PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
|
|
- Artur Brzeziński
- 9 lat temu
- Przeglądów:
Transkrypt
1 WPISUJE ZDAJĄCY IMIĘ I NAZWISKO UCZNIA NUMER UCZNIA W DZIENNIKU PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). Ewentualny brak zgłoś nauczycielowi. ROK SZKOLNY 2012/ Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym. 3. Odpowiedzi do zadań zamkniętych (1 22) przenieś na kartę odpowiedzi. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe. 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (23 33) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów. 5. Pisz czytelnie i używaj tylko długopisu lub pióra zczarnymtuszem lub atramentem. Czas pracy: 170 minut 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl. 7. Pamiętaj, że zapisy w brudnopisie nie będą oceniane. 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora. Liczba punktów do uzyskania: Na karcie odpowiedzi wpisz swoje imię i nazwisko oraz swój numer w dzienniku. Strona 1 z 15
2 ZADANIA ZAMKNIĘTE W zadaniach od 1. do 22. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie 1. (1 pkt) Liczba jest równa: A. 2 19,5 B C D. 2 21,5 Zadanie 2. (1 pkt) Dany jest układ równań { x + y =7 2. Wskaż zdanie prawdziwe. 2x =3 2y A. Układ ma nieskończenie wiele rozwiązań. B. Układ nie ma rozwiązań. C. Rozwiązaniem układu jest para liczb o różnych znakach. D. Rozwiązaniem układu jest para liczb o jednakowych znakach. Zadanie 3. (1 pkt) Sumę wyrażeń 1 x +5 oraz 1 można przedstawić w postaci: x 5 A. 1 2x B. 2 x 2 25 C. 2x x 2 25 D. 1 x Zadanie 4. (1 pkt) Która z podanych liczb jest ujemna? A. log 5 1 B. log C. log D. log Zadanie 5. (1 pkt) Która z podanych prostych jest osią symetrii wykresu funkcji y = 3x 2 +2x 1? A. x = 1 B. x = 1 C. x = 2 D. x = Zadanie 6. (1 pkt) Ile pierwiastków ma wielomian W (x) =(x 2 7x 1)(x 3 4x)? A. 5 B. 4 C. 3 D. 2 Zadanie 7. (1 pkt) ( ) Który z podanych punktów nie należy do wykresu funkcji y = 1 x? 36 ( ) ( ) A. (0, 1) B. ( 1, 36) C. 2, 1 D , 1 6 Zadanie 8. (1 pkt) Dana jest funkcja f (x) = 3(x +1)(x 5). Miejscami zerowymi funkcji g(x) =f ( x) sąliczby: A. 1 i 5 B. 1i 5 C. 3, 1 i 5 D. 1i5 Strona 2 z 15
3 Strona 3 z 15
4 Zadanie 9. (1 pkt) Kąt α jest kątem ostrym pewnego trójkąta prostokątnego. Zatem prawdziwa jest zależność: A. sin α =1 cosα B. sin α =1+cosα C. sin 2 α =1 cos 2 α D. sin 2 α =1+cos 2 α Zadanie 10. (1 pkt) Ile punktów wspólnych z osiami układu współrzędnych ma okrąg (x 5) 2 +(y +3) 2 = 25? A. jeden B. dwa C. trzy D. cztery Zadanie 11. (1 pkt) Iloczyn wielomianów W (x) =(3x 5 4) 2 oraz V (x) =12x 7x 3 jest wielomianem stopnia: A. jedenastego B. trzynastego C. trzydziestego D. dziesiątego Zadanie 12. (1 pkt) Dany jest ciąg a n = n 2 10n 200. Wskaż zdanie prawdziwe. A. Ciąg (a n ) nie ma wyrazów dodatnich. B. Siódmy wyraz tego ciągu jest równy czwartemu wyrazowi. C. Ciąg (a n ) nie jest monotoniczny. D. Ciąg (a n ) jest malejący. Zadanie 13. (1 pkt) Na którym rysunku przedstawiono wykres funkcji, która ma dokładnie trzy miejsca zerowe i która przyjmuje wartości dodatnie dla wszystkich argumentów z przedziału ( 3; 1)? Zadanie 14. (1 pkt) Spośród czterech odcinków o długościach: 4, 5, 6, 10 losujemy trzy różne odcinki. Jakie jest prawdopodobieństwo tego, że z wylosowanych odcinków można zbudować trójkąt? A. 1 B. 1 4 C. 1 3 D. 1 2 Zadanie 15. (1 pkt) Jaką miarę ma kąt wklęsły AOC? A. 140 B. 220 C. 280 D. 290 Strona 4 z 15
5 Strona 5 z 15
6 Zadanie 16. (1 pkt) Pewien ostrosłup prawidłowy ma 20 krawędzi. Pole powierzchni całkowitej tego ostrosłupa wynosi 65 cm 2, zaś pole podstawy jest równe 20 cm 2. Jaka jest powierzchnia jednej ściany bocznej tego ostrosłupa? A. 4,5 cm 2 B. 45 cm 2 C. 2,25 cm 2 D. 6,5 cm 2 Zadanie 17. (1 pkt) Jedna z przekątnych rombu ma końce w punktach ( 1, 7) i (7, 9) i zawiera się w prostej o równaniu y =2x 5. W której z podanych prostych zawiera się druga przekątna tego rombu? A. y = 1 2 x B. y = 1 2 x +2 C. y =2x 5 D. y = 1 2 x 1 2 Zadanie 18. (1 pkt) Krótsza przekątna trapezu prostokątnego podzieliła go na dwa trójkąty równoramienne. Krótsza podstawa tego trapezu ma długość 4. Jaki obwód ma ten trapez? A B C D Zadanie 19. (1 pkt) Ze zbiorów { 6, 2, 0, 6} i { 5, 4, 5} losujemy po jednej liczbie. Jakie jest prawdopodobieństwo tego, że iloczyn wylosowanych liczb jest liczbą ujemną? A. 1 2 B. 2 3 C. 1 3 D. 1 4 Zadanie 20. (1 pkt) Oprocentowanie roczne pewnej lokaty bankowej wynosi 8%. Jakie jest rzeczywiste roczne oprocentowanie tej lokaty po uwzględnieniu 19% podatku od odsetek? A. 7,81% B. 6,48% C. 8,19% D. 6,1% Zadanie 21. (1 pkt) Liczby cos 30,tg30, x tworzą ciąg geometryczny dla liczby x równej: A. sin 30 B. 2 3 C. 3 D Zadanie 22. (1 pkt) Pole powierzchni kuli wynosi π cm 2. Objętość tej kuli jest równa: A. π 6 cm3 B. π 4 cm3 C. π 2 cm3 D. π cm 3 Strona 6 z 15
7 Strona 7 z 15
8 ZADANIA OTWARTE Rozwiązania zadań o numerach od 23. do 33. należy zapisać w wyznaczonych miejscach pod treścią zadania. Zadanie 23. (2 pkt) Rozwiąż równanie 3x 2 (2x +7)=4(2x +7). Zadanie 24. (2 pkt) Funkcja f jest malejącą funkcją liniową. Największą wartością przyjmowaną przez tę funkcję w przedziale 3; 4 jest liczba 10, a najmniejszą jest liczba 4. Znajdź wzór funkcji f. Strona 8 z 15
9 Zadanie 25. (3 pkt) Uzasadnij, że bez względu na wartość liczby m proste o równaniach y =(m +2)x 7 oraz x +(m +2)y +3m + 6 = 0 są prostopadłe. Zadanie 26. (2 pkt) WkwadracieABCD wybrano na przekątnej takie punkty K i L, że AK = KL = LC. Uzasadnij,żepolesześciokątaABLCDK jest cztery razy większe od pola trójkąta ADK. Strona 9 z 15
10 Zadanie 27. (2 pkt) Rozwiąż nierówność x 2 2x 3. Zadanie 28. (2 pkt) W każdym rzędzie siedzeń na trybunach hali sportowej może zasiąść o 6 osób więcej niż w rzędzie poprzednim. W ostatnim, piętnastym rzędzie jest 246 miejsc. Ile jest miejsc w pierwszym rzędzie? Ile jest miejsc w tej hali? Strona 10 z 15
11 Zadanie 29. (2 pkt) Czy istnieje taka liczba rzeczywista, że suma tej liczby i jej odwrotności jest równa 1? Odpowiedź uzasadnij. Zadanie 30. (2 pkt) Przekątna pewnego prostokąta tworzy z jednym z boków kąt 30 i jest o 3 cm dłuższa od krótszego boku. Oblicz pole tego prostokąta. Strona 11 z 15
12 Zadanie 31. (4 pkt) Prosta o równaniu x = 3 jest osią symetrii wykresu funkcji kwadratowej f (x) =ax 2 + bx Prosta o równaniu y = 4 ma z tym wykresem dokładnie jeden punkt wspólny. Dla jakich argumentów wartości funkcji f są dodatnie? Strona 12 z 15
13 Zadanie 32. (4 pkt) Podstawą pewnego ostrosłupa jest kwadrat o boku 4. Jedna z krawędzi bocznych tego ostrosłupa jest prostopadła do podstawy, a jego objętość wynosi 32. Oblicz długość najdłuższej krawędzi bocznej oraz znajdź miarę kąta nachylenia tej krawędzi do płaszczyzny podstawy. Miarę kąta podaj z dokładnością do jednego stopnia. Strona 13 z 15
14 Zadanie 33. (3 pkt) W drużynowym konkursie matematycznym bierze udział ośmiu uczniów klasy III a. Dwóch z nich miało na semestr ocenę bardzo dobrą z matematyki, czterech ocenę dobrą, a pozostali ocenę dostateczną. Do rozwiązania zadania z geometrii mają zostać wylosowani dwaj przedstawiciele drużyny. Oblicz prawdopodobieństwa następujących zdarzeń: A obaj wylosowani uczniowie mieli co najmniej ocenę dobrą na semestr, B dokładnie jeden z wylosowanych uczniów miał ocenę dobrą na semestr. Strona 14 z 15
15 Strona 15 z 15
16
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
MARZEC ROK 08 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron (zadania 34). Ewentualny brak zgłoś
Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. UZUPEŁNIA UCZEŃ miejsce KOD UCZNIA PESEL na naklejkę z kodem UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 UZUPEŁNIA UCZEŃ miejsce KOD UCZNIA PESEL na naklejkę z kodem UZUPEŁNIA ZESPÓŁ NADZORUJĄCY EGZAMIN MATURALNY
LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy M A T E M A T Y K A 28 LUTEGO Instrukcja dla zdającego Czas pracy: 170 minut
LUBELSKA PRÓBA PRZED MATURĄ 07 poziom podstawowy Kod ucznia Nazwisko i imię M A T E M A T Y K A 8 LUTEGO 07 Instrukcja dla zdającego Czas pracy: 70 minut. Sprawdź, czy arkusz zawiera 4 stron (zadania -34).
LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy. M A T E M A T Y K A klasa 2-(pp) MAJ 2016
KOD UCZNIA M A T E M A T Y K A klasa -(pp) MAJ 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-4). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego
EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy. M A T E M A T Y K A klasa 2-(pp) MAJ 2016
LUBELSKA PRÓBA PRZED MATURĄ 016 poziom podstawowy KOD UCZNIA M A T E M A T Y K A klasa -(pp) MAJ 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-4).
NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 209 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 7 maja 209 r.
PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ
KOD ZDAJĄCEGO WPISUJE ZDAJĄCY symbol klasy symbol zdającego PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ MATEMATYKA-POZIOM PODSTAWOWY dysleksja Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 7 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 203 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI
LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Instrukcja dla zdającego Czas pracy: 170 minut
KOD UCZNIA MATEMATYKA 5 LUTY 015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-33). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin..
EGZAMIN MATURALNY Z MATEMATYKI. dla osób niesłyszących CZERWIEC 2013 POZIOM PODSTAWOWY. Czas pracy: do 200 minut. Liczba punktów do uzyskania: 50
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy M A T E M A T Y K A 14 MARCA Instrukcja dla zdającego Czas pracy: 170 minut
Kod ucznia Nazwisko i imię M A T E M A T Y K A 14 MARCA 2018 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron (zadania 1-34). Ewentualny brak zgłoś przewodniczącemu
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
WPISUJE ZDAJĄCY IMIĘ I NAZWISKO UCZNIA NUMER UCZNIA W DZIENNIKU PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 33). Ewentualny
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2011 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
entralna Komisja Egzaminacyjna rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 2010 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem EGZMIN MTURLNY Z MTEMTYKI
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
WPISUJE ZDAJĄCY IMIĘ I NAZWISKO UCZNIA NUMER UCZNIA W DZIENNIKU PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). Ewentualny
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
MARZEC ROK 017 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 4 strony (zadania 1 34). Ewentualny brak
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 015 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera
Nazwisko i imię.. PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
Klasa Nazwisko i imię.. PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut MARZEC ROK 2019 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 22 strony (zadania
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
WPISUJE ZDAJĄCY KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY PRZED MATURĄ MAJ 015 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 34). Ewentualny brak zgłoś przewodniczącemu
LUBELSKA PRÓBA PRZED MATURĄ 2017 klasa 2 (pp)
Kod ucznia Nazwisko i imię ucznia M A T E M A T Y K A klasa -(pp) MAJ 07 Czas pracy: 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron (zadania -4). Ewentualny brak zgłoś przewodniczącemu
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI Instrukcja
EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRZED MATURĄ MAJ 2017 POZIOM PODSTAWOWY Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). 2. Rozwiązania zadań wpisuj
LUBELSKA PRÓBA PRZED MATURĄ poziom podstawowy 1 MATEMATYKA LUTY Instrukcja dla zdającego. Czas pracy: 170 minut
LUBELSKA PRÓBA PRZED MATURĄ poziom podstawowy MATEMATYKA LUTY 0 Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3.
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 22 sierpnia
Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Marzec 2017 we współpracy z 1. Sprawdź, czy arkusz egzaminacyjny
NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2019 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 20 sierpnia
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL We współpracy z: PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny
Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL We współpracy PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 25 SIERPNIA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja Instrukcja dla zdającego EGZAMIN MATURALNY
EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 01 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI
PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI DLA KLAS DRUGICH POZIOM PODSTAWOWY
5 KOD UZUPEŁNIA ZDAJĄCY PESEL PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI DLA KLAS DRUGICH POZIOM PODSTAWOWY DATA: 30 MAJA 2017 R. GODZINA ROZPOCZĘCIA: 9:000 CZAS PRACY: 170 MINUT LICZBA PUNKTÓW
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 7 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 01 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 maja 017 r.
NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2018 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 018 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 7 maja 018 r.
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2018 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
WPISUJE ZDAJĄCY KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY PRZED MATURĄ MAJ 04. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron (zadania 33). Ewentualny brak zgłoś przewodniczącemu
POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut
POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut Klasa Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach
LUBELSKA PRÓBA PRZED MATURĄ klasa 2 poziom podstawowy
Kod ucznia.. M A T E M A T Y K A klasa 2 - pp MAJ 2019 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 sierpnia
LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy M A T E M A T Y K A 09 MARCA Instrukcja dla zdającego Czas pracy: 170 minut
M A T E M A T Y K A 09 MARCA 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-4). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin..
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 4 CZERWCA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI
Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI We współpracy z POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny
NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2019 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 4 czerwca 2019
Próbny egzamin maturalny z matematyki Poziom podstawowy
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera
UZUPEŁNIA ZDAJĄCY PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI POZIOM ROZSZERZONY
KOD UZUPEŁNIA ZDAJĄCY PESEL PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: MAJ 2017 R. CZAS PRACY: 180 MINUT LICZBA PUNKTÓW DO UZYSKANIA: 50 Instrukcja dla zdającego 1. Sprawdź,
1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania ). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 205 Instrukcja dla zdającego Czas pracy: 70 minut. Sprawdź, czy arkusz egzaminacyjny zawiera 4 stron
ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI
A-4 ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 15 stron. W zadaniach 1. do 0. są podane 4 odpowiedzi: A, B, C, D, z
MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 WPISUJE ZDAJĄCY KOD PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM
NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2018 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 018 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 1 sierpnia 018
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRZED MATURĄ MAJ 2016 POZIOM PODSTAWOWY Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania 1 31). 2. Rozwiązania zadań wpisuj
LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy M A T E M A T Y K A 09 MARCA Instrukcja dla zdającego Czas pracy: 170 minut
LUBELSKA PRÓBA PRZED MATURĄ 016 poziom podstawowy M A T E M A T Y K A 09 MARCA 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-4). Ewentualny brak
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 2 czerwca 2017
MAJ Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby.
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 WPISUJE ZDAJĄCY KOD PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2014 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI
MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 03 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 0 stron (zadania 30).. Arkusz zawiera 0 zadań zamkniętych i 0 zadań
LUBELSKA PRÓBA PRZED MATURĄ poziom podstawowy MATEMATYKA LUTY Instrukcja dla zdającego. Czas pracy: 170 minut
MATEMATYKA LUTY 04 Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od do są podane 4 odpowiedzi: A, B,
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 013 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY Z MTEMTYKI Instrukcja dla zdającego
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
entralna Komisja Egzaminacyjna rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 00 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY
ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Centralna Komisja Egzaminacyjna ARKUSZ ĆWICZENIOWY Z MATEMATYKI MARZEC 01 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz ćwiczeniowy zawiera strony (zadania 1 ).. Rozwiązania zadań i odpowiedzi wpisuj w miejscu
LUBELSKA PRÓBA PRZED MATURĄ
POZIOM PODSTAWOWY GR- Czas pracy 170 minut Klasa Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 8
PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI POZIOM PODSTAWOWY
KOD UZUPEŁNIA ZDAJĄCY PESEL PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 9 CZERWCA 2015 R. GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 170 MINUT LICZBA PUNKTÓW DO UZYSKANIA: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. (dla klas trzecich liceum i klas czwartych technikum)
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. WPISUJE UCZEŃ KOD PESEL PRZEDMATURALNA DIAGNOZA KSZTAŁTUJĄCA Z MATEMATYKI POZIOM PODSTAWOWY MARZEC 018 (dla klas trzecich liceum
Instrukcja dla zdającego Czas pracy: 170 minut
MATEMATYKA klasa pierwsza (pp) CZERWIEC 015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie
Uzupełnia zdający PESEL PRÓBNY EGZAMIN MATURALNY MATEMATYKA POZIOM PODSTAWOWY DATA: 25 stycznia 2017 r. GODZINA ROZPOCZĘCIA: 9:00 CZAS PRACY: 170 minut MaturoBranie LICZBA PUNKTÓW DO UZYSKANIA: 50 Instrukcja
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 3
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 8
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9
EGZAMIN MATURALNY Z MATEMATYKI
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY
Czas pracy 170 minut
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 010 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 15 stron.. W zadaniach od 1. do 0. są podane 4 odpowiedzi:
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 019 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron
LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom podstawowy
1 MATEMATYKA - poziom podstawowy LUTY 2015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony
1 MATEMATYKA - poziom rozszerzony klasa II CZERWIEC 2015 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 17). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego
EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
entralna Komisja Egzaminacyjna rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 2013 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
MATERIAŁ ĆWICZENIOWY Z MATEMATYKI
Materiał ćwiczeniowy zawiera informacje prawnie chronione do momentu rozpoczęcia diagnozy. Materiał ćwiczeniowy chroniony jest prawem autorskim. Materiału nie należy powielać ani udostępniać w żadnej innej
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 013 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem dysleksja Instrukcja dla zdającego EGZMIN MTURLNY Z
LUBELSKA PRÓBA PRZED MATURĄ 2013
LUBELSKA PRÓBA PRZED MATURĄ 03 MATEMATYKA - poziom podstawowy STYCZEŃ 03 Instrukcja dla zdającego Czas pracy: 70 minut. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu
EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL dyskalkulia miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 011 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15