Pełny czas mutacji STR w podręcznej i praktycznej tabeli PCM.
|
|
- Kajetan Kania
- 8 lat temu
- Przeglądów:
Transkrypt
1 Pełny czas mutacji STR w podręcznej i praktycznej tabeli PCM. Full Times of Mutations STR in the practical table FTM Obliczanie pełnego czasu mutacji ( PCM ) Calculation of full-time of mutations ( FTM ) 67-markerowy haplotyp STR GD from 1,06713 (1...66) ( ulepszono / improved / stp.) Czas od około lat: A B C x 1, x 1, x 1, x 1, x 1, x 1, x 1, x 1, x 1, x 1, x 1, x 2, x 2, x 2, x 2, x 2, x 2, x 3, x 3, x 3, x 3, x 3, x 4, x 4, x 4, x 5, x 5, x 5, x 6, x 6, x 7, x 7, x 8, GD from - ciąg dalszy / continuation - 1,06713 (1...66) Czas od około lat: A B C x 8, x 9, x 9, x 10, x 11, x 11, x 12, x 13, x 14, x 15, x 16, x 17, x 18, x 19, x 21, x 22, x 24, x 25, x 27, x 29, x 31, x 33, x 35, x 38, x 40, x 43, x 46, x 49, x 52, x 56, x 59, x 63, x 68, Uwaga. Obliczanie czasu wymaga umiejętności ustalania liczby mutacji i genetycznego dystansu do najbliższego wspólnego przodka Attention. Time calculation requires counting skills mutations and genetic distance to the recent common ancestor - )
2 Powyższą tabelę PCM dla 67 markerowego haplotypu można także stosować - dla mutacji w haplotypie 25 markerowym, mnożąc je przez 2,65 - dla mutacji w haplotypie 37 markerowym, mnożąc je przez 1,50 - dla mutacji w haplotypie 111 markerowym, dzieląc je przez 1,75 Uwaga Środkowa kolumna (B) tej tabeli służy tylko uzasadnieniu wyniku. Zasady powstania podręcznej i praktycznej tabeli pełnego czasu mutacji (PCM) Tabela PCM powstała na podstawie następujących czynników 1. Podstawą obliczeń w tabeli jest statystycznie domiemana obecność jednej mutacji w najbardziej wolno mutującym markerze, DYS425 = lat, a tym samym i w pozostałych markerach tego haplotypu. (The basis of calculation in the table is statistically determined the presence of one mutation in the most slow mutating marker, DYS425 = 500,000 years, and thus, and other markers of this haplotype). 2. Ciąg wykładniczy (geometryczny) mutacji widocznych jest oparty na fakcie, że w haplotypie, wraz z kurczeniem się 67/1 do 1/67 miejsc jeszcze niezmutowanych, odwrotnie wzrasta od 1/67 do 67/1 ilość miejsc na mutacje powtórne, czyli statystycznie niewidoczne (na miejsce mutacji widocznych powstają niewidoczne). Według opublikowanych zwłaszcza przez FTDNA (J.Chandlera) i A. Klosowa tabel mutacji w parach ojciec-syn, do mutacji STR w najbardziej powolnym markerze DYS425 w 66 markerowym haplotypie (po zrezygnowaniu z jeszcze bardziej powolnego DYS472) dochodzi statystycznie co lat. Tymczasem, biorąc pod uwagę obliczone z tabeli J. Chandlera i A. Klosowa tempo mutacji w haplotypie: jedna mutacja na około 111 lat, do statystycznego czasu zaistnienia tej mutacji DYS425, a tym samym i całego zestawu 66 mutacji widocznych, powstaje około 4505 mutacji. Tak więc w czasie 66 mutacji widocznych, dochodzi także, w markerach już zmutowanych, do bardzo licznych mutacji powtórnych, czyli 4439 statystycznie niewidocznych, odpowiednio opóźniających czas owych mutacji widocznych, w sumie około 68,25 razy. Mutacje widoczne spowalniają się, gdyż w ich miejsce powstają wtedy mutacje powtóre, czyli statystycznie niewidoczne. To spowolnianie tempa mutacji widocznych, spowodowane kurczeniem się dla nich miejsc dotąd niezmutowanych oraz nierównością tempa mutacji w poszczególnych markerach od jeden do około kilkadziesiąt lub kilkaset, trzeba dla cełów obliczeniowych wyrazić ciągiem wykładniczym. Dlatego, aby otrzymać pełny czas mutacji ( PCM ) dla każdej liczby mutacji w tym 67 minus 1 markerowym haplotypie, należy znaleźć iloraz ciągu wykładniczego, tj. a w funkcji wykładniczej a x (1...65). Tym ilorazem a jest uwidoczniona na tabeli PCM liczba 1, Uwaga Powyższa zasada obliczania pełnego czasu mutacji (PCM), uwzględniająca pełny zestaw mutacji widocznych i niewidocznych (powtórnych) - a) nie wymaga osobnych tablic na tzw. mutacje zwrotne (zob. w tablicach A.Klosowa); b) nie wymaga stosowania dla czasów "ewolucyjnych" (np. powyżej lat) dodatkowej tabeli 22-markerowego haplotypu z wybranych markerów powolnych (zob. tablica Klosowa); c) nie wymaga wreszcie tzw. ewolucyjnego "współczynnika Żywotovskyego" (0, mutacji na marker na pokolenie), który przy zastosowaniu go do czasów bliskich, genealogicznych, zawyżając rezultat niekiedy aż trzykrotnie, wywołuje wśród genealogów i genetyków tak wiele sprzeciwu i krytyki. Równocześnie tablica PCM stwarza możliwość obliczania czasu najstarszych haplogrup i populacji, praktycznie od początku współczesnego człowieka.
3 Krzywa wykładnicza czasu mutacji widocznych The exponential curve of time visible mutations Wzrasta ogólna liczba mutacji i ich czas Y ale zarazem spowolnia się i zatrzymuje przyrost mutacji widocznych X Analogia w krzywej wykładniczej czasu widocznych SNP w/g modelu Jukesa-Cantora (Źródło wykresu: Podręcznik genetyki) Model Jukesa-Cantora (1969). Model J-C ilustruje fakt, że wraz ze wzrostem czasu t i ogólnej liczby mutacji ogranicza się, a w końcu całkowicie zatrzymuje się wzrost mutacji widocznych na rzecz niewidocznych, czyli widoczne zróżnicowanie d w badanym odcinku Y-DNA (NRY). Dalszemu wzrostowi czasu nie odpowiada już żaden przyrost liczby mutacji widocznych. Dlatego nie ma sensu stosowanie liniowego liczenia czasu mutacji w haplotypie i stałego współczynnika czasu mutacji dla każdej widocznej mutacji, co niektórzy genetycy niestety praktykują.
4 Tabela 21 powolnych markerów w haplotypie 67 markerowym Table 21 slow markers in 67-markers haplotype (w 1. i 2. kolumnie wykorzystano markery i poprawki tempa ich mutacji od A. Klosowa) Locus mut./25 lat mut./rok czas 1 mut. w latach ilość mutacji równoczesnych DYS425 0, , ,00 DYS436 0, , ,12 DYS426 0, , ,80 DYS490 0, , ,50 DYS454 0, , ,20 DYS455 0, , ,20 DYS578 0, , ,40 DYS641 0, , ,40 DYS590 0, , ,40 DYS594 0, , ,00 DYS388 0, , ,40 DYS492 0, , ,60 DYS395Sb 0, , ,00 DYS450 0, , ,80 DYS , ,00 DYS , ,00 DYS640 0, , ,20 DYS392 0, , ,40 DYS568 0, , ,60 DYS395Sa 0, , ,60 DYS , ,00 Razem 120 mutacji na lat, tj. 1 mut. na 4167 lat Uwaga. Obliczanie czasu wymaga umiejętności liczenia mutacji i genetycznego dystansu do najbliższego wspólnego przodka. Attention. Time calculation requires counting skills mutations and genetic distance to the nearest common ancestor.
5 . Tabela czasu mutacji STR w 21 powolnych markerach w zakresie 67 markerowego haplotypu. Wykres wykładniczy. Podstawą obliczeń w tabeli jest statystycznie określona obecność jednej mutacji w najbardziej wolno mutującym markerze, DYS425 = lat, a tym samym i w pozostałych markerach tego haplotypu. Table of mutations time in 21 slow markers in scope of 67-markers haplotype STR. Exponential graph. The basis of calculation in the table is statistically determined the presence of one mutation in the most slow mutating marker, DYS425 = 500,000 years, and thus, and other markers of this haplotype. Obliczanie pełnego czasu mutacji ( PCM ) Calculation of full-time of mutations ( FTM ) 21-markerowy haplotyp STR GD od GD from 1, (1...20) Lata od x x 1, x 1, x 1, x 1, x 1, x 1, x 1, x 2, x 2, x 2, x 2, x 2, x 3, x 3, x 3, x 4, x 4, x 4, x 5, x 5, Ulepszono / Improved / , Stanisław Pietrzak
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11
Spokrewnienie prawdopodobieństwo, że dwa losowe geny od dwóch osobników są genami IBD. IBD = identical by descent, geny identycznego pochodzenia
prawdopodobieństwo, że dwa losowe geny od dwóch osobników są genami ID. Relationship Relatedness Kinship Fraternity ID = identical by descent, geny identycznego pochodzenia jest miarą względną. Przyjmuje
Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II
Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum część II Figury na płaszczyźnie kartezjańskiej L.p. Temat lekcji Uczeń demonstruje opanowanie
klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności
I. FIGURY I PRZEKSZTAŁCENIA - zna i rozumie pojęcia, zna własności figur: ogólne równanie prostej, kierunkowe równanie prostej okrąg, równanie okręgu - oblicza odległość dwóch punktów na płaszczyźnie -
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych
Temat (rozumiany jako lekcja) Propozycje środków dydaktycznych. Liczba godzin. Uwagi
Roczny plan dydaktyczny z matematyki dla pierwszej klasy szkoły branżowej I stopnia dla uczniów będących absolwentami ośmioletniej szkoły podstawowej, uwzględniający kształcone umiejętności i treści podstawy
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;
6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb
LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku
1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia
L.P. DZIAŁ Z PODRĘCZNIKA 1. FUNKCJE 2. POTĘGI I PIERWIASTKI NaCoBeZu kryteria sukcesu w języku ucznia 1. Wiem, co to jest układ współrzędnych, potrafię nazwać osie układu. 2. Rysuję układ współrzędnych
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum
Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę
Mitochondrialna Ewa;
Mitochondrialna Ewa; jej sprzymierzeńcy i wrogowie Lien Dybczyńska Zakład genetyki, Uniwersytet Warszawski 01.05.2004 Milion lat temu Ale co dalej??? I wtedy wkracza biologia molekularna Analiza różnic
SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI
SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP Liczby. TEMAT Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. Mnożenie i dzielenie
Funkcja wykładnicza. (x 0 oznacza tu początkowe położenie ciała) , gdzie t oznacza upływ kolejnego tygodnia.
Funkcja wykładnicza I. Z pracowni fizycznej (i nie tylko) 1. Wspólną cechą procesów przebiegających jednostajnie jest zmiana określonej wielkości fizycznej o tę samą wartość w jednakowych odstępach czasu.
WYMAGANIA EDUKACYJNE
GIMNAZJUM NR 2 W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie II gimnazjum str. 1 Wymagania edukacyjne niezbędne
Wymagania edukacyjne na poszczególne stopnie szkolne klasa III
Wymagania edukacyjne na poszczególne stopnie szkolne klasa III Rozdział 1. Bryły - wie, czym jest graniastosłup, graniastosłup prosty, graniastosłup prawidłowy - wie, czym jest ostrosłup, ostrosłup prosty,
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE
Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
Pojęcie funkcji i jej podstawowe własności.
Konspekt lekcji matematyki w klasie II gimnazjum Pojęcie funkcji i jej podstawowe własności. Opracowała mgr Iwona Żuk Gimnazjum nr 2 w Świętoniowej I. Umiejscowienie lekcji w jednostce metodycznej: Pojęcie
2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24
SPIS TREŚCI WYRAŻENIA ALGEBRAICZNE RÓWNANIA I NIERÓWNOŚCI ALGEBRAICZNE 7 Wyrażenia algebraiczne 0 Równania i nierówności algebraiczne LICZBY RZECZYWISTE 4 Własności liczb całkowitych 8 Liczby rzeczywiste
MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI.
MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 6 h Liczby. Rozwinięcia
ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:
ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować
Pokrewieństwo, rodowód, chów wsobny
Pokrewieństwo, rodowód, chów wsobny Pokrewieństwo Pokrewieństwo, z punktu widzenia genetyki, jest podobieństwem genetycznym. Im osobniki są bliżej spokrewnione, tym bardziej są podobne pod względem genetycznym.
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
Granica funkcji wykład 4
Granica funkcji wykład 4 dr Mariusz Grządziel 27 października 2008 Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t: s = gt2 2, gdzie
Kryteria oceniania z matematyki Klasa III poziom podstawowy
Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi
S n = a 1 1 qn,gdyq 1
Spis treści Powtórzenie wiadomości... 9 Zadania i zbiory... 10 Obliczenia... 18 Ciągi... 27 Własności funkcji... 31 Funkcje liniowe i kwadratowe... 39 Wielomiany i wyrażenia wymierne... 45 Funkcje wykładnicze
1. Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi 1 LICZBA GODZIN LEKCYJNYCH
TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. POTĘGI 1. Potęga o wykładniku naturalnym 2-3 2. Iloczyn i iloraz potęg o jednakowych podstawach 3. Potęgowanie potęgi
ZESPÓŁ SZKÓŁ W OBRZYCKU
Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne
Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd.
Modelowanie wybranych pojęć matematycznych semestr letni, 206/207 Wykład 0 Własności funkcji cd. Ciągłość funkcji zastosowania Przybliżone rozwiązywanie równań Znajdziemy przybliżone rozwiązanie równania
I. Potęgi. Logarytmy. Funkcja wykładnicza.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Potęgi. Logarytmy. Funkcja wykładnicza. dobrą, bardzo - oblicza potęgi o wykładnikach wymiernych; - zna
. Funkcja ta maleje dla ( ) Zadanie 1 str. 180 b) i c) Zadanie 2 str. 180 a) i b)
Lekcja 1 -. Lekcja organizacyjna kontrakt diagnoza i jej omówienie Podręcznik: W. Babiański, L. Chańko, D. Ponczek Matematyka. Zakres podstawowy. Wyd. Nowa Era. Zakres materiału: Funkcje kwadratowe Wielomiany
MATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony
MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne
wymagania programowe z matematyki kl. II gimnazjum
wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby
Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8
Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu sem. zimowy, r. akad. 2016/2017 Funkcja logistyczna 40 Rozważmy
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY
1 Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań na oceny 2 Trygonometria Funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym 3-4 Trygonometria Funkcje trygonometryczne
WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET
MIL GEN 2.7-1 MIL GEN 2.7 WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET OBLICZANIE CZASÓW WSCHODU I ZACHODU SŁOŃCA 1. Tabele wschodu i zachodu słońca dla lotniska EPWA oraz tabela poprawek zostały opracowane
2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu
WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET
AIP VFR POLAND VFR GEN 3.2-1 VFR GEN 3.2 WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET OBLICZANIE CZASÓW WSCHODU I ZACHODU SŁOŃCA 1. Tabele wschodu i zachodu słońca dla lotniska EPWA oraz tabela poprawek zostały
Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów
Wymagania edukacyjne PRZEDMIOT: Matematyka KLASA: III Th ZAKRES: zakres podstawowy Poziom wymagań Lp. Dział programu Konieczny-K Podstawowy-P Rozszerzający-R Dopełniający-D Uczeń: 1. Ciągi liczbowe. -zna
WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET
AIP VFR POLAND VFR GEN 3.2-1 VFR GEN 3.2 WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET OBLICZANIE CZASÓW WSCHODU I ZACHODU SŁOŃCA 1. Tabele wschodu i zachodu słońca dla lotniska EPWA oraz tabela poprawek zostały
Analiza częstości mutacji w parach ojciec-syn w wybranych
ARCH. MED. SĄD. KRYMINOL., 2012, LXII, 147-151 PRACE ORYGINALNE / ORIGINAL PAPERS Joanna Wysocka, Aneta Stasiewicz 1, Krzysztof Rębała, Ewa Kapińska, Lidia Cybulska, Zofia Szczerkowska Analiza częstości
ALGORYTMY GENETYCZNE ćwiczenia
ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację
Pochodna funkcji: definicja, podstawowe własności wykład 5
Pochodna funkcji: definicja, podstawowe własności wykład 5 dr Mariusz Grządziel Rok akademicki 214/15, semestr zimowy Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona
KLASA III LO Poziom podstawowy (wrzesień/październik)
KLASA III LO (wrzesień/październik) ZAKRES PODSTAWOWY. Funkcje. Uczeń: ) określa funkcje za pomocą wzoru, tabeli, wykresu, opisu słownego; ) oblicza ze wzoru wartość funkcji dla danego argumentu. Posługuje
Wymagania edukacyjne klasa druga.
Wymagania edukacyjne klasa druga. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. POTĘGI Potęga o wykładniku naturalnym Iloczyn i iloraz potęg o jednakowych podstawach Potęgowanie potęgi Potęgowanie
Temat lekcji Zakres treści Wymagania podstawowe Wymagania ponadpodstawowe
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Rozkład materiału i plan wynikowy dla klasy Temat lekcji Zakres treści Wymagania podstawowe Wymagania ponadpodstawowe 1. Potęga o wykładniku całkowitym.
Matematyka 2 wymagania edukacyjne
Matematyka wymagania edukacyjne Zakres podstawowy POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/
Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt
WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET
AIP POLSKA GEN 2.7-1 30 MAR 2017 GEN 2.7 WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET OBLICZANIE CZASÓW WSCHODU I ZACHODU SŁOŃCA 1. Tabele wschodu i zachodu słońca dla lotniska EPWA oraz tabela poprawek zostały
Analiza statystyczna. Ogólne własności funkcji. Funkcja liniowa. Równania i nierówności liniowe
Analiza statystyczna Ogólne własności funkcji. Funkcja liniowa. Równania i nierówności liniowe Dokument zawiera opracowanie wyników analizy statystycznej e-sprawdzianu Edyta Landkauf, Zdzisław Porosiński
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 3TI ROK SZKOLNY 2018/2019
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 3TI ROK SZKOLNY 2018/2019 Przedmiotowy system oceniania jest zgodny z Rozporządzeniem Ministra Edukacji Narodowej z dnia 10 czerwca 2015 r. w sprawie
WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET
AIP POLSKA GEN 2.7-1 31 MAR 2016 GEN 2.7 WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET OBLICZANIE CZASÓW WSCHODU I ZACHODU SŁOŃCA 1. Tabele wschodu i zachodu słońca dla lotniska EPWA oraz tabela poprawek zostały
klasa I Dział Główne wymagania edukacyjne Forma kontroli
semestr I 2007 / 2008r. klasa I Liczby wymierne Dział Główne wymagania edukacyjne Forma Obliczenia procentowe Umiejętność rozpoznawania podzbiorów zbioru liczb wymiernych. Umiejętność przybliżania i zaokrąglania
Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna
Pochodna funkcji c.d.-wykład 5 (5.11.07) Funkcja logistyczna Rozważmy funkcję logistyczną y = f 0 (t) = 40 1+5e 0,5t Funkcja f może być wykorzystana np. do modelowania wzrostu masy ziaren kukurydzy (zmienna
ANALIZA SPRZEDAŻY: - rozproszenia
KOŁO NAUKOWE CONTROLLINGU UNIWERSYTET ZIELONOGÓRSKI ANALIZA SPRZEDAŻY: - rozproszenia - koncentracji - sezonowości Spis treści Wstęp... 3 Analiza rozproszenia sprzedaży... 4 Analiza koncentracji sprzedaży...
KONSPEKT LEKCJI MATEMATYKI (2 LEKCJE) W III KLASIE GIMNAZJUM OPRACOWAŁA RENATA WOŁCZYŃSKA
KONSPEKT LEKCJI MATEMATYKI (2 LEKCJE) W III KLASIE GIMNAZJUM OPRACOWAŁA RENATA WOŁCZYŃSKA Temat: Powtórzenie i utrwalenie wiadomości o funkcji liniowej Cel ogólny Przykłady funkcji; odczytywanie własności
Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
PORÓWNYWANIE POPULACJI POD WZGLĘDEM STRUKTURY
PORÓWNYWANIE POPULACJI POD WZGLĘDEM STRUKTURY obliczanie dystansu dzielącego grupy (subpopulacje) wyrażonego za pomocą indeksu F Wrighta (fixation index) w modelu jednego locus 1 Ćwiczenia III Mgr Kaczmarek-Okrój
Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych
Tematyka do egzaminu ustnego z matematyki 3 semestr LO dla dorosłych I. Sumy algebraiczne 1. Dodawanie i odejmowanie sum algebraicznych 2. Mnożenie sum algebraicznych 3. Wzory skróconego mnożenia - zastosowanie
Selekcja, dobór hodowlany. ESPZiWP
Selekcja, dobór hodowlany ESPZiWP Celem pracy hodowlanej jest genetyczne doskonalenie zwierząt w wyznaczonym kierunku. Trudno jest doskonalić zwierzęta już urodzone, ale można doskonalić populację w ten
Osiągnięcia ponadprzedmiotowe
W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji
Pomyłka Lincolna Lekcje z wykopem
Pomyłka Lincolna Lekcje z wykopem Scenariusz lekcji dla nauczyciela Pomyłka Lincolna Opis: Anegdota o zadaniu postawionym przed Lincolnem prowadzi do analizy modelu wzrostu liczby ludności zgodnego z ciągiem
1. Potęgi. Logarytmy. Funkcja wykładnicza
1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności
Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym
Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń
Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 2 Proponujemy, by omawiając dane zagadnienie programowe lub rozwiązując
Osiągnięcia ponadprzedmiotowe
W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE czytać teksty w stylu
Mechanika II Zestaw do doświadczeń uczniowskich
Mechanika II Zestaw do doświadczeń uczniowskich Nr katalogowy: 03-372 1. Ruch jednostajny prostoliniowy (1) Materiały: Tor 1000 mm (1), para stopek do toru (3), suwak zaciskowy x2 (4), wózek z napędem
Opis założonych osiągnięć ucznia klasy ZSZ (od 2012r.)
Opis założonych osiągnięć ucznia klasy ZSZ (od 2012r.) Zastosowanie przez nauczyciela wcześniej opisanych metod nauczania, form pracy i środków dydaktycznych oraz korzystanie z niniejszego programu nauczania
Zestaw 12- Macierz odwrotna, układy równań liniowych
Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną
Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny
Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji
LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy
LUELSK PRÓ PRZED MTURĄ 08 poziom podstawowy Schemat oceniania Zadania zamknięte (Podajemy kartotekę zadań, która ułatwi Państwu przeprowadzenie jakościowej analizy wyników). Zadanie. (0 ). Liczby rzeczywiste.
Wymagania edukacyjne z matematyki Klasa III zakres podstawowy
Wymagania edukacyjne z matematyki Klasa III zakres podstawowy Program nauczania zgodny z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres podstawowy., Oficyna Edukacyjna
WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą
1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku
Osiągnięcia ponadprzedmiotowe
Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym tworzyć teksty w stylu
Genetyka populacji. Ćwiczenia 7
Genetyka populacji Ćwiczenia 7 Rodowody wraz z wynikami kontroli użytkowości stanowią podstawową informację potrzebną do doskonalenia zwierząt C F X S D C F C F S D strzałka oznacza przepływ genów między
Plan wynikowy. Klasa III Technikum ekonomiczne. Kształcenie ogólne w zakresie rozszerzonym
Plan wynikowy lasa III Technikum ekonomiczne. ształcenie ogólne w zakresie rozszerzonym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania
Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją
WYKŁAD 3. DYNAMIKA ROZWOJU
WYKŁAD 3. DYNAMIKA ROZWOJU POPULACJI MODELE Z CZASEM DYSKRETNYM DR WIOLETA DROBIK- CZWARNO MODELE ZMIAN ZAGĘSZCZENIA POPULACJI Wyróżniamy modele: z czasem dyskretnym wykorzystujemy równania różnicowe z
CIĄGI wiadomości podstawowe
1 CIĄGI wiadomości podstawowe Jak głosi definicja ciąg liczbowy to funkcja, której dziedziną są liczby naturalne dodatnie (w zadaniach oznacza się to najczęściej n 1) a wartościami tej funkcji są wszystkie
FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D)
FUNKCJA LINIOWA 1. Funkcja jest rosnąca, gdy 2. Wskaż, dla którego funkcja liniowa jest rosnąca Wskaż, dla którego funkcja liniowa określona wzorem jest stała. 3. Funkcja liniowa A) jest malejąca i jej
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
Genetyka Populacji http://ggoralski.com
Genetyka Populacji http://ggoralski.com Frekwencje genotypów i alleli Frekwencja genotypów Frekwencje genotypów i alleli Zadania P AA = 250/500 = 0,5 P Aa = 100/500 = 0,2 P aa = 150/500 = 0,3 = 1 Frekwencje
Katalog wymagań programowych na poszczególne stopnie szkolne
rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2015/2016 Przedmiot: MATEMATYKA Klasa: III 2 godz/tyg 30 = 60 godzin Rozkład materiału nauczania Temat I. LOGARYTMY
Analiza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy
LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie
Rozkład wyników ogólnopolskich
Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 34 35 36 37 38 39 4 41 42 43 44 45 46 47 48 49
Kształcenie w zakresie podstawowym. Klasa 3
Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do rachunku błędów pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami:
WZÓR OGÓLNY CIĄGU GEOMETRYCZNEGO
WZÓR OGÓLNY CIĄGU GEOMETRYCZNEGO, to ciąg, którego kolejne wyrazy powstają poprzez mnożenie poprzednich wyrazów przez liczbę, którą nazywamy ilorazem ciągu geometrycznego i oznaczamy: q Do opisu ciągu
Barometr Finansów Banków (BaFiB) propozycja badania koniunktury w sektorze bankowym
Jacek Batóg Uniwersytet Szczeciński Barometr Finansów Banków (BaFiB) propozycja badania koniunktury w sektorze bankowym Jednym z ważniejszych elementów każdej gospodarki jest system bankowy. Znaczenie
Lista działów i tematów
Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie
Katalog wymagań programowych na poszczególne stopnie szkolne
rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy