wszerz wynosi O(V + E), gdzie V to liczba węzłów, a E to liczba krawędzi w grafie. Z powodu tak dużego zapotrzebowania na pamięć przeszukiwanie wszerz jest niepraktyczne dla dużych danych. Przeszukiwanie wszerz (ang. Breadth-first search, w skrócie BFS) jeden z najprostszych algorytmów przeszukiwania grafu. Przechodzenie grafu rozpoczyna się od zadanego wierzchołka s i polega na odwiedzeniu wszystkich osiągalnych z niego wierzchołków. Wykorzystywany jest do odnajdywania najkrótszej drogi w grafie. Wynikiem działania algorytmu jest także drzewo przeszukiwania wszerz o korzeniu w s, zawierające wszystkie wierzchołki do których prowadzi droga z s. Algorytm działa prawidłowo zarówno dla grafów skierowanych jak i nieskierowanych Przeszukiwanie w głąb (ang. Depth-first search, w skrócie DFS) jeden z algorytmów przeszukiwania grafu. Przeszukiwanie w głąb polega na badaniu wszystkich krawędzi wychodzących z podanego wierzchołka. Po zbadaniu wszystkich krawędzi wychodzących z danego wierzchołka algorytm powraca do wierzchołka, z którego dany wierzchołek został odwiedzony.
7 Źródło: Na podstawie dostępnych treści przygotował Mgr.inż.Ireneusz Łukasz Dzitkowski Autor: Magister inżynier Ireneusz Łukasz Dzitkowski Artykuł pobrano ze strony eioba.pl
Praca dyplomowa magisterska
KATEDRA WYTRZYMAŁOŚCI MATERIAŁÓW I METOD KOMPUTEROWYCH MECHANIKI Wydział Mechaniczny Technologiczny POLITECHNIKA ŚLĄSKA W GLIWICACH Praca dyplomowa magisterska Temat: Komputerowy system wspomagania wiedzy:
Systemy eksperowe. Agnieszka Nowak Brzezińska Wykład I
Systemy eksperowe Agnieszka Nowak Brzezińska Wykład I Zakres materiału: Metody wnioskowania w regułowych bazach wiedzy PC-Shell jako narzędzie do budowy szkieletowych systemów ekspertowych (Sprawozdanie
Rozwiązywanie problemów metodą przeszukiwania
Rozwiązywanie problemów metodą przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Reprezentacja problemu w przestrzeni stanów Jedną z ważniejszych metod sztucznej
Ogólne wiadomości o grafach
Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Rozwiązywanie problemów-i Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Rozwiązywanie problemów Podstawowe fazy: Sformułowanie celu -
ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe opracował:
Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki
Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First
SYSTEMY EKSPERTOWE. Anna Matysek IBiIN UŚ 2008
SYSTEMY EKSPERTOWE Anna Matysek IBiIN UŚ 2008 DEFINICJE SE System ekspertowy to program komputerowy, który wykonuje złożone zadania o dużych wymaganiach intelektualnych i robi to tak dobrze jak człowiek
Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.
Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf
Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY.
Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY. 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przykładowym systemem ekspertowym napisanym w JESS. Studenci poznają strukturę systemu ekspertowego,
Systemy ekspertowe. Krzysztof Patan
Systemy ekspertowe Krzysztof Patan Wprowadzenie System ekspertowy Program komputerowy, który wykonuje złożone zadania o dużych wymaganiach intelektualnych i robi to tak dobrze jak człowiek będący ekspertem
Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:
Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z
Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Systemy ekspertowe Expert systems Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: Rodzaj zajęć: Wyk. Ćwicz. Lab. Sem. Proj. Poziom studiów: studia I stopnia forma studiów:
a) 7 b) 19 c) 21 d) 34
Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie
Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski
Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do
PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
Systemy ekspertowe i sztuczna inteligencja. dr Agnieszka Nowak Brzezioska
Systemy ekspertowe i sztuczna inteligencja dr Agnieszka Nowak Brzezioska Email: agnieszka.nowak@us.edu.pl Architektura SE Pojęcia z dziedziny systemów ekspertowych Inżynieria wiedzy - dziedzina sztucznej
Złożoność obliczeniowa klasycznych problemów grafowych
Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Systemy ekspertowe w zarządzaniu firmą Expert systems in enterprise management Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: Rodzaj zajęć: Wyk. Ćwicz. Lab. Sem. Proj.
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność
Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów
Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69
Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1
Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą
Algorytmiczna teoria grafów
Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój
Heurystyki. Strategie poszukiwań
Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 12. PRZESZUKIWANIE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska ROZWIĄZYWANIE PROBLEMÓW JAKO PRZESZUKIWANIE Istotną rolę podczas
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia
Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek
Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących
Digraf. 13 maja 2017
Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,
Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV
Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów
Matryca pokrycia efektów kształcenia
Matryca pokrycia efektów kształcenia Matryca dla przedmiotów realizowanych na kierunku Informatyka (z wyłączeniem przedmiotów realizowanych w ramach specjalności oraz przedmiotów swobodnego wyboru) Efekty
Zadanie 1: Piętnastka
Informatyka, studia dzienne, inż. I st. semestr VI Sztuczna Inteligencja i Systemy Ekspertowe 2010/2011 Prowadzący: mgr Michał Pryczek piątek, 12:00 Data oddania: Ocena: Grzegorz Graczyk 150875 Marek Rogalski
Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH
Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Przeszukiwanie przestrzeni rozwiązań, szukanie na ślepo, wszerz, w głąb. Spis treści: 1. Wprowadzenie 3. str. 1.1 Krótki Wstęp
G. Wybrane elementy teorii grafów
Dorota Miszczyńska, Marek Miszczyński KBO UŁ Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów Grafy są stosowane współcześnie w różnych działach nauki i techniki. Za pomocą grafów znakomicie
Efekt kształcenia. Ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną w zakresie algorytmów i ich złożoności obliczeniowej.
Efekty dla studiów pierwszego stopnia profil ogólnoakademicki na kierunku Informatyka w języku polskim i w języku angielskim (Computer Science) na Wydziale Matematyki i Nauk Informacyjnych, gdzie: * Odniesienie-
Odniesienie do efektów kształcenia dla obszaru nauk EFEKTY KSZTAŁCENIA Symbol
KIERUNKOWE EFEKTY KSZTAŁCENIA Wydział Informatyki i Zarządzania Kierunek studiów INFORMATYKA (INF) Stopień studiów - pierwszy Profil studiów - ogólnoakademicki Projekt v1.0 z 18.02.2015 Odniesienie do
WYKORZYSTANIE SYSTEMÓW EKSPERTOWYCH DO OCENY FUNKCJONOWANIA PRZEDSIĘBIORSTW
WYKORZYSTANIE SYSTEMÓW EKSPERTOWYCH DO OCENY FUNKCJONOWANIA PRZEDSIĘBIORSTW Łukasz SIEMIENIUK, Małgorzata DAKOWICZ Streszczenie: Celem publikacji jest omówienie problematyki systemów ekspertowych, analiza
Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie
Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje
Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle
Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,
SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa
Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH
1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb.
1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb. Algorytmy przeszukiwania w głąb i wszerz są najczęściej stosowanymi algorytmami przeszukiwania. Wykorzystuje się je do zbadania istnienia połączenie
Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska
Teoria grafów dla małolatów Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka to wiele różnych dyscyplin Bowiem świat jest bardzo skomplikowany wymaga rozważenia
Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV
Algorytmy grafowe Wykład 2 Przeszukiwanie grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów 3. Spójność grafu,
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
Sortowanie Shella Shell Sort
Sortowanie Shella Shell Sort W latach 50-tych ubiegłego wieku informatyk Donald Shell zauważył, iż algorytm sortowania przez wstawianie pracuje bardzo efektywnie w przypadku gdy zbiór jest w dużym stopniu
Systemy ekspertowe : program PCShell
Instytut Informatyki Uniwersytetu Śląskiego lab 1 Opis sytemu ekspertowego Metody wnioskowania System PcShell Projekt System ekspertowy - system ekspertowy to system komputerowy zawierający w sobie wyspecjalizowaną
Heurystyczne metody przeszukiwania
Heurystyczne metody przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Pojęcie heurystyki Metody heurystyczne są jednym z ważniejszych narzędzi sztucznej inteligencji.
Typy systemów informacyjnych
Typy systemów informacyjnych Information Systems Systemy Informacyjne Operations Support Systems Systemy Wsparcia Operacyjnego Management Support Systems Systemy Wspomagania Zarzadzania Transaction Processing
Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32
Analiza i projektowanie oprogramowania Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania 2/32 Cel analizy Celem fazy określania wymagań jest udzielenie odpowiedzi na pytanie:
Systemy eksperckie. Plan wykładu Wprowadzenie do sztucznej inteligencji. Wnioski z prób automatycznego wnioskowania w rachunku predykatów
Plan wykładu Systemy eksperckie Dr hab. inż. Joanna Józefowska, prof. pp 1/1 Wnioski z badań nad systemami mi w rachunku predykatów Reguły produkcji jako system reprezentacji Algorytm rozpoznaj-wykonaj
Programowanie obiektowe
Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2015 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2015 1 / 21 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający
MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY
ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych
Systemy ekspertowe. Sprawozdanie I. Tworzenie bazy wiedzy w systemie PC- Shell. Wykonali: Wiktor Wielgus Łukasz Nowak
Systemy ekspertowe Sprawozdanie I Tworzenie bazy wiedzy w systemie PC- Shell Wykonali: Wiktor Wielgus Łukasz Nowak 1. Opis systemu System został stworzony w celu pomocy użytkownikowi przy wyborze sprzętu
Transformacja wiedzy w budowie i eksploatacji maszyn
Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces
Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I
Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I Rozkład zgodny
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ SZTUCZNA INTELIGENCJA dwa podstawowe znaczenia Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące się), pewną dyscyplinę badawczą (dział
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych Rodzaj zajęć: wykład, laboratorium BAZY DANYCH I SYSTEMY EKSPERTOWE Database and expert systems Forma
Opis efektu kształcenia dla programu kształcenia
TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: Kierunek Fizyka Techniczna POZIOM
Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II
Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II Rozkład wymagający
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NYSIE
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NYSIE Efekty uczenia się Kierunek Informatyka Studia pierwszego stopnia Profil praktyczny Umiejscowienie kierunku informatyka w obszarze kształcenia: Obszar wiedzy: nauki
Informatyka wspomaga przedmioty ścisłe w szkole
Informatyka wspomaga przedmioty ścisłe w szkole Prezentuje : Dorota Roman - Jurdzińska W arkuszu I na obu poziomach występują dwa zadania związane z algorytmiką: Arkusz I bez komputera analiza algorytmów,
TEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr 3: Marszruty, łańcuchy, drogi w grafach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD III: Problemy agenta
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD III: Problemy agenta To już było: AI to dziedzina zajmująca się projektowaniem agentów Określenie agenta i agenta racjonalnego Charakterystyka PAGE
WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI
POLITECHNIKA WARSZAWSKA WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA MEL WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI NS 586 Dr inż. Franciszek Dul 5. ROZWIĄZYWANIE PROBLEMÓW Z OGRANICZENIAMI Problemy z ograniczeniami
[1] [2] [3] [4] [5] [6] Wiedza
3) Efekty dla studiów drugiego stopnia - profil ogólnoakademicki na kierunku Informatyka w języku angielskim (Computer Science) na specjalności Sztuczna inteligencja (Artificial Intelligence) na Wydziale
Programowanie sieciowe. Tadeusz Trzaskalik
Programowanie Tadeusz Trzaskalik 8.1. Wprowadzenie Słowa kluczowe Drzewo rozpinające Minimalne drzewo rozpinające Najkrótsza droga w sieci Wierzchołek początkowy Maksymalny przepływ w sieci Źródło Ujście
Efekty kształcenia dla kierunku studiów INFORMATYKA, Absolwent studiów I stopnia kierunku Informatyka WIEDZA
Symbol Efekty kształcenia dla kierunku studiów INFORMATYKA, specjalność: 1) Sieciowe systemy informatyczne. 2) Bazy danych Absolwent studiów I stopnia kierunku Informatyka WIEDZA Ma wiedzę z matematyki
Programowanie dynamiczne i algorytmy zachłanne
Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii
Programowanie obiektowe
Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2014 1 / 24 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań
KIERUNKOWE EFEKTY KSZTAŁCENIA
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA I STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA NAUK TECHNICZNYCH Dyscyplina
INFORMATYKA Pytania ogólne na egzamin dyplomowy
INFORMATYKA Pytania ogólne na egzamin dyplomowy 1. Wyjaśnić pojęcia problem, algorytm. 2. Podać definicję złożoności czasowej. 3. Podać definicję złożoności pamięciowej. 4. Typy danych w języku C. 5. Instrukcja
Wprowadzenie do teorii systemów ekspertowych
Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z
Języki programowania deklaratywnego
Katedra Inżynierii Wiedzy laborki 14 Języki deklaratywne Główne różnice między paradygmatem deklaratywnym a imperatywnym Omów główne cechy paradygmatu programowania w logice na przykładzie Prologa Główne
Programowanie komputerów
Programowanie komputerów Wykład 1-2. Podstawowe pojęcia Plan wykładu Omówienie programu wykładów, laboratoriów oraz egzaminu Etapy rozwiązywania problemów dr Helena Dudycz Katedra Technologii Informacyjnych
JAKIEGO RODZAJU NAUKĄ JEST
JAKIEGO RODZAJU NAUKĄ JEST INFORMATYKA? Computer Science czy Informatyka? Computer Science czy Informatyka? RACZEJ COMPUTER SCIENCE bo: dziedzina ta zaistniała na dobre wraz z wynalezieniem komputerów
KIERUNKOWE EFEKTY KSZTAŁCENIA
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA I STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA NAUK TECHNICZNYCH Dyscyplina
EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6
EFEKTY UCZENIA SIĘ DLA KIERUNKU INŻYNIERIA DANYCH W ODNIESIENIU DO EFEKTÓW UCZENIA SIĘ PRK POZIOM 6 studia pierwszego stopnia o profilu ogólnoakademickim Symbol K_W01 Po ukończeniu studiów pierwszego stopnia
Wykład 8. Drzewo rozpinające (minimum spanning tree)
Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,
SZTUCZNA INTELIGENCJA
Instytut Automatyki, Robotyki i Informatyki Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis Literatura SZTUCZNA INTELIGENCJA Modelowanie problemów za
Symbol efektu kształcenia
Efekty dla studiów drugiego stopnia - profil ogólnoakademicki, na kierunku Informatyka, na specjalnościach Metody sztucznej inteligencji (Tabela 1), Projektowanie systemów CAD/CAM (Tabela 2) oraz Przetwarzanie
KIERUNKOWE EFEKTY KSZTAŁCENIA
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA II STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA NAUK TECHNICZNYCH Dyscyplina
Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel
Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach
Zakładane efekty kształcenia dla kierunku Wydział Telekomunikacji, Informatyki i Elektrotechniki
Jednostka prowadząca kierunek studiów Nazwa kierunku studiów Specjalności Obszar kształcenia Profil kształcenia Poziom kształcenia Forma kształcenia Tytuł zawodowy uzyskiwany przez absolwenta Dziedziny
PROGRAM KSZTAŁCENIA dla kierunku automatyka i robotyka studiów pierwszego stopnia o profilu ogólnoakademickim
PROGRAM KSZTAŁCENIA dla kierunku automatyka i robotyka studiów pierwszego stopnia o profilu ogólnoakademickim Program kształcenia dla określonego kierunku, poziomu studiów i profilu kształcenia obejmuje
Podsumowanie wyników ankiety
SPRAWOZDANIE Kierunkowego Zespołu ds. Programów Kształcenia dla kierunku Informatyka dotyczące ankiet samooceny osiągnięcia przez absolwentów kierunkowych efektów kształcenia po ukończeniu studiów w roku
KONSPEKT ZAJĘĆ KOŁA INFORMATYCZNEGO LUB MATEMATYCZNEGO W KLASIE III GIMNAZJUM LUB I LICEUM ( 2 GODZ.)
Joanna Osio asiaosio@poczta.onet.pl Nauczycielka matematyki w Gimnazjum im. Macieja Rataja w Żmigrodzie KONSPEKT ZAJĘĆ KOŁA INFORMATYCZNEGO LUB MATEMATYCZNEGO W KLASIE III GIMNAZJUM LUB I LICEUM ( 2 GODZ.)
Program szkoleniowy Efektywni50+ Moduł V Raportowanie dla potrzeb analizy danych
Program szkoleniowy Efektywni50+ Moduł V Raportowanie dla potrzeb analizy danych 1 Wprowadzenie do technologii MS SQL Server 2012 Reporting Services. 2h Podstawowym zadaniem omawianej jednostki lekcyjnej
1. Tabela odniesień efektów kierunkowych do efektów obszarowych z komentarzami
EFEKTY KSZTAŁCENIA 1. Tabela odniesień efektów kierunkowych do efektów obszarowych z komentarzami Kierunkowy efekt kształcenia - symbol K_W01 K_W02 K_W03 K_W04 K_W05 K_W06 K_W07 K_W08 Kierunkowy efekt
Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda
Segmentacja obrazów cyfrowych Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp autor: Łukasz Chlebda 1 Segmentacja obrazów cyfrowych - temat pracy Temat pracy: Aplikacja do segmentacji
Algorytm - pojęcie algorytmu, sposób zapisu, poziom szczegółowości, czynności proste i strukturalne. Pojęcie procedury i funkcji.
Algorytm - pojęcie algorytmu, sposób zapisu, poziom szczegółowości, czynności proste i strukturalne. Pojęcie procedury i funkcji. Maria Górska 9 stycznia 2010 1 Spis treści 1 Pojęcie algorytmu 3 2 Sposób
Metody przeszukiwania
Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania
TEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr : Grafy Berge a dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 6-83-95-0, p.5/00 Zakład Badań Operacyjnych i
Digraf o V wierzchołkach posiada V 2 krawędzi, zatem liczba różnych digrafów o V wierzchołkach wynosi 2 VxV
Graf skierowany (digraf) zbiór wierzchołków i zbiór krawędzi skierowanych łączących (co najwyżej jeden raz) uporządkowane pary wierzchołków. Mówimy wtedy, że krawędź łączy pierwszy wierzchołek z drugim
Wykład 7. Algorytmy grafowe
Wykład Algorytmy grafowe Algorytmy grafowe i podstawowe algorytmy przeszukiwania Problem Definicje i własności Reprezentacja Przeszukiwanie wszerz (Breadthirst Search) Przeszukiwanie w głąb (Depthirst
Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1
Marek Miszczyński KBO UŁ. Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów W matematyce teorię grafów klasyfikuje się jako gałąź topologii. Jest ona jednak ściśle związana z algebrą i
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami