GeomaticsandInformationScienceofWuhanUniversity Vol.39No.9 Sept.2014 DOI: /j.whugis : (2014) TurboEdit GP

Wielkość: px
Rozpocząć pokaz od strony:

Download "GeomaticsandInformationScienceofWuhanUniversity Vol.39No.9 Sept.2014 DOI: /j.whugis : (2014) TurboEdit GP"

Transkrypt

1 GeomaticsandInformationScienceofWuhanUniversity Vol.39No.9 Sept.204 DOI0.3203/j.whugis (204) TurboEdit GPS 2 ( ) TurboEdit GPS MW(Melborne-Wubbena) (phaseionosphericresidualpir) L TurboEdit GPS; ;MW; (PIR); ; P228.4 A (precisepointposi- tioningppp) [-3] PPP 30 min [4] TurboEdit MW GF [2] MW [5] [6] Kalman TurboEdit [7] [8] [9] TurboEdit. N w =φ - φ 2 -fp +P2 f + TurboEdit = N -N 2 +εw [0-2] Tur- φ φ 2 ;P P 2 boedit ;f ;λw MW ;λw=c/ ( f-f 2) 86cm;N N 2 ; (geometry-freegf) ;εw N w [3] [3] MW PIR () N w ( ) σn w 2 槡 + σp f + λw λw () (2) ( ); (423064); (4CX06073A) sdwzj@upc.edu.cn

2 P 0.3m 4σN w ) 2.2 GF L I =λ φ -λ2 φ 2 =d ion2 -d ion + (3) ^σdm = 2σ2 N w λn -λ2n 2 +εl I 槡 w 槡 2 w 0.83σP (8) λ λ2 ;d iono d iono2 ;εl I GF P I = P 2 -P =d ion2 -d ion +εp I (4) (9) εp I { P I() i }i=2 ( n) Q () i m = min ( n/00+ 6 )n ( L I-Q I) [4] ; ; [2] MW MW MW i 2.2 PIR MW L m F (i) m B () i σf () i σb () i Fish- er PIR PIR J() i = Fisher mf () i -m B () i (5) σ 2 F () i +σ 2 B () i φ IR = φ -f f 2 2 -f 2 ; εir m F () i m B () i σf () i i n σb(i); ΔN w () i = ΔN () i - ΔN 2 () i = n ΔN () i ΔN 2() i i ) d m () i = m F () i -m B () i -4σd m (6) d m () i >0.5 (6) σd m () i = ( σ2 F () i +σ 2 B () i ) w 槡 (7) 2) J () i ±int ( w/ 4 ) w 2) -4^σd m >0.5 (9) L f 2 2 φ2 = N -f dion +εir λ N 2 - PIR (0) ΔN IR() i = ΔN () i - f ΔN 2() i () ΔN IR() i = ΔN IR () i - f ΔN w () i =

3 39 9 TurboEdit GPS 09 -f ΔN () i 0.28ΔN () i (2) (2) L -f " φ IR = "N - f 2 2 -f 2 "dion f 2 2 λ " ( ) + "εir (3) 2);4 0 L {" φ IR(j)}(j=i-wi-w+ i- ) σi-i "^φir() i " φ IR() i - "^φir() i >4σi- (4) " φ IR ( i+ )- "^φir ( i+ ) >4σi- (5) " φ IR ( i+ ) " φ IR() i >0 (6) ; 5s L " L 2 C φ IR() i >0.28/ ( ti () -ti- ( )-4σi- P (7) 2 PRN t (7) ( w=6~25 ) Tur- boedit ; TurboEdit 7 / ) int((w+)/2) Tab. SituationofCycle-SlipsSimulation/cycle PIR 2) - 0 int((w+)/2) 3) PIR ;2 2);3 L L L MW 2 Fisher Fig. DistanceBetweentheAverageofMWin Fig.2 ChangeofFisherFunctionValue Backward WindowandForward Window

4 MW ) 5 PIR ( (6) ) Fisher (7) (2 4 3 PIR Fig.3 First-OrderDiferenceQuotientofPIR Moving Window [2] YeShirong.TheoryandItsRealizationofGPSPre- [3] GeMGendtGRothacherMetal.Resolutionof TurboEdit GPSCarrier-PhaseAmbiguitiesinPrecisePointPo- GPS sitioning (PPP)withDailyObservations[J].Jour- MW nalof Geodesy200882(7) Fisher [4] BisnathSGao Y.CurrentStateofPrecisePoint Positioningand Future Prospectsand Limitations PIR [M].BerlinHeidelbergSpringer2008 [5] LichteneggerHHofmann-WelenhofB.GPSData PreprocessingforCycle-SlipDetection[C].Interna- (54) tional Association of () Geodesy SymposiumScot- land989 [6] He HaiboYang Yuanxi.Detection ofsuccessive [] ZumbergeJFHeflin M BJefersonD Cetal. PrecisepointPositioningfortheEficientandRobust Analysisof GPS Datafrom Large Networks[J]. Journalof GeophysicalResearch99702(B3) cisepointpositioning Using Un-diferenced Phase Observation[D].WuhanWuhan University2002 (.GPS [D]. 2002) CycleClipsforGPSKinematicPositioning[J].Acta GeodaeticaetCartographica Sinica99928(3) (.GPS [J] (3)99-204) [7] Blewit G. An Automatic Editing Algorithm for GPSData[J].GeophysicalResearch Leters990 7(3) [8] CaiChangshengGaoJingxiang.CycleSlipDetec- tionandcorrectionofgpsdataby WaveletTrans-

5 39 9 TurboEdit GPS 02 form[j].geomaticsand Information Scienceof Wuhan University200732()39-42( ()39-42) [9] BahramiMZiebart M.InstantaneousDoppler-Ai- dedrtkpositioningwithsinglefrequencyreceiv- ers[c].positionlocationandnavigationsymposi- umcausa200 [0] WuJizhongShiChuangFangRongxin.Improving proachturboedit[j].geomaticsandinformation Scienceof Wuhan University2036 ()29-33 (.TurboEdit GPS[4] Wang WeiWangJiexianGaoJunqiang.CycleSlip [J]. 2036()29-33) []LiuZ.A New AutomatedCycleSlipDetectionand thesingle Station Data Cycle Slip Detection Ap- RepairMethodforaSingleDual-frequencyGPSRe- ceiver[j].journalof Geodesy2085(3)7-83 [2]ZhangShunYaoYibinChenPengetal.Research oncycleslipdetection MethodsforUn-diferenced ics20232()0-04(. GPS [J] ()0-04) [3]ZhengZuoyaChengZongyiHuangChengetal. ImprovingofCycleSlipDetectionandCorrectionof Blewit Method [J].Acta Astronomica Sinica (2)26-224(. Blewit [J] (2)26-224) tion Scienceof Wuhan University20035(6) (.GPS [J] (6) ) AnImprovedCycleSlipDetectionBasedonTurboEdit MethodforDual-frequencyGPSReceiver WANGZhenjie NIE Zhixi OU Jikun 2 SchoolofGeosciencesChinaUniversityofPetroleumQingdao China 2 StateKeyLaboratoryofGeodesyandEarth sdynamicsinstituteofgeodesy & GeophysicsofCASWuhan China.GPS [J]. GPSData[J].Journalof Geodesy and Geodynam- DetectionofGPSData[J].GeomaticsandInforma- AbstractConsideringthelimitationsofTurboEditanimprovedcycle-slipdetection methodnamed thetwo-stepmethodisproposedfordual-frequencygpsreceivers.firstlythenew methoddetects wide-lanecycleslipsbasedontestvaluescomputedfromaforward-backwardmovingwindowformw (Melborne-Wubbena)combinationobservationsandthendetectscycleslipsinthecarrierphaseL basedonthecheckconditionsextractedfromamovingwindowofthefirst-orderdiferencequotientof PIR (phaseionosphericresidual)combinationobservationswhichhavebeenremovedwide-lanecycle slips.theexperimentalresultsshowthatthenew methodcanefectivelysuppressnoiseandsuperior toturboeditfordetectingsmalcycleslips.itcanalsoexplorewhencycle-slipsexistinbothtwocar- rierphases. KeywordsGPS;cycle-slipdetection;MW ;PIR;two-stepmethod;movingwindow FirstauthorWANGZhenjieprofessorspecializesinsurveyingdataprocessing. sdwzj@upc.edu.cn FoundationsupportTheNationalNaturalScienceFoundationofChinaNos ;theStateKeyProgramof NationalNaturalScienceofChinaNo ;theFundamentalResearchFundsfortheCentralUniversitiesNo.4CX06073A.

ń ę ń ę ń ę ń ę ę ę ę ę ź ń ź Ś ę Ł ń ę ę ń ę ń ę ę ę ę ę ę ź ę ę Ż ę ŚĆ ę Ż ń ń ę ń ę ę ę ę ę ź ę ę Ś Ś Ś Ś ź ę ń ę ę Ź ń Ś Ś ę ń ę ę ę ę ę ź ń ŚĆ Ś ń ń ń Ą ń ę ę ŚĆ ę Ż ę ń ę ę ę ę ę ź ń Ś Ś ź Ś Ł ę

Bardziej szczegółowo

q (s, z) = ( ) (λ T) ρc = q

q (s, z) = ( ) (λ T) ρc = q M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X W Y Z N A C Z A N I E O D K S Z T A C E T O W A R Z Y S Z Ą C Y C H H A R T O W A N I U P O W I E R Z C H N I O W Y M W I E

Bardziej szczegółowo

Chorągiew Dolnośląska ZHP Honorowa Odznaka Przyjaciół Harcerstwa

Chorągiew Dolnośląska ZHP Honorowa Odznaka Przyjaciół Harcerstwa C h o r ą g i e w D o l n o l ą s k a Z H P W r o c ł a w, 3 0 k w i e t n i a 2 0 1 5 r. Z w i ą z e k H a r c e r s t w a P o l s k i e g o K o m e n d a n t C h o r ą g w i D o l n o 6 l ą s k i e j

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 03 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e t e l e b i m ó w i n a g ł o n i e n i

Bardziej szczegółowo

n [2, 11] 1.5 ( G. Pick 1899).

n [2, 11] 1.5 ( G. Pick 1899). 1. / / 2. R 4k 3. 4. 5. 6. / 7. /n 8. n 1 / / Z d ( R d ) d P Z d R d R d? n > 0 n 1.1. R 2 6 n 5 n [Scherrer 1946] d 3 R 3 6 1.2 (Schoenberg 1937). d 3 R d n n = 3, 4, 6 1.1. d 3 R d 1.3. θ θ/π 1.4. 0

Bardziej szczegółowo

Inverse problems - Introduction - Probabilistic approach

Inverse problems - Introduction - Probabilistic approach Inverse problems - Introduction - Probabilistic approach Wojciech Dȩbski Instytut Geofizyki PAN debski@igf.edu.pl Wydział Fizyki UW, 13.10.2004 Wydział Fizyki UW Warszawa, 13.10.2004 (1) Plan of the talk

Bardziej szczegółowo

3.

3. 1 2 3 4. :.1 1392 1390..2 m.adib@sbu.ac.ir 3. mkzadeh@gmail.com ) 1385 15. (..4 yousefi.mary@gmail.com....... 134. 22. 1347 1389 1391. 1392. .. 1392 1389.. 5... 6 : (4 (3 (2 (1 (5 (10 (9 (8 (7 (6 (14 (13

Bardziej szczegółowo

Aktualne produkty jonosferyczne dla GNSS

Aktualne produkty jonosferyczne dla GNSS Aktualne produkty jonosferyczne dla GNSS Anna Krypiak-Gregorczyk 1, Paweł Wielgosz 1 Andrzej Borkowski 2 Angela Aragon-Angel 3 Aleksander Nowak 4 1 Uniwersytet Warmińsko-Mazurski w Olsztynie 2 Uniwersytet

Bardziej szczegółowo

2 ), S t r o n a 1 z 1 1

2 ), S t r o n a 1 z 1 1 Z a k r e s c z y n n o c i s p r z» t a n i a Z a ł» c z n i k n r 1 d o w z o r u u m o w y s t a n o w i» c e g o z a ł» c z n i k n r 5 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k ó w

Bardziej szczegółowo

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11 M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X

Bardziej szczegółowo

1. Struktury zbiorów 2. Miara 3. Miara zewnętrzna 4. Miara Lebesgue a 5. Funkcje mierzalne 6. Całka Lebesgue a. Analiza Rzeczywista.

1. Struktury zbiorów 2. Miara 3. Miara zewnętrzna 4. Miara Lebesgue a 5. Funkcje mierzalne 6. Całka Lebesgue a. Analiza Rzeczywista. Literatura P. Billingsley, Miara i prawdopodobieństwo, PWN, Warszawa 1997, P. R. Halmos, Measure theory, Springer-Verlag, 1994, W, Kołodziej, naliza matematyczna, PWN, Warszawa 1978, S. Łojasiewicz, Wstęp

Bardziej szczegółowo

Ą Ą Ł Ą Ą Ń Ł Ś Ł Ś Ł Ś Ł Ś Ł ż Ł ŚĆ Ł Ś Ą ć ż ż Ą Ś Ś Ł Ś ż Ł Ź Ś Ś Ś Ź Ś ż ż ż Ł ż ż ż Ł Ś Ś ż Ś Ś ć ż ć Ą ć Ł ć ż ć ć ć ż Ś Ł Ś Ł Ą ż ć Ą ż Ś ć Ś ż ż ż Ś Ł ż Ą Ą ż ż ż ż Ą ż ż Ś Ś ż ż ż Ś ć ż Ł ż ż

Bardziej szczegółowo

wykład V uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C++ klasy i obiekty wykład V dr Jarosław Mederski Spis Język C++ - klasy

wykład V uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C++ klasy i obiekty wykład V dr Jarosław Mederski Spis Język C++ - klasy i obiekty Programowanie i obiekty uzupełnienie notatek: dr Jerzy Białkowski i obiekty 1 2 3 4 i obiekty Obiektowość języka C++ Na tym wykładzie poznamy: ˆ Klasa (w języku C++ rozszerzenie struktury, typ

Bardziej szczegółowo

PLANY I PROGRAMY STUDIÓW

PLANY I PROGRAMY STUDIÓW WYDZIAŁ INŻYNIERII PRODUKCJI I LOGISTYKI PLANY I PROGRAMY STUDIÓW STUDY PLANS AND PROGRAMS KIERUNEK STUDIÓW FIELD OF STUDY - ZARZĄDZANIE I INŻYNIERIA PRODUKCJI - MANAGEMENT AND PRODUCTION ENGINEERING Studia

Bardziej szczegółowo

Metody dekompozycji macierzy stosowane w automatyce

Metody dekompozycji macierzy stosowane w automatyce Metody dekompozycji macierzy stosowane w automatyce Grzegorz Mzyk Politechnika Wrocławska, WydziałElektroniki 23 lutego 2015 Plan wykładu 1 Wprowadzenie 2 Rozkład LU 3 Rozkład spektralny 4 Rozkład Cholesky

Bardziej szczegółowo

T = Z t T t T t T t T t T : Z N (s i ) n i=1 n n S S = {(s i ) n i=1 N n : s j + j s k + k ( n), n N}. 1 j k n (s 1, s 2,..., s n ) s 1 s 2... s n m = s 1 s 2... s n m s i m i = 1,..., n S m S m = {(s

Bardziej szczegółowo

SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania

SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania SIMR 7/8, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania. Dana jest gęstość prawdopodobieństwa zmiennej losowej ciągłej X : { a( x) dla x [, ] f(x) = dla pozostałych x Znaleźć: i) Wartość parametru

Bardziej szczegółowo

Model Poissona-Nernsta-Plancka w predykcji struktury kanałów białkowych

Model Poissona-Nernsta-Plancka w predykcji struktury kanałów białkowych Model Poissona-Nernsta-Plancka w predykcji struktury kanałów białkowych mgr inż. Witold Dyrka Opiekun: dr hab. inż. Małgorzata Kotulska Instytut Inżynierii Biomedycznej i Pomiarowej Plan wystąpienia Nanopory

Bardziej szczegółowo

Techniki Optymalizacji: Metody regresji

Techniki Optymalizacji: Metody regresji Techniki Optymalizacji: Metody regresji Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: piątek 15:10-16:40

Bardziej szczegółowo

Teoria miary. Matematyka, rok II. Wykład 1

Teoria miary. Matematyka, rok II. Wykład 1 Teoria miary Matematyka, rok II Wykład 1 NAJBLIŻSZY CEL: Nauczyć się mierzyć wielkość zbiorów. Pierwsze przymiarki: - liczność (moc) zbioru - słabo działa dla zbiorów nieskończonych: czy [0, 1] powinien

Bardziej szczegółowo

Rozkaz L. 7/ Kary organizacyjne 11. Odznaczenia Odznaczenia harcerskie

Rozkaz L. 7/ Kary organizacyjne 11. Odznaczenia Odznaczenia harcerskie C h o r ą g i e w D o l n o l ą s k a Z H P W r o c ł a w, 3 1 l i p c a 2 Z w i ą z e k H a r c e r s t w a P o l s k i e g o K o m e n d a n t C h o r ą g w i D o l n o 6 l ą s k i e j Z H P i m. h m.

Bardziej szczegółowo

1 Estymacja przedziałowa

1 Estymacja przedziałowa 1 Estymacja przedziałowa 1. PRZEDZIAŁY UFNOŚCI DLA ŚREDNIEJ (a) MODEL I Badana cecha ma rozkład normalny N(µ, σ) o nieznanym parametrze µ i znanym σ. Przedział ufności: [ ( µ x u 1 α ) ( σn ; x + u 1 α

Bardziej szczegółowo

2 p. d p. ( r y s. 4 ). dv dt

2 p. d p. ( r y s. 4 ). dv dt M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X N U M E R Y C Z N Y O P I W Y S T R Z E L E N I A S I A T K I S P R O C E S U W A S P E K C I E I N T E R A K C J I D Y N A

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 03 7 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A W y k o n a n i e r e m o n t u n a o b i e k c i e s p o r t o w y mp

Bardziej szczegółowo

Temporal identification of poppy fields on high resolution satellite imagery

Temporal identification of poppy fields on high resolution satellite imagery Temporal identification of poppy fields on high resolution satellite imagery Marc Rußwurm marc.russwurm@tum.de Michał Krupiński mkrupinski@cbk.waw.pl Stanisław Lewiński stlewinski@cbk.waw.pl Introduction

Bardziej szczegółowo

= 2 42EI 41EI EI 2 P=15 M=10 M=10 3EI. q=5. Pret s-p. Pret s-p. Pret s-p. Pret s-p. Pret s-l.

= 2 42EI 41EI EI 2 P=15 M=10 M=10 3EI. q=5. Pret s-p. Pret s-p. Pret s-p. Pret s-p. Pret s-l. Dane wyjściowe do obliczeń kf=0 ks=20 3 EI 2 2EI EI P=5 M=0 3EI M=0 q=5 EI 5 6 8 2 Dobór układu podstawowego metody przemieszczeń n = 2 3 Pret s-p 2 Pret s-p Pret s-p Pret s-p Pret s-l Pret p-s 5 6 Wyznaczenie

Bardziej szczegółowo

wykład IV uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C, a C++. wykład IV dr Jarosław Mederski Spis Język C++ - wstęp

wykład IV uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C, a C++. wykład IV dr Jarosław Mederski Spis Język C++ - wstęp Programowanie uzupełnienie notatek: dr Jerzy Białkowski 1 2 3 4 Historia C++ został zaprojektowany w 1979 przez Bjarne Stroustrupa jako rozszerzenie języka C o obiektowe mechanizmy abstrakcji danych i

Bardziej szczegółowo

ZASTOSOWANIE METOD NUMERYCZNYCH DO BADANIA ROZKŁADÓW PRAWDOPODOBIEŃSTW SYGNAŁÓW ZAKŁÓCAJĄCYCH

ZASTOSOWANIE METOD NUMERYCZNYCH DO BADANIA ROZKŁADÓW PRAWDOPODOBIEŃSTW SYGNAŁÓW ZAKŁÓCAJĄCYCH Zeszyty Naukowe Akademii Morskiej w Gdyni Scientific Journal of Gdynia Maritime University Nr 98/017, 0 09 ISSN 1644-1818 e-issn 451-486 ZASTOSOWANIE METOD NUMERYCZNYCH DO BADANIA ROZKŁADÓW PRAWDOPODOBIEŃSTW

Bardziej szczegółowo

OPRACOWANIE DANYCH GPS CZĘŚĆ I WPROWADZENIE DO GPS

OPRACOWANIE DANYCH GPS CZĘŚĆ I WPROWADZENIE DO GPS OPRACOWANIE DANYCH GPS CZĘŚĆ I WPROWADZENIE DO GPS Bernard Kontny Katedra Geodezji i Fotogrametrii Akademia Rolnicza we Wrocławiu ZAGADNIENIA Ogólny opis systemu GPS Struktura sygnału Pomiar kodowy i fazowy

Bardziej szczegółowo

ARMAX (ANN) : :. (ANN) ARMAX.... ARMAX ARMA :..Q47 E27 C53 C45 :JEL

ARMAX (ANN) : :. (ANN) ARMAX.... ARMAX ARMA :..Q47 E27 C53 C45 :JEL 47-70 39 7 ARMAX (ANN) 39 9 : 39 :. (ANN) ARMAX.... ARMAX ARMA :..Q47 E7 C53 C45 :JEL navid_moarrefzadeh@yahoo.com 7 48....... (ANN). ARMAX..... 90. (994)... Kuan & White Yousefi (994) 49... (993) (995).

Bardziej szczegółowo

Rok akademicki: 2018/2019 Kod: DGI s Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2018/2019 Kod: DGI s Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Numeryczne opracowanie obserwacji GNSS Rok akademicki: 2018/2019 Kod: DGI-1-616-s Punkty ECTS: 4 Wydział: Geodezji Górniczej i Inżynierii Środowiska Kierunek: Geoinformacja Specjalność: Poziom

Bardziej szczegółowo

JAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów. Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

JAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów. Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki JAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Źródła odkształcenia prądu układy przekształtnikowe Źródła odkształcenia prądu układy

Bardziej szczegółowo

New Roads to Cryptopia. Amit Sahai. An NSF Frontier Center

New Roads to Cryptopia. Amit Sahai. An NSF Frontier Center New Roads to Cryptopia Amit Sahai An NSF Frontier Center OPACity Panel, May 19, 2019 New Roads to Cryptopia What about all this space? Cryptography = Hardness* PKE RSA MPC DDH ZK Signatures Factoring IBE

Bardziej szczegółowo

Revenue Maximization. Sept. 25, 2018

Revenue Maximization. Sept. 25, 2018 Revenue Maximization Sept. 25, 2018 Goal So Far: Ideal Auctions Dominant-Strategy Incentive Compatible (DSIC) b i = v i is a dominant strategy u i 0 x is welfare-maximizing x and p run in polynomial time

Bardziej szczegółowo

Metoda CPM/PERT. dr inż. Mariusz Makuchowski

Metoda CPM/PERT. dr inż. Mariusz Makuchowski PM - wstęp PM nazwa metody pochodzi od angielskiego ritical Path Method, jest techniką bazującą na grafowej reprezentacji projektu, używana jest dla deterministycznych danych. PM - modele grafowe projektu

Bardziej szczegółowo

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa.

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa. Logika obliczeniowa Instytut Informatyki 1 Interpretacja i wartościowanie Dziedzina interpretacji Interpretacja Wartościowanie 2 Wartość formuły Wartość termu Wartość logiczna formuły Własności 3 Logiczna

Bardziej szczegółowo

Program 22. #include <iostream> using namespace std; struct Osoba { string Imie; string Nazwisko; char Plec; int RokUr; };

Program 22. #include <iostream> using namespace std; struct Osoba { string Imie; string Nazwisko; char Plec; int RokUr; }; Program 22 Zadeklarować strukturę Osoba przechowującą dane osoby: imię, nazwisko (ciągi znaków), płeć (pojedynczy znak) oraz rok urodzenia (liczba całkowita). Napisać następujące funkcje: funkcje pobierającą

Bardziej szczegółowo

Modelowanie przepływu Taylora-Couetta metodą elementów brzegowych

Modelowanie przepływu Taylora-Couetta metodą elementów brzegowych Symulacja w Badaniach i Rozwoju Vol. 7, No. 1-/016 Tomasz Janusz TEESZEWSKI, Sławomir Adam SORKO Politechnika Białostocka, WBiIŚ, ul.wiejska 45E, 15-351 Białystok E-mail: t.teleszewski@pb.edu.pl, s.sorko@pb.edu.pl

Bardziej szczegółowo

Big Data: Status quo + quo vadis

Big Data: Status quo + quo vadis Big Data: Status quo + quo vadis Stanisław Matwin stan@cs.dal.ca Plan Próba definicji + uwagi Przykład zastosowania Nieco historii Big Data meets Big Water Wyzwania korelacja-przyczynowość/interpretowalność

Bardziej szczegółowo

Ma e satelity na kó kach, czyli o historii i wspó czesnej dzia alno ci bibliotek ruchomych

Ma e satelity na kó kach, czyli o historii i wspó czesnej dzia alno ci bibliotek ruchomych 2012, nr 2 (9) Magorzata Fedorowicz-Kruszewska Instytut Informacji Naukowej i Bibliologii Uniwersytet Mikoaja Kopernika w Toruniu e-mail: fema@umk.pl Mae satelity na kókach, czyli o historii i wspóczesnej

Bardziej szczegółowo

Funkcje arytmetyczne. Funkcje arytmetyczne

Funkcje arytmetyczne. Funkcje arytmetyczne Definicja 1 Każda arytmetyczna, to funkcja f(n, n N, przyporządkowująca N C, (R. Na przykład: f(n = n. Definicja 2: Funkcję arytmetyczną f : N f(n R nazywamy multyplikatywną, jeżeli m,n N, m n mamy f(mn

Bardziej szczegółowo

Rok akademicki: 2018/2019 Kod: ITE s Punkty ECTS: 3. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2018/2019 Kod: ITE s Punkty ECTS: 3. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Algorytmy i struktury danych Rok akademicki: 2018/2019 Kod: ITE-1-201-s Punkty ECTS: 3 Wydział: Informatyki, Elektroniki i Telekomunikacji Kierunek: Teleinformatyka Specjalność: Poziom studiów:

Bardziej szczegółowo

PLANY I PROGRAMY STUDIÓW

PLANY I PROGRAMY STUDIÓW WYDZIAŁ INŻYNIERII PRODUKCJI I LOGISTYKI PLANY I PROGRAMY STUDIÓW STUDY PLANS AND PROGRAMS KIERUNEK STUDIÓW FIELD OF STUDY - ZARZĄDZANIE I INŻYNIERIA PRODUKCJI - MANAGEMENT AND PRODUCTION ENGINEERING Studia

Bardziej szczegółowo

u l. W i d o k 8 t e l. 2 2 6 9 0 6 9 6 9

u l. W i d o k 8 t e l. 2 2 6 9 0 6 9 6 9 T A D E U S Z R O L K E J U T R O B Ę D Z I E L E P I E J T o m o r r o w W i l l B e B e t t e r K a w i a r n i a F a f i k, K r a k ó w, 1 9 9 2 F a f i k C a f e, C r a c o w, 1 9 9 2 W ł a c i c i

Bardziej szczegółowo

Zastosowanie metod predykcji w określaniu współrzędnych Bezzałogowego Statku Powietrznego

Zastosowanie metod predykcji w określaniu współrzędnych Bezzałogowego Statku Powietrznego Pomiary Automatyka Robotyka, R. 20, Nr 2/2016, 35 40, DOI: 10.14313/PAR_220/35 Zastosowanie metod predykcji w określaniu współrzędnych Bezzałogowego Statku Powietrznego Damian Wierzbicki Wojskowa Akademia

Bardziej szczegółowo

Wykład 2 Układ współrzędnych, system i układ odniesienia

Wykład 2 Układ współrzędnych, system i układ odniesienia Wykład 2 Układ współrzędnych, system i układ odniesienia Prof. dr hab. Adam Łyszkowicz Katedra Geodezji Szczegółowej UWM w Olsztynie adaml@uwm.edu.pl Heweliusza 12, pokój 04 Spis treści Układ współrzędnych

Bardziej szczegółowo

Al.Politechniki 6, 93-àyG(3RODQG7HO)D[

Al.Politechniki 6, 93-àyG(3RODQG7HO)D[ KATEDRA MECHANIKI 0$7(5,$àÏ: DEPARTMENT OF MECHANICS OF MATERIALS 32/,7(&+1,.$àÏ'=.$ 7(&+1,&$/81,9(56,7

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 70 1 3 7 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e w r a z z r o z s t a w i e n i e m o g

Bardziej szczegółowo

Niniejsza wersja jest wersją elektroniczną Krajowej Oceny Technicznej CNBOP-PIB nr CNBOP-PIB-KOT-2017/ wydanie 1, wydanej w formie

Niniejsza wersja jest wersją elektroniczną Krajowej Oceny Technicznej CNBOP-PIB nr CNBOP-PIB-KOT-2017/ wydanie 1, wydanej w formie ń ń ż Ä Ä ż ń Ę Ę ľ Ä ŕ ż ń ř ő ő Ę ż ż ń Ę Ź ř ý ż É ż Ę ń ń ń Ę ľ ż Ż ń ż ż ż Ę ż ć ć ý ż Ę ż ż ý ć Ę ż ć ć ż Ę Ę Ę ż ż ć ź Ą Ł Ł Ł Ł ľ Ł Ł Ł ź ý ľ ż Ł ż Ł ń ý ż ż Ł Ł ý ľ Ł ż Ł Á Ż Ż Ł Ę Ź ż ż ż Á ż

Bardziej szczegółowo

Elektrodynamika. Część 6. Elektrodynamika. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Elektrodynamika. Część 6. Elektrodynamika. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna.................. 3

Bardziej szczegółowo

Symmetry and Geometry of Generalized Higgs Sectors

Symmetry and Geometry of Generalized Higgs Sectors Symmetry and Geometry of Generalized Higgs Sectors Ryo Nagai Tohoku University in collaboration with M. Tanabashi (Nagoya U.), Y. Uchida (Nagoya U.), and K. Tsumura (Kyoto U.) PPP2018 @ YITP, Aug. 6-10,

Bardziej szczegółowo

Problemy nauki i szkolnictwa wyższego

Problemy nauki i szkolnictwa wyższego Problemy nauki i szkolnictwa wyższego SPIS TREŚCI Ryszard Maciołek, Wiesław Maik, Krzysztof Sikora WPROWADZENIE 11 Część I NAUKA 15 Zbyszko Chojnicki NAUKA JAKO SYSTEM SPOŁECZNO-POZNAWCZY 17 Jan Woleński

Bardziej szczegółowo

POSITION ACCURACY PROJECTING FOR TERRESTRIAL RANGING SYSTEMS

POSITION ACCURACY PROJECTING FOR TERRESTRIAL RANGING SYSTEMS XIII-th International Scientific and Technical Conference THE PART OF NAVIGATION IN SUPPORT OF HUMAN ACTIVITY ON THE SEA Naval University in Poland Institute of Navigation and Hydrography Cezary Specht,

Bardziej szczegółowo

Í ń ę ń Í ę ź ę ń ľ ń ć ę ę ľ ń ę ľ ć

Í ń ę ń Í ę ź ę ń ľ ń ć ę ę ľ ń ę ľ ć ń Í ń ę ń Í ę ź ę ń ľ ń ć ę ę ľ ń ę ľ ć Í ń Ó Ń Ń Ń Ó ľ ęż Ń Á ęż Ń Ą ę Ż ć ę ę Ż ć ę ć Ś ę ę Ś Ż Ż Ż Ż ę ę Ż ń Ż ń ę ę ć Ś ę Ż ć Ż ć Ż Ż ć ń Ż ľ ę ę ę ę Ś ę ę ľ ę Ę Ĺ Í ľ ď ý Ę ń ľ ę ń Ó Ń ć Í ô Ó ľ ü

Bardziej szczegółowo

Ł Ł Ł Ł Ł Ą Ó Ł Ł Ł Ś Ń Ą Ć Ł Ó Ł Ł Ą Ą Ł Ł ý Ď Ł ŕ Ł Ł Ł Ł Ó Ó Ł Ł Ł Ł Ć Ł Ń Ó Ż Ł Ł Ą Ł Ł Ą Ł Ą ŕ

Ł Ł Ł Ł Ł Ą Ó Ł Ł Ł Ś Ń Ą Ć Ł Ó Ł Ł Ą Ą Ł Ł ý Ď Ł ŕ Ł Ł Ł Ł Ó Ó Ł Ł Ł Ł Ć Ł Ń Ó Ż Ł Ł Ą Ł Ł Ą Ł Ą ŕ É ý đ Ł Ł Ł Ł Ł Ą Ó Ł Ł Ł Ś Ń Ą Ć Ł Ó Ł Ł Ą Ą Ł Ł ý Ď Ł ŕ Ł Ł Ł Ł Ó Ó Ł Ł Ł Ł Ć Ł Ń Ó Ż Ł Ł Ą Ł Ł Ą Ł Ą ŕ Ł Ż Ł Ż őź á í ň Ż ű ä Ľ ô ď ŕ ć ć ć éŕ Ż ŕ ć Ł Ż Đ ŕ Ü É í ć Ł ŕ ź Ł Ł Ł ć Ó ő á ť Ó ĐŃ Üŕ ŁÓ

Bardziej szczegółowo

O X Y a 4 O X Y T Z l O X Y D Z. 4 E - Y Z W 7 - a l a I P P A B X P l a 7 f 4. a S a a S O X Y H 4 s 7 S. A. T Z. i. a z i ) 4 Y z 7 a P Z z Z. 7 a Y j a F i. 9. P 4 7 Z. Y j a j 9. k 4 8 9. ( i s 7 4

Bardziej szczegółowo

Michał Kozielski Łukasz Warchał. Instytut Informatyki, Politechnika Śląska

Michał Kozielski Łukasz Warchał. Instytut Informatyki, Politechnika Śląska Michał Kozielski Łukasz Warchał Instytut Informatyki, Politechnika Śląska Algorytm DBSCAN Algorytm OPTICS Analiza gęstego sąsiedztwa w grafie Wstępne eksperymenty Podsumowanie Algorytm DBSCAN Analiza gęstości

Bardziej szczegółowo

Matematyka dyskretna. Wykład 5: Funkcje multiplikatywne. Gniewomir Sarbicki

Matematyka dyskretna. Wykład 5: Funkcje multiplikatywne. Gniewomir Sarbicki Matematyka dyskretna Wykład 5: Funkcje multiplikatywne Gniewomir Sarbicki Definicja: Funkcję f : N Z nazywamy: multiplikatywną, jeżeli n, m NW D(n, m) = 1 = f(nm) = f(n)f(m) całkowicie multiplikatywną,

Bardziej szczegółowo

ZałącZnik cenowy cennik urządzeń do oferty Magenta BiZnes (36 rat)

ZałącZnik cenowy cennik urządzeń do oferty Magenta BiZnes (36 rat) ZałącZnik cenowy cennik urządzeń do oferty Magenta BiZnes (36 rat) Cennik obowiązuje od dnia 16 maja 2019 r. do wycofania lub wyczerpania zapasów: Kontrakt Podstawowy Kontrakt Dodatkowy T-Mobile Polska

Bardziej szczegółowo

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and Fig 4 Measured vibration signal (top). Blue original signal. Red component related to periodic excitation of resonances and noise. Green component related. Rotational speed profile used for experiment

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 2 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k a u r a w i s a m o j e z d n

Bardziej szczegółowo

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Podstawowe równanie geodezji fizycznej, całka Stokesa, kogeoida Dr inż. Liliana Bujkiewicz 21 listopada 2018 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 21

Bardziej szczegółowo

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,

Bardziej szczegółowo

PRZYKŁADY ROZWIĄZAŃ MES. Piotr Nikiel

PRZYKŁADY ROZWIĄZAŃ MES. Piotr Nikiel PRZYKŁADY ROZWIĄZAŃ MES Piotr Nikiel Metoda elementów skooczonych Metoda elementów skooczonych jest metodą rozwiązywania zadao brzegowych. MES jest wykorzystywana obecnie praktycznie we wszystkich dziedzinach

Bardziej szczegółowo

PROGRAM KOMPUTEROWY DO WYZNACZANIA PARAMETRÓW TRAKCYJNYCH KÓŁ NAPĘDOWYCH

PROGRAM KOMPUTEROWY DO WYZNACZANIA PARAMETRÓW TRAKCYJNYCH KÓŁ NAPĘDOWYCH Inżynieria Rolnicza 7(105)/2008 PROGRAM KOMPUTEROWY DO WYZNACZANIA PARAMETRÓW TRAKCYJNYCH KÓŁ NAPĘDOWYCH Artur Szafarz, Zbigniew Błaszkiewicz Instytut Inżynierii Rolniczej, Uniwersytet Przyrodniczy w Poznaniu

Bardziej szczegółowo

4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania

4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania 3 SPIS TREŚCI Przedmowa... 11 1. WPROWADZENIE... 13 1.1. Budowa rozjazdów kolejowych... 14 1.2. Napędy zwrotnicowe... 15 1.2.1. Napęd zwrotnicowy EEA-4... 18 1.2.2. Napęd zwrotnicowy EEA-5... 20 1.3. Współpraca

Bardziej szczegółowo

ZXM5 72 Cells. Monokrystaliczny moduł fotowoltaiczny. Panel posiada 25 letnią gwarancję wydajności ubezpieczoną przez Power Guard.

ZXM5 72 Cells. Monokrystaliczny moduł fotowoltaiczny. Panel posiada 25 letnią gwarancję wydajności ubezpieczoną przez Power Guard. ZXM 72 Cells Monokrystaliczny moduł fotowoltaiczny 19, 19, 2 & 2 Watt (Alu / Czarny) Uniwersalny moduł o my 19-21 Wp jest doskonały do prywatnychsystemów dachowych. Wysoka sprawność do 1,% wydajności na

Bardziej szczegółowo

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Podstawowe równanie geodezji fizycznej, całka Stokesa, kogeoida Dr inż. Liliana Bujkiewicz 4 maja 2017 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 4 maja

Bardziej szczegółowo

chinaxiv: v1

chinaxiv: v1 ARID LAND GEOGRAPHY doi:10.12118/j.isn.1000-6060.2018.06.25!"#$% 1, (, 230601) :!,"# 12$%&', $()*+,-./0,1 2016 234567,89 3:() ; +,, 12$%& +, :?@ABCDE E FGH%I ;J 12$%&KLMNO' 1M 2M 3M; & %I P%I FQR%I

Bardziej szczegółowo

Rozwiązanie stateczności ramy MES

Rozwiązanie stateczności ramy MES Rozwiązanie stateczności ramy MES Rozwiążemy stateczność ramy pokazanej na Rys.. λkn EA24.5 kn EI4kNm 2 d 5,r 5 d 6,r 6 2 d 4,r 4 4.m e e2 d 3,r 3 d,r X d 9,r 9 3 d 7,r 7 3.m d 2,r 2 d 8,r 8 Y Rysunek

Bardziej szczegółowo

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Klasyczny przykład pośredniego oddziaływania pola magnetycznego na wzbudzenia fononowe Schemat: pole magnetyczne (siła Lorentza) nośniki (oddziaływanie

Bardziej szczegółowo

Repetytorium z przedmiotu MIARA I PRAWDOPODOBIEŃSTWO dla kierunku Informatyka 2001/2002. Adam Jakubowski

Repetytorium z przedmiotu MIARA I PRAWDOPODOBIEŃSTWO dla kierunku Informatyka 2001/2002. Adam Jakubowski Repetytorium z przedmiotu MIARA I PRAWDOPODOBIEŃSTWO dla kierunku Informatyka 2001/2002 Adam Jakubowski Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Toruń, 2002 Spis treści Wstęp 1

Bardziej szczegółowo

Podzielność liczb; iloczyn i suma dzielników

Podzielność liczb; iloczyn i suma dzielników Podzielność liczb; iloczyn i suma dzielników Liczba dzielników Postać (rozkład) kanoniczna każdej liczby N = p α1 1 pα2 2... pαr 1 pαr r. Każdy dzielnik d naszej liczby ma swojego partnera d 1 : N = d

Bardziej szczegółowo

METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne

METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz: MSI - algorytmy ewolucyjne

Bardziej szczegółowo

Globalne zależności w klastrowaniu hierarchicznym

Globalne zależności w klastrowaniu hierarchicznym 23 listopada 2008 Plan prezentacji 1 Praca źródłowa Metody Bottom-Up i Top-Down 2 Schemat algorytmu TDQC Preprocessing Algorytm Quantum Clustering 3 Zbiory danych Kryteria porównywania wyników Eksperymenty

Bardziej szczegółowo

Słowa kluczowe: szeregi czasowe współrzędnych, sygnały skokowe, obserwacje odstające, medianowa metoda różnicowa

Słowa kluczowe: szeregi czasowe współrzędnych, sygnały skokowe, obserwacje odstające, medianowa metoda różnicowa Acta Sci. Pol., Geodesia et Descriptio Terrarum 10(3) 2011, 5-18 ISSN 1644 0668 (print) ISSN 2083 8662 (on-line) WYKRYWANIE SYGNAŁÓW SKOKOWYCH W SZEREGACH CZASOWYCH ZMIAN WSPÓŁRZĘDNYCH GPS 1 Bernard Kontny

Bardziej szczegółowo

GRK 4. dr Wojciech Palubicki

GRK 4. dr Wojciech Palubicki GRK 4 dr Wojciech Palubicki Uproszczony Potok Graficzny (Rendering) Model Matrix View Matrix Projection Matrix Viewport Transform Object Space World Space View Space Clip Space Screen Space Projection

Bardziej szczegółowo

Ą ń ń ć Ę Ę ć ć ń ń Ż ń ń Ą Ą ń Ż Ń Ż ć Ą ń ŚĆ ć Ę Ę Ą ń Ś ń ć Ę Ą ń Ę ń ń ń ń ć ń ń Ś Ź ń ć ć ń ć ń Ś Ż Ę Ń ń ń ń ń ń ć Ń Ę Ę Ę Ę Ę ńń ź ĄĘ Ę ź ń Ąń Ę Ę Ę Ź Ę Ę Ą Ś Ę Ę ć Ś Ą Ń ć ń ń ć Ś ć Ń Ó ń ń ć

Bardziej szczegółowo

SATELITARNE TECHNIKI POMIAROWE WYKŁAD 5

SATELITARNE TECHNIKI POMIAROWE WYKŁAD 5 SATELITARNE TECHNIKI POMIAROWE WYKŁAD 5 1 K. Czarnecki, Geodezja współczesna w zarysie, Wiedza i Życie/Gall, Warszawa 2000/Katowice 2010. 2 Obserwacje fazowe satelitów GPS są tym rodzajem pomiarów, który

Bardziej szczegółowo

Wybrane algorytmy tablicowe

Wybrane algorytmy tablicowe Wybrane algorytmy tablicowe Algorytmy i struktury danych Wykład 2. Rok akademicki: 2009/2010 Sortowanie przez wybieranie for (int i = 0; i < liczby.length - 1; i++) k = i; for (int j = i; j < liczby.length;

Bardziej szczegółowo

4 Szczegóły dotyczące konstrukcji portfela aktywów przedstawiono w punkcie 4. 5 Por. Statman M., How Many Stocks Make a Diversified

4 Szczegóły dotyczące konstrukcji portfela aktywów przedstawiono w punkcie 4. 5 Por. Statman M., How Many Stocks Make a Diversified 1 (ang.) Modern Portfolio Theory (MPT) znana jest także pod terminami teoria średniej I wariancji portfela (Mean-Variance Portfolio Theory) czy portfelową teorią Markowitza (Markowitz Portfolio Theory).

Bardziej szczegółowo

Energetyczna ocena efektywności pracy elektrociepłowni gazowo-parowej z organicznym układem binarnym

Energetyczna ocena efektywności pracy elektrociepłowni gazowo-parowej z organicznym układem binarnym tom XLI(2011), nr 1, 59 64 Władysław Nowak AleksandraBorsukiewicz-Gozdur Roksana Mazurek Zachodniopomorski Uniwersytet Technologiczny Wydział Inżynierii Mechanicznej i Mechatroniki Katedra Techniki Cieplnej

Bardziej szczegółowo

typ y y p y z łoż o on o e n - tab a lice c e w iel e owym m ar a o r we, e stru r kt k ury

typ y y p y z łoż o on o e n - tab a lice c e w iel e owym m ar a o r we, e stru r kt k ury typy złożone- tablice wielowymiarowe, struktury Wykład 6 Deklarowanie wskaźników nazwa_typu * nazwa_wskaznika; WSKAŹNIKI: PRZYPOMNIENIE Przypisywanie wskaźnikom wartości double * pn = &zmienna_typu_double;

Bardziej szczegółowo

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Anna BŁACH Centre of Geometry and Engineering Graphics Silesian University of Technology in Gliwice EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Introduction Computer techniques

Bardziej szczegółowo

10. Metody obliczeniowe najmniejszych kwadratów

10. Metody obliczeniowe najmniejszych kwadratów 10. Metody obliczeniowe najmniejszych kwadratów 1. Dowód twierdzenia o faktoryzacji macierzy Twierdzenie 1 Każdadodatniookreślon aisymetryczn amacierzm można przedstawíc wpostaci M = PP T gdzie P jest

Bardziej szczegółowo

Znajdowanie skojarzeń na maszynie równoległej

Znajdowanie skojarzeń na maszynie równoległej 11 grudnia 2008 Spis treści 1 Skojarzenia w różnych klasach grafów Drzewa Grafy gęste Grafy regularne dwudzielne Claw-free graphs 2 Drzewa Skojarzenia w drzewach Fakt Wybierajac krawędź do skojarzenia

Bardziej szczegółowo

VFR SUP 64/14 (AD 4 EPKT)) Obowiązuje od / Effective from 18 SEP 2014 Obowiązuje do / Effective to 30 JUN 2015 EST

VFR SUP 64/14 (AD 4 EPKT)) Obowiązuje od / Effective from 18 SEP 2014 Obowiązuje do / Effective to 30 JUN 2015 EST POLSKA AGENCJA ŻEGLUGI POWIETRZNEJ SŁUŻBA INFORMACJI LOTNICZEJ 02-147 Warszawa, ul. Wieżowa 8 AIS HQ: +48-22-574-5610, Fax: +48-22-574-5619, AFS: EPWWYOYX NOTAM Office: +48-22-574-7174, Fax: +48-22-574-7179,

Bardziej szczegółowo

Programowanie w C++ Wykład 5. Katarzyna Grzelak. 16 kwietnia K.Grzelak (Wykład 1) Programowanie w C++ 1 / 27

Programowanie w C++ Wykład 5. Katarzyna Grzelak. 16 kwietnia K.Grzelak (Wykład 1) Programowanie w C++ 1 / 27 Programowanie w C++ Wykład 5 Katarzyna Grzelak 16 kwietnia 2018 K.Grzelak (Wykład 1) Programowanie w C++ 1 / 27 Pojęcia z poprzednich wykładów Tablica to ciag obiektów tego samego typu, zajmujacy ciagły

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 3 12 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k aw r a z z d o s t a w» s p r

Bardziej szczegółowo

Techniki Programowania wskaźniki

Techniki Programowania wskaźniki Techniki Programowania wskaźniki Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wykłady opracowane we współpracy z Danutą Szeligą, Łukaszem Sztangretem Wskaźniki Dla typu T zapis T* oznacza

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5. 2 listopada 2009

STATYSTYKA MATEMATYCZNA WYKŁAD 5. 2 listopada 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 5 2 listopada 2009 Poprzedni wykład: przedział ufności dla µ, σ nieznane Rozkład N(µ, σ). Wnioskowanie o średniej µ, gdy σ nie jest znane Testowanie H : µ = µ 0, K : µ

Bardziej szczegółowo

Promieniowanie kosmiczne składa się głównie z protonów, z niewielką. domieszką cięższych jąder. Przechodząc przez atmosferę cząstki

Promieniowanie kosmiczne składa się głównie z protonów, z niewielką. domieszką cięższych jąder. Przechodząc przez atmosferę cząstki Odkrycie hiperjąder Hiperjądra to struktury jądrowe w skład których, poza protonami I neutronami, wchodzą hiperony. Odkrycie hiperjąder miało miejsce w 1952 roku, 60 lat temu, w Warszawie. Wówczas nie

Bardziej szczegółowo

Schemat połączeń D-3002 Komputer D-3002 Wzmacniacz CO M I/ P TCP FIR ALA MW AR E RM SDI 85 RS4 UTS O UTP2 1 SD I IN TS PU 4 3 IN OU T 2 1 AUDI O 4 OUT 3 OUT 5 2 OUT DE 1 OUT IN TES GA LE 4 3 D-320XC 2

Bardziej szczegółowo

ZASADA DE SAINT VENANTA

ZASADA DE SAINT VENANTA Zasięg oddziaływania obciążenia samozrównoważonego w materiałach komórkowych ZASADA DE SAINT VENANTA Małgorzata Janus-Michalska Katedra Wytrzymałości Materiałów dn. 21.05.2007. PLAN PREZENTACJI 1. Wprowadzenie

Bardziej szczegółowo

v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q =

v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v v v v n 3q q q q r q = r 3q = E = E q E 3q E q = k q rq 3 k 3q r 3q 3 r q = k q rq 3 = kq 4 3 ) 4 q d b d c d d X d ± = d r = x y T d ± r ±

Bardziej szczegółowo

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej 1. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje

Bardziej szczegółowo

(technicznej, magisterskiej)

(technicznej, magisterskiej) Edycja pracy dyplomowej (technicznej, magisterskiej) Przygotowała: prof. B. Kostek Formatka strony tytułowej tt ł (do pobrania) dane dyplomanta, zdjęcie, tytuł pracy, nazwisko promotora i konsultanta (należy

Bardziej szczegółowo

Zastosowanie sztucznej inteligencji w testowaniu oprogramowania

Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Problem NP Problem NP (niedeterministycznie wielomianowy, ang. nondeterministic polynomial) to problem decyzyjny, dla którego rozwiązanie

Bardziej szczegółowo