Systemy mrówkowe. Opracowali: Dawid Strucker, Konrad Baranowski
|
|
- Andrzej Kujawa
- 8 lat temu
- Przeglądów:
Transkrypt
1 Systemy mrówkowe Opracowali: Dawid Strucker, Konrad Baranowski
2 Wprowadzenie Algorytmy mrówkowe oparte są o zasadę inteligencji roju (ang. swarm intelligence). Służą głównie do znajdowania najkrótszej drogi w grafie, jednak nie gwarantują one znalezienia optymalnego rozwiązania. Dlatego znajdują one zastosowanie gdy wystarczające jest rozwiązanie prawie optymalne. Nie trudno domyślić się że algorytmy mrówkowe naśladują pewne zachowania mrówek.
3 Jak mrówki znajdują pożywienie? Żeby coś naśladować najpierw musimy wiedzieć jak to coś działa :)
4 Jak mrówki znajdują pożywienie? - mrówka porusza się dość losowo, dopóki nie natrafi na ślad feromonowy, im mocniejszy tym chętniej uczęszczany - mrówki chętniej chodzą po mocnym śladzie - po pewnym czasie feromony wyparowują eliminując dłuższe ścieżki - gdy mrówka znajdzie jedzenie potrafi z nim wrócić po własnych śladach Wniosek? Gdy jakaś mrówka odnajdzie krótką drogę to inne mrówki będą podążać właśnie tą ścieżką zostawiając własna feromony i zwiększając ich natężenie. Gorsze(dłuższe) drogi zostaną zapomniane.
5 Algorytm Z poprzedniego slajdu łatwo wywnioskować że mrówki nie szukają rozwiązania najlepszego a zadowala je jedynie rozsądne. My jednak potrzebujemy większego rozproszenia mrówek aby można było znaleźć optimum nawet w znacznej odległości od obecnej najlepszej ścieżki. program AlgorytmMrówkowy while (nie nastąpił warunek końca) koniec generujrozwiązania(); zaktualizujścieżkiferomonów(); end while Na kolejnych śladach szczegółowo opisane będą kolejne kroki.
6 generujrozwiązania() W tym miejscu algorytm naśladuje rozchodzenie się mrówek. Przy każdej iteracji generowane jest pełne rozwiązanie czyli od punktu startowego do celu. W tym przypadku od 1 do 4. Mrówka ląduje w węźle 1. Musi zdecydować w którą uda się stronę. Na podstawie lokalnej budowy grafu oraz ilości feromonu przypisuję się wartość prawdopodobieństwa przejścia mrówki do danego stanu. Mrówka Czynność nie musi wybrać stanu o wyższym prawdopodobieństwie. powtarzamy aż znajdziemy się w węźle docelowym.
7 GenerujRozwiązania() cz2 Prawdopodobieństwa przejścia k-tej mrówki z węzła i do węzła j k p i,j ={ (τ ij ) α (σ ij ) β ((τ ih ) α (σ ih ) β ),jeślij tabu k h tabu k 0, w przeciwnym przypadku gdzie: τ ij to ilość feromonu ze stanu i do stanu j σ ij to funkcja określająca atrakcyjność przejscia z i do j α,β to współczynniki istotności tabu k to zbiór odwiedzonych przez mrówkę węzłów
8 ZaktualizujŚcieżkiFeromonów() W tej fazie każda mrówka zostawia feromon na przebytej ścieżce podobnie jak postępują prawdziwe mrówki, z kilkoma zmianami: - mrówka zostawia feromon dopiero gdy odnajdzie rozwiązanie, a nie w trakcie podróży - w zależności od długości przebytej ścieżki mrówka zostawia różną ilość feromonu Reguła aktualizacji feromonu ρ współczynnik wyparowywania feromonu k τ i,j k k :=(1 ρ)τ i,j +Δτ i,j k Δτ i,j ={ Q L k jeśliwęzełknależydorozwiązaniazwiązanegozmrówkąk 0, w przeciwnym wypadku Q to pewna dobrana stała (parametr procedury) L k to koszt rozwiązania związanego z mrówką k (czyli jak dobre było jej rozwiązanie, np. długość ścieżki, im krótsza tym więcej feromonu zostanie dodane
9 Warunek końcowy Gdy zostanie osiągniety kończymy szukać rozwiązania i aktualizować feromony. Dobierany jest do konkretnego przypadku. Określona Jeżeli Możliwości: ilość iteracji przez następne x iteracji wartość najlepszego rozwiązania nie poprawi się to zakończ
10 Problem N-Hetmanów
11 Oczywistości Warunek Fitness Heurystyka 4,426,165,368 Jednak końcowy to znalezienie rozwiązania lub przekroczonie liczby iteracji Value to liczba poprawnie ustawiona liczba hetmanów to liczba kolizji pomiędzy hetmanami traktowana jako długość ścieżki możliwych ustawień hetmanów jedynie 92 możliwości są poprawne
12 Szachownica to graf
13 Mrówki chodzą po szachownicy
14 Stałe algorytmu ρ to liczba z przedziału <0,1> Marco Dorigo proponuje 0.5 a czyli jak bardzo atrakcyjne ścieżki będą wybierane β czyli jak mocno feromony wpływają na drogę mrówek Swarm size czyli jak dużo mrówek chodzi w każdej iteracji
15 University Of Computer and Emerging Science Islamabad
16 Rozwiązania
17 Liczba mrówek ma znaczenie?
18 Parametr beta
19 Parametr alfa
20 Optymalne wartości Liczba mrówek 15 a równe 1 jeśli β 1.5 a równe 1.5 jeśli β równe 1
21 Bibliografia [2] [3] [4] [5] [6] [1] Ant Colony Optimization: A New Meta-Heuristic Marco Dorigo, Gianni Di Caro Universite Libre de Bruxelles Solution of n-queen Problem Using ACO Salabat Khan, Mohsin Bilal, M. Sharif, Malik Sajid, Rauf Baig National University Of Computer and Emerging Science Islamabad, Pakistan
Algorytmy mrówkowe. H. Bednarz. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne
Algorytmy mrówkowe H. Bednarz Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne 13 kwietnia 2015 1 2 3 4 Przestrzeń poszukiwań Ograniczenia
Bardziej szczegółowoAlgorytmy mrówkowe wprowadzenie.
Algorytmy mrówkowe wprowadzenie. Jakub Zajkowski 1 Wstęp i rys historyczny Algorytmy mrówkowe to grupa procesów służących przede wszystkim do poszukiwania dróg w grafie. Z formalnego punktu widzenia algorytmy
Bardziej szczegółowoAlgorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation)
Algorytmy mrówkowe (optymalizacja kolonii mrówek, Ant Colony optimisation) Jest to technika probabilistyczna rozwiązywania problemów obliczeniowych, które mogą zostać sprowadzone do problemu znalezienie
Bardziej szczegółowoAlgorytmy mrówkowe. P. Oleksyk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne
y mrówkowe P. Oleksyk Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne 14 kwietnia 2015 1 Geneza algorytmu - biologia 2 3 4 5 6 7 8 Geneza
Bardziej szczegółowoProblem komiwojażera ACO. Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym.
Problem komiwojażera ACO Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym. -Wikipedia Problem do rozwiązania zazwyczaj jest przedstawiany jako
Bardziej szczegółowoAlgorytmy mrówkowe (ang. Ant Colony Optimization)
Algorytmy mrówkowe (ang. Ant Colony Optimization) 1. Wprowadzenie do ACO a) mrówki naturalne b) mrówki sztuczne c) literatura (kilka pozycji) 2. ACO i TSP 1. Wprowadzenie do ACO a) mrówki naturalne ślepe,
Bardziej szczegółowoObliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 10 - Mrówki w labiryntach Jarosław Miszczak IITiS PAN Gliwice 05/05/2016 1 / 48 Na poprzednim wykładzie 1... 2... 3... 2 / 48 1 Motywacja biologiczna Podstawowe mechanizmy
Bardziej szczegółowoObliczenia Naturalne - Algorytmy Mrówkowe
Plan Literatura Obliczenia Naturalne - Algorytmy Mrówkowe Paweł Paduch Politechnika Świętokrzyska 8 maja 2014 Paweł Paduch Obliczenia Naturalne - Algorytmy Mrówkowe 1 z 43 Plan wykładu Plan Literatura
Bardziej szczegółowoWykład 4. Droga i cykl Eulera i Hamiltona
Wykład 4. i Hamiltona Wykład 4. i Hamiltona 1 / 35 Grafy Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie grafu, to taką
Bardziej szczegółowoAlgorytmy metaheurystyczne Wykład 6. Piotr Syga
Algorytmy metaheurystyczne Wykład 6 Piotr Syga 10.04.2017 Wprowadzenie Inspiracje Wprowadzenie ACS idea 1 Zaczynamy z pustym rozwiązaniem początkowym 2 Dzielimy problem na komponenty (przedmiot do zabrania,
Bardziej szczegółowoAlgorytmy mrówkowe. Plan. » Algorytm mrówkowy» Warianty» CVRP» Demo» Środowisko dynamiczne» Pomysł modyfikacji» Testowanie
Algorytmy mrówkowe w środowiskach dynamicznych Dariusz Maksim, promotor: prof. nzw. dr hab. Jacek Mańdziuk 1/51 Plan» Algorytm mrówkowy» Warianty» CVRP» Demo» Środowisko dynamiczne» Pomysł modyfikacji»
Bardziej szczegółowoDroga i cykl Eulera Przykłady zastosowania drogi i cyku Eulera Droga i cykl Hamiltona. Wykład 4. Droga i cykl Eulera i Hamiltona
Wykład 4. Droga i cykl Eulera i Hamiltona 1 / 92 Grafy Eulera Droga i cykl Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie
Bardziej szczegółowoTechniki optymalizacji
Techniki optymalizacji Metaheurystyki oparte na algorytmach lokalnego przeszukiwania Maciej Hapke maciej.hapke at put.poznan.pl GRASP Greedy Randomized Adaptive Search Procedure T.A. Feo, M.G.C. Resende,
Bardziej szczegółowoProblem Komiwojażera - algorytmy metaheurystyczne
Problem Komiwojażera - algorytmy metaheurystyczne algorytm mrówkowy algorytm genetyczny by Bartosz Tomeczko. All rights reserved. 2010. TSP dlaczego metaheurystyki i heurystyki? TSP Travelling Salesman
Bardziej szczegółowoObliczenia z wykorzystaniem sztucznej inteligencji
Obliczenia z wykorzystaniem sztucznej inteligencji wykład III Systemy mrówkowe Joanna Kołodziejczyk marzec 2016 Joanna Kołodziejczyk Obliczenia z wykorzystaniem sztucznej inteligencji marzec 2016 1 / 38
Bardziej szczegółowoObliczenia z wykorzystaniem sztucznej inteligencji
Obliczenia z wykorzystaniem sztucznej inteligencji wykład III Systemy mrówkowe Joanna Kołodziejczyk 31 marzec 2014 Plan wykładu 1 Inspiracje biologiczne Informacje ogólne Naturalna optymalizacja 2 Artificial
Bardziej szczegółowoAlgorytmy Mrówkowe. Daniel Błaszkiewicz. 11 maja 2011. Instytut Informatyki Uniwersytetu Wrocławskiego
Algorytmy Mrówkowe Instytut Informatyki Uniwersytetu Wrocławskiego 11 maja 2011 Opis Mrówki w naturze Algorytmy to stosunkowo nowy gatunek algorytmów optymalizacyjnych stworzony przez Marco Dorigo w 1992
Bardziej szczegółowoPLAN WYKŁADU OPTYMALIZACJA GLOBALNA ALGORYTM MRÓWKOWY (ANT SYSTEM) ALGORYTM MRÓWKOWY. Algorytm mrówkowy
PLAN WYKŁADU Algorytm mrówowy OPTYMALIZACJA GLOBALNA Wyład 8 dr inż. Agniesza Bołtuć (ANT SYSTEM) Inspiracja: Zachowanie mrówe podczas poszuiwania żywności, Zachowanie to polega na tym, że jeśli do żywności
Bardziej szczegółowoAlgorytmy mrówkowe w dynamicznych problemach transportowych
y w dynamicznych problemach transportowych prof. dr hab Jacek Mandziuk MiNI, PW 3 czerwca 2013 Cel pracy Zbadanie zachowania algorytmu go zwykłego oraz z zaimplementowanymi optymalizacjami dla problemów
Bardziej szczegółowoAlgorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP
Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP Łukasz Strąk lukasz.strak@gmail.com Uniwersytet Śląski, Instytut Informatyki, Będzińska 39, 41-205 Sosnowiec 9 grudnia
Bardziej szczegółowoWykorzystanie algorytmów mrówkowych w dynamicznym problem
Wykorzystanie algorytmów mrówkowych w dynamicznym problemie marszrutyzacji Promotor: dr inż. Aneta Poniszewska-Marańda Współpromotor: mgr inż. Łukasz Chomątek 14 czerwca 2013 Przedmiot i cele pracy dyplomowej
Bardziej szczegółowoStrategie Zespołowe (SZ) dr inż. Tomasz Białaszewski
Strategie Zespołowe (SZ) dr inż. Tomasz Białaszewski Tematyka wykładu Algorytmy Inteligencji Roju (Swarm Intelligence, SI) Optymalizacja kolonią mrówek (Ant Colony Optimization, ACO) Optymalizacja rojem
Bardziej szczegółowoWYKORZYSTANIE ALGORYTMÓW GENETYCZNYCH I MRÓWKOWYCH W PROBLEMACH TRANSPORTOWYCH
Inżynieria Rolnicza 7(105)/2008 WYKORZYSTANIE ALGORYTMÓW GENETYCZNYCH I MRÓWKOWYCH W PROBLEMACH TRANSPORTOWYCH Justyna Zduńczuk, Wojciech Przystupa Katedra Zastosowań Matematyki, Uniwersytet Przyrodniczy
Bardziej szczegółowoAlgorytmy Mrówkowe. Daniel Błaszkiewicz 11 maja 2011
Algorytmy Mrówkowe Daniel Błaszkiewicz 11 maja 2011 1 Wprowadzenie Popularnym ostatnimi laty podejściem do tworzenia nowych klas algorytmów do szukania rozwiązań problemów nie mających algorytmów rozwiązujących
Bardziej szczegółowoObliczenia Naturalne - Algorytmy Mrówkowe cz. 4
Plan Literatura Obliczenia Naturalne - y Mrówkowe cz. 4 Paweł Paduch Politechnika Świętokrzyska 12 czerwca 2014 Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz. 4 1 z 37 Plan wykładu Wstęp Plan Literatura
Bardziej szczegółowoPlanowanie drogi robota, algorytm A*
Planowanie drogi robota, algorytm A* Karol Sydor 13 maja 2008 Założenia Uproszczenie przestrzeni Założenia Problem planowania trasy jest bardzo złożony i trudny. W celu uproszczenia problemu przyjmujemy
Bardziej szczegółowoWykorzystanie algorytmów mrówkowych w dynamicznym problem
Wykorzystanie algorytmów mrówkowych w dynamicznym problemie marszrutyzacji Promotor: dr inż. Aneta Poniszewska-Marańda Współpromotor: mgr inż. Łukasz Chomątek 18 stycznia 2013 Przedmiot i cele pracy dyplomowej
Bardziej szczegółowoAlgorytm grawitacyjnych poszukiwań (Gravitational Search Algorithm - GSA)
Algorytm grawitacyjnych poszukiwań (Gravitational Search Algorithm - GSA) Nowy algorytm optymalizacji oparty za prawach grawitacji Algorytm wykorzystujący prawa Newtona: Każda cząstka we wszechświecie
Bardziej szczegółowoProgramowanie Współbieżne. Algorytmy
Programowanie Współbieżne Algorytmy Sortowanie przez scalanie (mergesort) Algorytm : 1. JEŚLI jesteś rootem TO: pobierz/wczytaj tablice do posortowania JEŚLI_NIE to pobierz tablicę do posortowania od rodzica
Bardziej szczegółowoPLANOWANIE TRASY PRZEJŚCIA STATKU Z ZASTOSOWANIEM ALGORYTMU MRÓWKOWEGO
Agnieszka Lazarowska Akademia Morska w Gdyni PLANOWANIE TRASY PRZEJŚCIA STATKU Z ZASTOSOWANIEM ALGORYTMU MRÓWKOWEGO W artykule zaprezentowano wyniki pracy badawczej, dotyczącej zastosowania jednej z metod
Bardziej szczegółowoOptymalizacja. Wybrane algorytmy
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
Bardziej szczegółowoHeurystyki i metaheurystyki
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Heurystyki i metaheurystyki Inteligencja Heurystyki, metaheurystyki Wprowadzenie, podstawowe pojęcia Proste techniki przeszukiwania Metaheurystyki
Bardziej szczegółowoZnajdowanie wyjścia z labiryntu
Znajdowanie wyjścia z labiryntu Zadanie to wraz z problemem pakowania najcenniejszego plecaka należy do problemów optymalizacji, które dotyczą znajdowania najlepszego rozwiązania wśród wielu możliwych
Bardziej szczegółowoZaawansowane programowanie
Zaawansowane programowa wykład 4: jeszcze o metaheurystykach Genealogia metaheurystyk Genealogia wg [El-Ghazali Talbi, Metaheuristics: From Design to Implementation, 2009] wybór 1940 LS 1947 1950 prof.
Bardziej szczegółowoPorównanie algorytmu mrówkowego oraz programowania dynamicznego do wyznaczania bezpiecznej trajektorii statku
Agnieszka LAZAROWSKA Józef LISOWSKI Akademia Morska w Gdyni e-mail: aglaz@vega.am.gdynia.pl jlis@am.gdynia.pl Porównanie algorytmu mrówkowego oraz programowania dynamicznego do wyznaczania bezpiecznej
Bardziej szczegółowoAlgorytm Dijkstry znajdowania najkrótszej ścieżki w grafie
Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje
Bardziej szczegółowoZASTOSOWANIE ALGORYTMÓW MRÓWKOWYCH W ROZWIĄZANIU PROBLEMU SZEREGOWANIA ZADAŃ APPLICATION OF ANT COLONY SYSTEMS IN SOLVING OF TASK SCHEDULING PROBLEM
GRZEGORZ FILO ZASTOSOWANIE ALGORYTMÓW MRÓWKOWYCH W ROZWIĄZANIU PROBLEMU SZEREGOWANIA ZADAŃ APPLICATION OF ANT COLONY SYSTEMS IN SOLVING OF TASK SCHEDULING PROBLEM S t r e s z c z e n i e A b s t r a c
Bardziej szczegółowoStrategie ewolucyjne (ang. evolu4on strategies)
Strategie ewolucyjne (ang. evolu4on strategies) Strategia ewolucyjna (1+1) W Strategii Ewolucyjnej(1 + 1), populacja złożona z jednego osobnika generuje jednego potomka. Kolejne (jednoelementowe) populacje
Bardziej szczegółowoTemat 9. Zabłocone miasto Minimalne drzewa rozpinające
Temat 9 Zabłocone miasto Minimalne drzewa rozpinające Streszczenie Nasze życie związane jest z funkcjonowaniem wielu sieci: telefonicznych, energetycznych, komputerowych i drogowych. W przypadku każdej
Bardziej szczegółowoSystemy wieloagentowe (Multi Agent Systems - MAS) aspekty wybrane
Systemy wieloagentowe (Multi Agent Systems - MAS) aspekty wybrane Opracowanie: dr inż. Tomasz Rutkowski Katedra Inżynierii Systemów Sterowania 2014/2015 Politechnika Gdańska Wydział Elektrotechniki i Automatyki
Bardziej szczegółowoW POSZUKIWANIU OPTYMALNEJ TRASY WYBRANE ALGORYTMY W ZASTOSOWANIU DO PROBLEMU KOMIWOJAŻERA
JOURNAL OF TRANSLOGISTICS 2015 7 Agnieszka JAKUBOWSKA, Katarzyna PIECHOCKA W POSZUKIWANIU OPTYMALNEJ TRASY WYBRANE ALGORYTMY W ZASTOSOWANIU DO PROBLEMU KOMIWOJAŻERA Słowa kluczowe: optymalizacja trasy,
Bardziej szczegółowoHARMONOGRAMOWANIE Z OGRANICZENIAMI PROJEKTÓW WSPÓŁBIEŻNYCH
HARMONOGRAMOWANIE Z OGRANICZENIAMI PROJEKTÓW WSPÓŁBIEŻNYCH Bożena MARCIŃCZYK, Bożena SKOŁUD Streszczenie: W artykule przedstawiono zastosowanie meta heurystycznej metody algorytmu mrówkowego w harmonogramowaniu
Bardziej szczegółowoMetody Optymalizacji: Przeszukiwanie z listą tabu
Metody Optymalizacji: Przeszukiwanie z listą tabu Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: wtorek
Bardziej szczegółowoXII International PhD Workshop OWD 2010, October 2010 MODEL TEORETYCZNY ALGORYTMU MRÓWKOWEGO SAS
XII International PhD Workshop OWD 2010, 23 26 October 2010 MODEL TEORETYCZNY ALGORYTMU MRÓWKOWEGO SAS Paweł Rembelski, Polsko-Japońska Wyższa Szkoła Technik Komputerowych (Opiekun naukowy: prof. Witold
Bardziej szczegółowoZASTOSOWANIE ALGORYTMU MRÓWKOWEGO DO WYZNACZANIA MAKSYMALNEJ GRUPY WZAJEMNIE POŁĄCZONYCH ELEMENTÓW
KRZYSZTOF SCHIFF ZASTOSOWANIE ALGORYTMU MRÓWKOWEGO DO WYZNACZANIA MAKSYMALNEJ GRUPY WZAJEMNIE POŁĄCZONYCH ELEMENTÓW ANT ALGORITHMS FOR DETERMINING MAXIMUM GROUP OF INTERCONNECTED ELEMENTS Streszczenie
Bardziej szczegółowoDobór parametrów algorytmu ewolucyjnego
Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.
Bardziej szczegółowoDziałanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).
Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze
Bardziej szczegółowoProcesy dynamicznego formowania rzek (River Formation Dynamics, RFD)
Procesy dynamicznego formowania rzek (River Formation Dynamics, RFD) Heurystyczna metoda optymalizacji podobna do algorytmów mrówkowych (ACO) RFD może być postrzegana jako gradientowa wersja algorytmu
Bardziej szczegółowoPodejście memetyczne do problemu DCVRP - wstępne wyniki. Adam Żychowski
Podejście memetyczne do problemu DCVRP - wstępne wyniki Adam Żychowski Na podstawie prac X. S. Chen, L. Feng, Y. S. Ong A Self-Adaptive Memeplexes Robust Search Scheme for solving Stochastic Demands Vehicle
Bardziej szczegółowoSZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 17. ALGORYTMY EWOLUCYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska KODOWANIE BINARNE Problem różnych struktur przestrzeni
Bardziej szczegółowoObliczenia Naturalne - Algorytmy Mrówkowe cz. 4
Plan Literatura Obliczenia Naturalne - Algorytmy Mrówkowe cz. 4 Paweł Paduch Politechnika Świętokrzyska 5 czerwca 2014 Paweł Paduch Obliczenia Naturalne - Algorytmy Mrówkowe cz. 4 1 z 51 Plan wykładu Plan
Bardziej szczegółowoProgramowanie gier planszowych
III Konferencja Młodych Informatyków Uniwersytet Śląski Wydział Informatyki i Nauki o Materiałach Sosnowiec 2003 Programowanie gier planszowych Tomasz Rostański Streszczenie W niniejszej pracy zostanie
Bardziej szczegółowoAlgorytmy metaheurystyczne podsumowanie
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
Bardziej szczegółowoLABORATORIUM 2: Przeszukiwanie grafów cz. 2 strategie heurystyczne
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 2: Przeszukiwanie grafów cz. 2 strategie heurystyczne
Bardziej szczegółowoHeurystyczne metody przeszukiwania
Heurystyczne metody przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Pojęcie heurystyki Metody heurystyczne są jednym z ważniejszych narzędzi sztucznej inteligencji.
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego
Bardziej szczegółowoZastosowanie algorytmów mrówkowych do rozwiązywania problemu komiwojażera
1 1. Wstęp... 2 2. Podstawowe pojęcia... 3 2.1. Sztuczna inteligencja... 3 2.2. Systemy mrówkowe... 4 2.3. Problem komiwojażera... 7 3. Algorytm rozwiązania problemu komiwojażera... 9 3.1. Zakres opracowania...
Bardziej szczegółowoPSO Rój cząsteczek - Particle Swarm Optimization. Michał Szopiak
PSO Rój cząsteczek - Particle Swarm Optimization Michał Szopiak Inspiracje biologiczne Algorytm PSO wywodzą się z obserwacji gróp zwierzą tworzony przez członków ptasich stad, czy ławic ryb, który umożliwia
Bardziej szczegółowoALHE. prof. Jarosław Arabas semestr 15Z
ALHE prof. Jarosław Arabas semestr 15Z Wykład 5 Błądzenie przypadkowe, Algorytm wspinaczkowy, Przeszukiwanie ze zmiennym sąsiedztwem, Tabu, Symulowane wyżarzanie 1. Błądzenie przypadkowe: Pierwszym krokiem
Bardziej szczegółowoAlgorytmiczna teoria grafów Przepływy w sieciach.
Algorytmiczna teoria grafów Sieć przepływowa Siecią przepływową S = (V, E, c) nazywamy graf zorientowany G = (V,E), w którym każdy łuk (u, v) E ma określoną przepustowość c(u, v) 0. Wyróżniamy dwa wierzchołki:
Bardziej szczegółowoBezgradientowe metody optymalizacji funkcji wielu zmiennych. informacje dodatkowe
Bezgradientowe metody optymalizacji funkcji wielu zmiennych informacje dodatkowe Wybór kierunku poszukiwań Kierunki bazowe i ich modyfikacje metody bezgradientowe. Kierunki oparte na gradiencie funkcji
Bardziej szczegółowoTeoria i metody optymalizacji
II. Optymalizacja globalna Idea: generuj i testuj Do tej grupy naleŝą stochastyczne iteracyjne algorytmy przeszukiwania przestrzeni rozwiązań : metody przeszukiwania lokalnego metody przeszukiwania populacyjnego.
Bardziej szczegółowoAnaliza stanów gry na potrzeby UCT w DVRP
Analiza stanów gry na potrzeby UCT w DVRP Seminarium IO na MiNI 04.11.2014 Michał Okulewicz based on the decision DEC-2012/07/B/ST6/01527 Plan prezentacji Definicja problemu DVRP DVRP na potrzeby UCB Analiza
Bardziej szczegółowoNowa implementacja algorytmu mrówkowego wykorzystująca technologię przetwarzania wieloprocesorowego i rozproszonego w systemie nawigacji
Nowa implementacja algorytmu mrówkowego wykorzystująca technologię przetwarzania wieloprocesorowego i rozproszonego w systemie nawigacji A new implementation of an ant algorithm using multiprocessor and
Bardziej szczegółowoMatematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą
Bardziej szczegółowoSymulacje geometrycznych sieci neuronowych w środowisku rozproszonym
Symulacje geometrycznych sieci neuronowych w środowisku rozproszonym Jarosław Piersa, Tomasz Schreiber {piersaj, tomeks}(at)mat.umk.pl 2010-07-21 1 2 Dany podzbiór V R 3. N neuronów należących do V N Poiss(c
Bardziej szczegółowoWybrane podstawowe rodzaje algorytmów
Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych
Bardziej szczegółowoAlgorytmy i struktury danych. Wykład 6 Tablice rozproszone cz. 2
Algorytmy i struktury danych Wykład 6 Tablice rozproszone cz. 2 Na poprzednim wykładzie Wiele problemów wymaga dynamicznych zbiorów danych, na których można wykonywać operacje: wstawiania (Insert) szukania
Bardziej szczegółowoTitle: Algorytmy metaheurystyczne w kryptoanalizie szyfrów strumieniowych
Title: Algorytmy metaheurystyczne w kryptoanalizie szyfrów strumieniowych Author: Iwona Polak Citation style: Polak, Iwona. (2018). Algorytmy metaheurystyczne w kryptoanalizie szyfrów strumieniowych. Praca
Bardziej szczegółowoPODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 5 PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI 5.2. Ćwiczenia komputerowe
Bardziej szczegółowoWeryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1
Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie
Bardziej szczegółowoTechniki optymalizacji
Techniki optymalizacji Algorytm kolonii mrówek Idea Smuga feromonowa 1 Sztuczne mrówki w TSP Sztuczna mrówka agent, który porusza się z miasta do miasta Mrówki preferują miasta połączone łukami z dużą
Bardziej szczegółowoDrzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II
Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem
Bardziej szczegółowoProblem skoczka szachowego i inne cykle Hamiltona na szachownicy n x n
i inne cykle Hamiltona na szachownicy n x n Uniwersytet Warszawski 15 marca 2007 Agenda 1 2 naiwne Prosty algorytm liniowy 3 Problem znany był już od bardzo dawna, jako łamigłówka logiczna. Był też stosowany
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 11 Łańcuchy Markova
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu
Bardziej szczegółowoII. Optymalizacja globalna. Metody optymalizacji. dr inŝ. Ewa Szlachcic
II. Optymalizacja globalna Nieliniowe zadanie optymalizacji statycznej bez ograniczeń - nieliniowe algorytmy optymalizacji globalnej Wykład 12 dr inŝ. Ewa Szlachcic Wydział Elektroniki Kierunek: Automatyka
Bardziej szczegółowoĆWICZENIE 1: Przeszukiwanie grafów strategie heurystyczne
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE studia niestacjonarne ĆWICZENIE 1: Przeszukiwanie grafów strategie
Bardziej szczegółowoInteligencja stadna: od mrówek do cząsteczek
Inteligencja stadna Inteligencja stadna: od mrówek do cząsteczek Proste elementy, właściwie powiązane w stadzie, tworzą sprytne rozwiązania Urszula Boryczka 2008 Inteligencja stadna O co właściwie chodzi?
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej
Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2013-01-09
Bardziej szczegółowoRóżne reprezentacje mapy feromonowej w problemie plecakowym
Wydział Informatyki i Nauki o Materiałach Jarosław Dąbrowski 193207 Praca magisterska Różne reprezentacje mapy feromonowej w problemie plecakowym Promotor: dr inż. Mariusz Boryczka Sosnowiec, 2008 Spis
Bardziej szczegółowoOptymalizacja ciągła
Optymalizacja ciągła 5. Metody kierunków poparwy (metoda Newtona-Raphsona, metoda gradientów sprzężonych) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.03.2019 1
Bardziej szczegółowoGrafy Alberta-Barabasiego
Spis treści 2010-01-18 Spis treści 1 Spis treści 2 Wielkości charakterystyczne 3 Cechy 4 5 6 7 Wielkości charakterystyczne Wielkości charakterystyczne Rozkład stopnie wierzchołków P(deg(x) = k) Graf jest
Bardziej szczegółowoSystemy wieloagentowe (Multi Agent Systems - MAS) aspekty wybrane
Systemy wieloagentowe (Multi Agent Systems - MAS) aspekty wybrane Opracowanie: dr inż. Tomasz Rutkowski Katedra Inżynierii Systemów Sterowania 2014/2015 Politechnika Gdańska Wydział Elektrotechniki i Automatyki
Bardziej szczegółowo1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb.
1. Algorytmy przeszukiwania. Przeszukiwanie wszerz i w głąb. Algorytmy przeszukiwania w głąb i wszerz są najczęściej stosowanymi algorytmami przeszukiwania. Wykorzystuje się je do zbadania istnienia połączenie
Bardziej szczegółowoRozwiązywanie problemów metodą przeszukiwania
Rozwiązywanie problemów metodą przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Reprezentacja problemu w przestrzeni stanów Jedną z ważniejszych metod sztucznej
Bardziej szczegółowoUniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z
Bardziej szczegółowoMetody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium Zadanie nr 3 Osada autor: A Gonczarek Celem poniższego zadania jest zrealizowanie fragmentu komputerowego przeciwnika w grze strategiczno-ekonomicznej
Bardziej szczegółowoGrafy. Jeżeli, to elementy p i q nazywamy końcami krawędzi e. f a b c d e γ f {1} {1,2} {2,3} {2,3} {1,3}
Grafy Definicja grafu nieskierowanego. Grafem nieskierowanym nazywamy uporządkowaną trójkę: gdzie: V- niepusty zbiór wierzchołków grafu G E- zbiór wszystkich krawędzi grafu G - funkcja ze zbioru E w zbiór
Bardziej szczegółowoAlgorytmy wyznaczania centralności w sieci Szymon Szylko
Algorytmy wyznaczania centralności w sieci Szymon Szylko Zakład systemów Informacyjnych Wrocław 10.01.2008 Agenda prezentacji Cechy sieci Algorytmy grafowe Badanie centralności Algorytmy wyznaczania centralności
Bardziej szczegółowoDigraf. 13 maja 2017
Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,
Bardziej szczegółowoPlanowanie przedsięwzięć
K.Pieńkosz Badania Operacyjne Planowanie przedsięwzięć 1 Planowanie przedsięwzięć Model przedsięwzięcia lista operacji relacje poprzedzania operacji modele operacji funkcja celu planowania K.Pieńkosz Badania
Bardziej szczegółowoRÓWNANIA NIELINIOWE Maciej Patan
RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c
Bardziej szczegółowoGrupowanie Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 201/633
Grupowanie Grupowanie 7 6 5 4 y 3 2 1 0-3 -2-1 0 1 2 3 4 5-1 -2-3 -4 x Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 201/633 Wprowadzenie Celem procesu grupowania jest podział zbioru
Bardziej szczegółowoModele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5
Bardziej szczegółowoPRACA DYPLOMOWA MAGISTERSKA
Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania PRACA DYPLOMOWA MAGISTERSKA Konstrukcja autonomicznego robota mobilnego Małgorzata Bartoszewicz Promotor: prof. dr hab. inż. A. Milecki Zakres
Bardziej szczegółowoTemat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.
Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.. Oznaczenia i załoenia Oznaczenia G = - graf skierowany z funkcj wagi s wierzchołek ródłowy t wierzchołek
Bardziej szczegółowoCMAES. Zapis algorytmu. Generacja populacji oraz selekcja Populacja q i (t) w kroku t generowana jest w następujący sposób:
CMAES Covariance Matrix Adaptation Evolution Strategy Opracowanie: Lidia Wojciechowska W algorytmie CMAES, podobnie jak w algorytmie EDA, adaptowany jest rozkład prawdopodobieństwa generacji punktów, opisany
Bardziej szczegółowoOptymalizacja ciągła
Optymalizacja ciągła 4. Metody kierunków poprawy (metoda spadku wzdłuż gradientu) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 21.03.2019 1 / 41 Plan wykładu Minimalizacja
Bardziej szczegółowoĆwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A
Ćwiczenie 1 Planowanie trasy robota mobilnego w siatce kwadratów pól - Algorytm A Zadanie do wykonania 1) Utwórz na pulpicie katalog w formacie Imię nazwisko, w którym umieść wszystkie pliki związane z
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.
Bardziej szczegółowo