Jerzy A. Moczko Katedra i Zakład Informatyki i Statystyki UM - Poznań ANALIZA ZJAWISK OKRESOWYCH W BADANIACH MEDYCZNYCH
|
|
- Lech Dąbrowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Jerzy A. Moczko Katedra i Zakład Informatyki i Statystyki UM - Poznań ANALIZA ZJAWISK OKRESOWYCH W BADANIACH MEDYCZNYCH
2 SPECYFIKA DANYCH MEDYCZNYCH
3 PODSTAWOWE TYPY INFORMACJI ALFANUMERYCZNA SYGNAŁY OBRAZY
4 INFORMACJA ALFANUMERYCZNA DANE REJESTRACYJNE HISTORIA CHOROBY WYNIKI LABORATORYJNE EPIKRYZA RECEPTY
5 INFORMACJA SYGNAŁOWA ELEKTROKARDIOGRAFIA ELEKTROENCEFALOGRAFIA ELEKTROMIOGRAFIA ELEKTRONYSTAGMOGRAFIA ELEKTROGASTROGRAFIA ELEKTROINTESTINOGRAFIA ELEKTROOKULOGRAFIA KARDIOTOKOGRAFIA
6 NATURA SYGNAŁÓW BIOLOGICZNYCH ELEKTRYCZNE MAGNETYCZNE MECHANICZNE AKUSTYCZNE CHEMICZNE CIEPLNE elektrokardiografia, elektroencefalografia, elektromiografia, elektroretinografia, elektrointestinografia, magnetokardiografia ciśnienie krwi, ruchy oddechowe, skurcze mięśnia macicy fonokardiografia fluktuacje stężenia gazów we krwi, gospodarka wodno-elektrolitowa temperatura
7 INFORMACJA OBRAZOWA KLASYCZNA TECHNIKA RENTGENOWSKA JĄDROWY REZONANS MAGNETYCZNY ULTRASONOGRAFIA MIKROSKOPIA OPTYCZNA I ELEKTRONOWA BADANIE DNA OKA TERMOGRAFIA
8 CYKLICZNOŚĆ ZJAWISK BIOLOGICZNYCH RYTMY MOGĄ MIEĆ ROZMAITY OKRES RYTMY BARDZO WOLNE OKRES DŁUŻSZY NIŻ 24 GODZINY (INFRADIAN) RYTMY OKOŁO DOBOWE (CIRCADIAN) RYTMY SZYBKIE OKRES KRÓTSZY NIŻ 24 GODZINY (ULTRADIAN)
9 CELE ANALIZY SYGNAŁU BIOLOGICZNEGO Wniknięcie w naturę systemu generującego sygnał (cel naukowy, poznawczy) ustalenie aktualnego stanu systemu (cel praktyczny - postawienie diagnozy)
10 WADY ANALIZY WZROKOWEJ SYGNAŁÓW BIOLOGICZNYCH wydobycie małego procentu zawartej w sygnale informacji zależność interpretacji zapisu od stopnia doświadczenia i zmęczenia osoby analizującej wpływ efektów psychologicznych ( stan emocjonalny osoby analizowanej i analizującej)
11 ETAPY PRZETWARZANIA SYGNAŁÓW PRZETWARZANIE WSTĘPNE PRÓBKOWANIE SYGNAŁU ANALIZA W DZIEDZINIE CZASU ANALIZA W DZIEDZINIE CZĘSTOTLIWOŚCI ANALIZA W POŁĄCZONEJ DZIE- DZINIE CZASU-CZĘSTOTLIWOŚCI KLASYFIKACJA I DIAGNOZA
12 TYPY SYGNAŁÓW sygnały ciągłe (szeregi czasowe, time series) - EKG, EEG, EMG procesy punktowe (sekwencje zdarzeń, time events) - częstość uderzeń serca, sekwencje wyładowań neuronowych
13 STANDARDY PODŁĄCZENIA APARATURY MEDYCZNEJ sprzętowe porty komunikacyjne ŁĄCZA SZEREGOWE EIA 485 (232) (Electronic Industry Association dawny standard RS Recomended Standard) ŁĄCZA RÓWNOLEGŁE ŁĄCZA USB ŁĄCZA VXI, PXI KARTY ANALOGOWO - CYFROWE
14 AKWIZYCJA SYGNAŁU ZBIERANIE SYGNAŁU PRZY UŻYCIU ROZMAITYCH SENSORÓW PRAWIDŁOWE PRZETWARZANIE WSTĘPNE (LINEARYZACJA, WZMOCNIENIE, FILTRACJA, KOMPENSACJA UPŁYWNOŚCI)
15
16 HARDWARE SOFTWARE
17 INSTRUMENTACJA WIRTUALNA
18
19
20 INSTRUMENTACJA WIRTUALNA
21 ANALIZA W DZIEDZINIE CZASU
22
23 ANALIZA CZĘSTOŚCI UDERZEŃ SERCA
24 190 DECELERATION PATTERN FHR TIME
25 Analiza Cosinorowa Faza Amplituda Mesor 2 y( t) M Acos t T
26 y i M Acos( t ) i e i gdzie: M MESOR (ang. midline estimating statistic of rhythm) A amplituda funkcji cosinorowej - akrofaza przesunięcie fazowe e składnik losowy 2 T T badany okres Korzystając z tożsamości trygonometrycznej cos( t ) cos t cos sin t sin i i i y i M model cosinorowy można zapisać w postaci liniowej: xi cos ti Acos xi zi ei gdzie: z sin t Acos i i ˆ arctan n n n ˆ 1 1 ˆ 1 M y ˆ i xi z 2 2 i n i 1 n i 1 n Aˆ ˆ ˆ i 1 MESOR amplituda akrofaza ˆ ˆ
27 Zakładając normalność rozkładu parametrów, otrzymujemy elipsoidę równej gęstości postaci: X ˆ 2 T ˆ ˆ Z ˆ F 1 (2, n 3) n A gdzie: 1 X n 1 Z n 1 T n Elipsoidę równej gęstości wykorzystujemy do testowania hipotezy: H H 0 i 1 n i 1 n n i 1 ( x ( z ( x : 0 : ~ H 1 0 i i i x ) i i 2 2 zi ) x )( z i z ) i - akrofaza, przesunięcie fazowe A - amplituda Test ten często nazywany jest zero amplitude test
28 Model cosinorowy można uogólnić na całą badaną populację Mając obliczone parametry modelu dla poszczególnych osobników: (,, ),(,, ),...,(,, ) M1 1 1 M M k k k otrzymujemy parametry populacyjne postaci: MESOR M k k k 1 ˆ 1 ˆ 1 M ; ; ˆ k k k i i i i 1 i 1 i 1 amplituda A 2 2 akrofaza arctan
29 DESKRYPTORY W DZIEDZINIE CZASU
30 DESKRYPTORY W DZIEDZINIE CZASU
31 DESKRYPTORY W DZIEDZINIE CZASU
32 DESKRYPTORY W DZIEDZINIE CZASU
33 ANALIZA W DZIEDZINIE CZĘSTOTLIWOŚCI
34 65 55 SAYERS MODEL OF HEART RATE PSD BLOOD PRESSURE DYNAMIC CONTROL AMPLITUDE 45 BODY TEMPERATURE DYNAMIC CONTROL RESPIRATORY MOVEMENTS 5-5
35 DESKRYPTORY W DZIEDZINIE CZĘSTOTLIWOŚCI
36 WYNIKI ANALIZY W DZIEDZINIE CZĘSTOTLIWOŚCI
37 DESKRYPTORY W DZIEDZINIE CZĘSTOTLIWOŚCI
38 ANALIZA SYGNAŁU W DZIEDZINIE CZĘSTOTLIWOŚCI METODY OPARTE NA FFT
39 ZALETY: NAJBARDZIEJ ROZPOWSZECHNIONA TECHNIKA UZYSKIWANIA WIDM (DOBRZE ZNANE I EFEKTYWNE OBLICZENIOWO ALGORYTMY) ŁATWA INTERPRETACJA UZYSKANYCH WYNIKÓW WADY: WŁAŚCIWOŚCI METOD FFT SILNA ZALEŻNOŚĆ ROZDZIELCZOŚCI CZĘSTOTLIWOŚCIOWEJ OD DŁUGOŚCI SYGNAŁU STOSUJE SIĘ WYŁĄCZNIE DO SYGNAŁÓW STACJONARNYCH SŁABA REDUKCJA LICZBY DANYCH WEJŚCIOWYCH (KLASYFIKACJA STATYSTYCZNA I INNE METODY ANALIZY) NISKA STABILNOŚĆ STATYSTYCZNA UZYSKANYCH ESTYMAT WIDMA MOCY LICZBA PRÓBEK MUSI BYĆ POTĘGĄ LICZBY 2
40 ANALIZA SYGNAŁU W DZIEDZINIE CZĘSTOTLIWOŚCI METODY OPARTE NA TECHNIKACH PARAMETRYCZNYCH
41 WŁAŚCIWOŚCI METOD PARAMETRYCZNYCH ZALETY WIDMO SYGNAŁU JEST GŁADKIE I STABILNE UZYSKUJE SIĘ MAŁĄ LICZBĘ PARAMETRÓW (JEST ONA NIEZALEŻNA OD DŁUGOŚCI SYGNAŁU) OPISUJĄCĄ W SPOSÓB JEDNOZNACZNY WIDMO ROZDZIELCZOŚĆ CZĘSTOTLIWOŚCIOWA JEST O KILKA RZĘDÓW WIELKOŚCI LEPSZA NIŻ W PRZYPADKU TECHNIK FFT NAWET DLA BARDZO KRÓTKICH SYGNAŁÓW WADY ZŁOŻONY ALGORYTM OBLICZENIOWY MOŻLIWOŚĆ ANALIZOWANIA SYGNAŁÓW WYŁĄCZNIE QUASI STACJONARNYCH PROBLEM WYBORU TYPU MODELU ORAZ PRAWIDŁOWE OSZACOWANIE JEGO RZĘDU
42 FHR W RÓŻNYCH STANACH ZACHOWANIA SPOCZYNEK RUCHY CIAŁA CZĘSTOŚĆ UDERZEŃ SERCA CZAS (SEKUNDY)
43 ANALIZA W POŁĄCZONEJ DZIEDZINIE CZASU I CZĘSTOTLIWOŚCI
44 DESKRYPTORY W POŁĄCZONEJ DZIEDZINIE CZASU I ZĘSTOTLIWOŚCI
45 INSTANTANEOUS PSD (PHASE 1)
46 INSTANTANEOUS PSD (PHASE 2)
47 INSTANTANEOUS PSD (PHASE 3)
48 AVERAGED PSD
49
50
51 SKŁADOWE JEDNOCZESNE
52 KOLEJNO WYSTĘPUJĄCE SKŁADOWE
53 JTFA - ALGORYTM ADAPTACYJNY
54 ZAWARTOŚĆ INFORMACYJNA JTFA CZY SYGNAŁ MA STRUKTURĘ PROSTĄ CZY ZŁOŻONĄ JAKI JEST ZAKRES CZĘSTOTLIWOŚCI WYSTĘPUJĄCYCH W BADANYM SYGNALE CZY I W JAKI SPOSÓB CZĘSTOTLIWOŚCI ZMIENIAJĄ SIĘ W CZASIE JAKA MOC ZWIĄZANA JEST Z POSZCZEGÓLNYMI SKŁADOWYMI CZĘSTOTLIWOŚCIOWYMI
55
56
57
58
59 ŹRÓDŁA ZAKŁÓCEŃ ZAKŁÓCENIA CYKLICZNE (WĄSKOPASMOWE)
60 ŹRÓDŁA ZAKŁÓCEŃ ZAKŁÓCENIA NIECYKLICZNE (SZEROKOPASMOWE)
61 USUWANIE ZAKŁÓCEŃ CYKLICZNYCH FILTRY CYFROWE
62 USUWANIE ZAKŁÓCEŃ CYKLICZNYCH TRANSFORMATA FALKOWA DAUBECHIE6
63 PORÓWNANIE WYNIKÓW FILTRACJI
64 USUWANIE SZUMU SZEROKOPASMOWEGO METODĄ UWT (undecimated wavelet transform)
65 WYNIK FILTRACJI UWT
66 DETEKCJA KOMPLEKSÓW QRS METODĄ ANALIZY WIELOROZDZIELCZEJ OPARTEJ NA DWT
67 WYNIK ANALIZY WIELOROZDZIELCZEJ
68 Częstość uderzeń serca płodu - FHR EKG US FHR [ bpm] TRR [ ms] Obwiednia US
69 Metodyka Klasyczna analiza czynności skurczowej macicy analiza sygnału TOCO w dziedzinie czasu Detekcja skurczu 1. Wyznaczenie tonu podstawowego - TP 2. Określenie progu detekcji - PD 3. Detekcja wychyleń krzywej skurczowej powyżej progu detekcji 4. Klasyfikacja wychylenia jako skurczu jeśli spełnione są kryteria amplitudy oraz czasu trwania wychylenia Wyznaczenie podstawowych parametrów skurczu TOCO Amplituda Amplituda > 20 Czas trwania > 30 sek Powierzchnia Próg detekcji Czas max Czas rozpoczęcia Czas trwania Ton podstawowy Czas
70 Metodyka Analiza sygnału TOCO w dziedzinie czasu Surowy TOCO Filtracja dolnoprzepustowa 0,04 Hz Okno: szer. 5 min krok 1 min Histogram Wartość modalna = Próbka tonu podstawowego Ton podstawowy + 10 = Próg detekcji
71 KLASYFIKACJA DANYCH DIAGNOSTYCZNYCH METODY STATYSTYCZNE METODY SZTUCZNEJ INTELIGENCJI
72 METODY STATYSTYCZNE ANALIZA OPISOWA TESTOWANIE HIPOTEZ KORELACJA I REGRESJA METODY MODELOWANIA STATYSTYCZNEGO
73 METODY SZTUCZNEJ INTELIGENCJI SZTUCZNE SIECI NEURONOWE TEORIA ZBIORÓW ROZMYTYCH TEORIA ZBIORÓW PRZYBLIŻONYCH
74 DZIĘKUJĘ PAŃSTWU ZA UWAGĘ
Jerzy A. Moczko Katedra i Zakład Informatyki i Statystyki UM - Poznań INSTRUMENTACJA WIRTUALNA W BADANIACH MEDYCZNYCH
Jerzy A. Moczko Katedra i Zakład Informatyki i Statystyki UM - Poznań INSTRUMENTACJA WIRTUALNA W BADANIACH MEDYCZNYCH PODSTAWOWE TYPY INFORMACJI MEDYCZNEJ ALFANUMERYCZNA SYGNAŁY OBRAZY INFORMACJA ALFANUMERYCZNA
Analiza sygnałów biologicznych
Analiza sygnałów biologicznych Paweł Strumiłło Zakład Elektroniki Medycznej Instytut Elektroniki PŁ Co to jest sygnał? Funkcja czasu x(t) przenosząca informację o stanie lub działaniu układu (systemu),
Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku elektroradiologia w roku akademickim 2017/2018.
Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku elektroradiologia w roku akademickim 2017/2018. w1. Platforma elearningowa stosowana na kursie. w2. Metodyka eksperymentu fizycznego - rachunek błędów.
CYFROWE PRZETWARZANIE SYGNAŁÓW
POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza korelacyjna sygnałów dr hab. inż.
Analizy Ilościowe EEG QEEG
Analizy Ilościowe EEG QEEG Piotr Walerjan PWSIM MEDISOFT 2006 Piotr Walerjan MEDISOFT Jakościowe vs. Ilościowe EEG Analizy EEG na papierze Szacunkowa ocena wartości częstotliwości i napięcia Komputerowy
2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).
SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy
Metodyka i system dopasowania protez słuchu w oparciu o badanie percepcji sygnału mowy w szumie
Metodyka i system dopasowania protez w oparciu o badanie percepcji sygnału mowy w szumie opracowanie dr inż. Piotr Suchomski Koncepcja metody korekcji ubytku Dopasowanie szerokiej dynamiki odbieranego
Zaawansowane algorytmy DSP
Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Zaawansowane algorytmy DSP Wstęp Cztery algorytmy wybrane spośród bardziej zaawansowanych
Egzamin / zaliczenie na ocenę*
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim CYFROWE PRZETWARZANIE SYGNAŁÓW Nazwa w języku angielskim DIGITAL SIGNAL PROCESSING Kierunek studiów
DYSKRETNA TRANSFORMACJA FOURIERA
Laboratorium Teorii Sygnałów - DFT 1 DYSKRETNA TRANSFORMACJA FOURIERA Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie analizy widmowej sygnałów okresowych za pomocą szybkiego przekształcenie Fouriera
Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.
Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu
Multimedialne Systemy Medyczne
Multimedialne Systemy Medyczne Brain-Computer Interfaces (BCI) mgr inż. Katarzyna Kaszuba Interfejsy BCI Interfejsy BCI Interfejsy mózgkomputer. Zwykle wykorzystują sygnał elektroencefalografu (EEG) do
Analiza i Przetwarzanie Biosygnałów
Analiza i Przetwarzanie Biosygnałów Sygnał EKG Historia Luigi Galvani (1737-1798) włoski fizyk, lekarz, fizjolog 1 Historia Carlo Matteucci (1811-1868) włoski fizyk, neurofizjolog, pionier badań nad bioelektrycznością
Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, Spis treści
Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, 2011 Spis treści Przedmowa 11 Rozdział 1. WPROWADZENIE 13 1.1. Czym jest automatyczne rozpoznawanie mowy 13 1.2. Poziomy
PL B1. Sposób i układ pomiaru całkowitego współczynnika odkształcenia THD sygnałów elektrycznych w systemach zasilających
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 210969 (13) B1 (21) Numer zgłoszenia: 383047 (51) Int.Cl. G01R 23/16 (2006.01) G01R 23/20 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
5. Jako pokrycia tytanowych elementów sztucznej zastawki serca stosuje się. 6. Podstawowym parametrem opisującym skuteczność procesu membranowego jest
1. Jakie typy detektorów są najczęściej używane w dozymetrii indywidualnej? 2. Jakie są zalety tomoterapii? 3. Co to jest rozkład antyboltzmanowski? 4. Na czym polega fotokoagulacja? 5. Jako pokrycia tytanowych
KARTA MODUŁU / KARTA PRZEDMIOTU
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Cyfrowe przetwarzanie sygnałów pomiarowych_e2s
Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku Elektroradiologia w roku akademickim 2016/2017.
Zestaw ćwiczeń laboratoryjnych z Biofizyki dla kierunku Elektroradiologia w roku akademickim 2016/2017. w1. Platforma elearningowa stosowana na kursie. w2. Metodyka eksperymentu fizycznego - rachunek błędów.
Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3.
Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Sygnały deterministyczne 4 1.3.1. Parametry 4 1.3.2. Przykłady 7 1.3.3. Sygnały
Przekształcenie Fouriera obrazów FFT
Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację
Algorytmy detekcji częstotliwości podstawowej
Algorytmy detekcji częstotliwości podstawowej Plan Definicja częstotliwości podstawowej Wybór ramki sygnału do analizy Błędy oktawowe i dokładnej estymacji Metody detekcji częstotliwości podstawowej czasowe
Podstawy Przetwarzania Sygnałów
Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech
Ćwiczenie 3. Właściwości przekształcenia Fouriera
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia
Informatyka w medycynie Punkt widzenia kardiologa
Informatyka w medycynie Punkt widzenia kardiologa Lech Poloński Mariusz Gąsior Informatyka medyczna Dział informatyki zajmujący się jej zastosowaniem w ochronie zdrowia (medycynie) Stymulacja rozwoju informatyki
4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych...
Spis treści 1 Wstęp 11 1.1 Do kogo adresowana jest ta książka... 12 1.2 Historia badań nad mową i językiem... 12 1.3 Obecne główne trendy badań... 16 1.4 Opis zawartości rozdziałów... 18 2 Wyzwania i możliwe
Kompresja dźwięku w standardzie MPEG-1
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 7, strona 1. Kompresja dźwięku w standardzie MPEG-1 Ogólne założenia kompresji stratnej Zjawisko maskowania psychoakustycznego Schemat blokowy
KATEDRA BIOSENSORÓW I PRZETWARZANIA SYGNAŁÓW BIOMEDYCZNYCH
KATEDRA BIOSENSORÓW I PRZETWARZANIA SYGNAŁÓW BIOMEDYCZNYCH TAM GDZIE SYSTEMY INFORMATYCZNE ROZMAWIAJĄ ZE SPRZĘTEM, KOMPLEKSOWE SYSTEMY INFORMATYCZNO-ELEKTRONICZNE, PROGRAMOWANIE WIELOPOZIOMOWE: MATLAB,
Detekcja zespołów QRS w sygnale elektrokardiograficznym
Detekcja zespołów QRS w sygnale elektrokardiograficznym 1 Wprowadzenie Zadaniem algorytmu detekcji zespołów QRS w sygnale elektrokardiograficznym jest określenie miejsc w sygnale cyfrowym w których znajdują
IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7
Łukasz Deńca V rok Koło Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE
FFT i dyskretny splot. Aplikacje w DSP
i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata
Prof. Stanisław Jankowski
Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Teoria i przetwarzanie sygnałów Rok akademicki: 2013/2014 Kod: EEL-1-524-s Punkty ECTS: 6 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika
(L, S) I. Zagadnienia. 1. Potencjały czynnościowe komórek serca. 2. Pomiar EKG i jego interpretacja. 3. Fonokardiografia.
(L, S) I. Zagadnienia 1. Potencjały czynnościowe komórek serca. 2. Pomiar EKG i jego interpretacja. 3. Fonokardiografia. II. Zadania 1. Badanie spoczynkowego EKG. 2. Komputerowa rejestracja krzywej EKG
Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej. Laboratorium cyfrowej techniki pomiarowej. Ćwiczenie 3
Politechnika Łódzka Instytut Systemów Inżynierii Elektrycznej Laboratorium cyfrowej techniki pomiarowej Ćwiczenie 3 Przetwarzanie danych pomiarowych w programie LabVIEW 1. Generator harmonicznych Jako
Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych
Zakres wymaganych wiadomości do testów z przedmiotu Metrologia Ćwiczenie 1 Wprowadzenie do obsługi multimetrów analogowych i cyfrowych budowa i zasada działania przyrządów analogowych magnetoelektrycznych
Kamil Jonak Zakład Bioinżynierii Instytut Technologicznych Systemów Informatycznych Politechnika Lubelska Paweł Krukow Zakład Neuropsychiatrii
Kamil Jonak Zakład Bioinżynierii Instytut Technologicznych Systemów Informatycznych Politechnika Lubelska Paweł Krukow Zakład Neuropsychiatrii Klinicznej Katedra Psychiatrii Uniwersytetu Medycznego w Lublinie
Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2
Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2 Dr hab. inż. Agnieszka Wyłomańska Faculty of Pure and Applied Mathematics Hugo Steinhaus Center Wrocław University of Science and
Filtry cyfrowe procesory sygnałowe
Filtry cyfrowe procesory sygnałowe Rozwój wirtualnych przyrządów pomiarowych Algorytmy CPS działające na platformie TMX 320C5515e ZDSP USB STICK realizowane w laboratorium FCiPS Rozszerzenie ćwiczeń o
Sygnały losowe i ich analiza. Paweł Strumiłło, Instytut Elektroniki Politechniki Łódzkiej
Sygnały losowe i ich analiza Sygnały biologiczne Modele deterministyczne st Modele stochastyczne nt EKG Sygnały biologiczne zakłócenia EMG (artefakty) x t st nt 2 Modele sygnałów Przykłady! Sygnały Modele
Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej
Politechnika Łódzka Instytut Systemów Inżynierii Elektrycznej Laboratorium komputerowych systemów pomiarowych Ćwiczenie 3 Analiza częstotliwościowa sygnałów dyskretnych 1. Opis stanowiska Ćwiczenie jest
efekty kształcenia dla kierunku Elektronika studia stacjonarne drugiego stopnia, profil ogólnoakademicki
Opis efektów dla kierunku Elektronika Studia stacjonarne drugiego stopnia, profil ogólnoakademicki Objaśnienie oznaczeń: K kierunkowe efekty W kategoria wiedzy U kategoria umiejętności K (po podkreślniku)
Przekształcenie Fouriera i splot
Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Przekształcenie Fouriera i splot Wstęp Na tym wykładzie: przekształcenie Fouriera
Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 8
Teoria Synałów rok nformatyki Stosowanej Wykład 8 Analiza częstotliwościowa dyskretnych synałów cyfrowych okna widmowe (cd poprzednieo wykładu) N = 52; T =.24; %czas trwania synału w sekundach dt = T/N;
b n y k n T s Filtr cyfrowy opisuje się również za pomocą splotu dyskretnego przedstawionego poniżej:
1. FILTRY CYFROWE 1.1 DEFIICJA FILTRU W sytuacji, kiedy chcemy przekształcić dany sygnał, w inny sygnał niezawierający pewnych składowych np.: szumów mówi się wtedy o filtracji sygnału. Ogólnie Filtracją
Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy
Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Grupa: wtorek 18:3 Tomasz Niedziela I. CZĘŚĆ ĆWICZENIA 1. Cel i przebieg ćwiczenia. Celem ćwiczenia
9. Dyskretna transformata Fouriera algorytm FFT
Transformata Fouriera ma szerokie zastosowanie w analizie i syntezie układów i systemów elektronicznych, gdyż pozwala na połączenie dwóch sposobów przedstawiania sygnałów reprezentacji w dziedzinie czasu
Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE
1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie
ĆWICZENIE nr 3. Badanie podstawowych parametrów metrologicznych przetworników analogowo-cyfrowych
Politechnika Łódzka Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych WWW.DSOD.PL LABORATORIUM METROLOGII ELEKTRONICZNEJ ĆWICZENIE nr 3 Badanie podstawowych parametrów metrologicznych przetworników
Adaptacyjne Przetwarzanie Sygnałów. Filtracja adaptacyjna w dziedzinie częstotliwości
W Filtracja adaptacyjna w dziedzinie częstotliwości Blokowy algorytm LMS (BLMS) N f n+n = f n + α x n+i e(n + i), i= N L Slide e(n + i) =d(n + i) f T n x n+i (i =,,N ) Wprowadźmy nowy indeks: n = kn (
Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe
3. Przetwarzanie analogowo-cyfrowe i cyfrowo-analogowe... 43
Spis treści 3 Przedmowa... 9 Cele książki i sposoby ich realizacji...9 Podziękowania...10 1. Rozległość zastosowań i głębia problematyki DSP... 11 Korzenie DSP...12 Telekomunikacja...14 Przetwarzanie sygnału
Generowanie sygnałów na DSP
Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Generowanie sygnałów na DSP Wstęp Dziś w programie: generowanie sygnałów za pomocą
Akustyka muzyczna ANALIZA DŹWIĘKÓW MUZYCZNYCH
Akustyka muzyczna ANALIZA DŹWIĘKÓW MUZYCZNYCH Dźwięk muzyczny Dźwięk muzyczny sygnał wytwarzany przez instrument muzyczny. Najważniejsze parametry: wysokość związana z częstotliwością podstawową, barwa
Przetwarzanie analogowo-cyfrowe sygnałów
Przetwarzanie analogowo-cyfrowe sygnałów A/C 111111 1 Po co przekształcać sygnał do postaci cyfrowej? Można stosować komputerowe metody rejestracji, przetwarzania i analizy sygnałów parametry systemów
Podstawowe funkcje przetwornika C/A
ELEKTRONIKA CYFROWA PRZETWORNIKI CYFROWO-ANALOGOWE I ANALOGOWO-CYFROWE Literatura: 1. Rudy van de Plassche: Scalone przetworniki analogowo-cyfrowe i cyfrowo-analogowe, WKŁ 1997 2. Marian Łakomy, Jan Zabrodzki:
Analiza właściwości filtrów dolnoprzepustowych
Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.
Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ
Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania
PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 02/12
PL 219314 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 219314 (13) B1 (21) Numer zgłoszenia: 391709 (51) Int.Cl. H04B 1/00 (2006.01) H04B 1/10 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej
f = 2 śr MODULACJE
5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Elektrokardiografia dla informatyka-praktyka / Piotr Augustyniak. Kraków, Spis treści Słowo wstępne 5
Elektrokardiografia dla informatyka-praktyka / Piotr Augustyniak. Kraków, 2011 Spis treści Słowo wstępne 5 1. Wprowadzenie 15 1.A Przetwarzanie sygnałów elektrodiagnostycznych profesjonalizm i pasja 15
Transformata Fouriera
Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli
1. Modulacja analogowa, 2. Modulacja cyfrowa
MODULACJA W16 SMK 2005-05-30 Jest operacja mnożenia. Jest procesem nakładania informacji w postaci sygnału informacyjnego m.(t) na inny przebieg o wyższej częstotliwości, nazywany falą nośną. Przyczyna
INSTRUKCJA DO ĆWICZENIA NR 7
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety
TRANSFORMATA FALKOWA 2D. Oprogramowanie Systemów Obrazowania 2016/2017
TRANSFORMATA FALKOWA 2D Oprogramowanie Systemów Obrazowania 2016/2017 Wielorozdzielczość - dekompozycja sygnału w ciąg sygnałów o coraz mniejszej rozdzielczości na wielu poziomach gdzie: s l+1 - aproksymata
Klasyfikacja metod przetwarzania analogowo cyfrowego (A/C, A/D)
Klasyfikacja metod przetwarzania analogowo cyfrowego (A/C, A/D) Metody pośrednie Metody bezpośrednie czasowa częstotliwościowa kompensacyjna bezpośredniego porównania prosta z podwójnym całkowaniem z potrójnym
Metody analizy zapisu EEG. Piotr Walerjan
Metody analizy zapisu EEG Piotr Walerjan Metody automatyczne i semiautomatyczne w EEG automatyczna detekcja (i zliczanie) zdarzeń wykrywanie wyładowań, napadów tworzenie hipnogramów analizy widmowe, wykresy
Sposoby opisu i modelowania zakłóceń kanałowych
INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń
(1.1) gdzie: - f = f 2 f 1 - bezwzględna szerokość pasma, f śr = (f 2 + f 1 )/2 częstotliwość środkowa.
MODULACJE ANALOGOWE 1. Wstęp Do przesyłania sygnału drogą radiową stosuje się modulację. Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej.
przedmiot kierunkowy (podstawowy / kierunkowy / inny HES) obieralny (obowiązkowy / nieobowiązkowy) polski semestr VI
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2018/2019
CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)
I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.
SYMULACJA KOMPUTEROWA SYSTEMÓW
SYMULACJA KOMPUTEROWA SYSTEMÓW ZASADY ZALICZENIA I TEMATY PROJEKTÓW Rok akademicki 2015 / 2016 Spośród zaproponowanych poniżej tematów projektowych należy wybrać jeden i zrealizować go korzystając albo
Analiza sygnału EKG i modelowanie pracy serca
Paweł Strumiłło Analiza sygnału EKG i modelowanie pracy serca 90-924 Łódź, ul. Wólczańska 211/215, bud. B9 tel. 042 636 0065 www.eletel.p.lodz.pl, ie@p.lodz.pl Diagnoza medyczna - zagadnienie odwrotne
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Analiza czas - częstotliwość analiza częstotliwościowa: problem dla sygnału niestacjonarnego zwykła transformata
ĆWICZENIE III ANALIZA WIDMOWA SYGNAŁÓW DYSKRETNYCH. ver.3
1 Zakład Elektrotechniki Teoretycznej ver.3 ĆWICZEIE III AALIZA WIDMOWA SYGAŁÓW DYSKRETYCH (00) Celem ćwiczenia jest przeprowadzenie analizy widmowej dyskretnych sygnałów okresowych przy zastosowaniu szybkiego
Algorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury. Paweł Kobojek, prof. dr hab. inż. Khalid Saeed
Algorytm do rozpoznawania człowieka na podstawie dynamiki użycia klawiatury Paweł Kobojek, prof. dr hab. inż. Khalid Saeed Zakres pracy Przegląd stanu wiedzy w dziedzinie biometrii, ze szczególnym naciskiem
Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych
XXXVIII MIĘDZYUCZELNIANIA KONFERENCJA METROLOGÓW MKM 06 Warszawa Białobrzegi, 4-6 września 2006 r. Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych Eligiusz PAWŁOWSKI Politechnika
Analiza zmienności rytmu serca (HRV). Analiza częstotliwościowa sygnałów próbkowanych niejednorodnie
Analiza zmienności rytmu serca (HRV). Analiza częstotliwościowa sygnałów próbkowanych niejednorodnie 1 Wprowadzenie Różnice w długościach interwałów RR, określone przez kolejne szczyty zespołów QRS, przedstawiają
Podstawy fizyki sezon 1 VII. Ruch drgający
Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Rewolucja cyfrowa i jej skutki Rewolucja cyfrowa - dane cyfrowe: podstawowy rodzaj informacji multimedialnych,
Rys. 1. Wzmacniacz odwracający
Ćwiczenie. 1. Zniekształcenia liniowe 1. W programie Altium Designer utwórz schemat z rys.1. Rys. 1. Wzmacniacz odwracający 2. Za pomocą symulacji wyznaczyć charakterystyki częstotliwościowe (amplitudową
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
Widmo akustyczne radia DAB i FM, porównanie okien czasowych Leszek Gorzelnik
Widmo akustycznych sygnałów dla radia DAB i FM Pomiary widma z wykorzystaniem szybkiej transformacji Fouriera FFT sygnału mierzonego w dziedzinie czasu wykonywane są w skończonym czasie. Inaczej mówiąc
Szereg i transformata Fouriera
Analiza danych środowiskowych III rok OŚ Wykład 3 Andrzej Leśniak KGIS, GGiOŚ AGH Szereg i transformata Fouriera Cel wykładu: Wykrywanie i analiza okresowości w szeregach czasowych Przepływ wody w rzece
Fal podłużna. Polaryzacja fali podłużnej
Fala dźwiękowa Podział fal Fala oznacza energię wypełniającą pewien obszar w przestrzeni. Wyróżniamy trzy główne rodzaje fal: Mechaniczne najbardziej znane, typowe przykłady to fale na wodzie czy fale
Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści
Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, 2013 Spis treści Słowo wstępne 8 Wymagania egzaminacyjne 9 Wykaz symboli graficznych 10 Lekcja 1. Podstawowe prawa
KARTA PRZEDMIOTU. Techniki przetwarzania sygnałów, D1_3
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW.
CZWÓRNK jest to obwód elektryczny o dowolnej wewnętrznej strukturze połączeń elementów, mający wyprowadzone na zewnątrz cztery zaciski uporządkowane w dwie pary, zwane bramami : wejściową i wyjściową,
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test
P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H
W O J S K O W A A K A D E M I A T E C H N I C Z N A W Y D Z I A Ł E L E K T R O N I K I Drukować dwustronnie P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H Grupa... Data wykonania
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych. Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS
Algorytmy klasteryzacji jako metoda dyskretyzacji w algorytmach eksploracji danych Łukasz Przybyłek, Jakub Niwa Studenckie Koło Naukowe BRAINS Dyskretyzacja - definicja Dyskretyzacja - zamiana atrybutów
Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (1)
Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (1) Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Plan na dziś 1 Przedstawienie przedmiotu i zakresu wykładu polecanej iteratury zasad zaliczenia 2 Wyklad
DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D.
CPS 6 DYSKRETE PRZEKSZTAŁCEIE FOURIERA C.D. Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: Przesunięcie w czasie okresowego ciągu wejściowego
POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO
Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Elektroniczne przyrządy i techniki pomiarowe POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO Grupa Nr
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizowany w roku akademickim 2016/2017
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2017 Realizowany w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu
Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2.
Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Technika obrazu 24 W.3. Normalizacja w zakresie obrazu cyfrowego
Ćwiczenie 11. Podstawy akwizycji i cyfrowego przetwarzania sygnałów. Program ćwiczenia:
Ćwiczenie 11 Podstawy akwizycji i cyfrowego przetwarzania sygnałów Program ćwiczenia: 1. Konfiguracja karty pomiarowej oraz obserwacja sygnału i jego widma 2. Twierdzenie o próbkowaniu obserwacja dwóch
POLITECHNIKA POZNAŃSKA
POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 1 Temat: Pomiar widma częstotliwościowego