Michał Kozielski Łukasz Warchał. Instytut Informatyki, Politechnika Śląska
|
|
- Małgorzata Kurowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Michał Kozielski Łukasz Warchał Instytut Informatyki, Politechnika Śląska
2 Algorytm DBSCAN Algorytm OPTICS Analiza gęstego sąsiedztwa w grafie Wstępne eksperymenty Podsumowanie
3 Algorytm DBSCAN Analiza gęstości danych Wyznaczenie grup o dowolnym kształcie Wskazanie obiektów danych nie należących do żadnej grupy (szum)
4 Algorytm DBSCAN M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD 96), pages , 1996.
5 Algorytm DBSCAN Parametry wejściowe Promień ε określający sąsiedztwo Liczba obiektów danych m stanowiąca o gęstości sąsiedztwa
6 Algorytm DBSCAN 1. for każdy obiekt o nie należący do żadnej grupy 2. wyznacz sąsiedztwo(o,ε) 3. if sąsiedztwo(o,ε) < m 4. o szum 5. else 6. utwórz grupę z sąsiedztwa o 7. for każdy obiekt p należący do gęstego sąsiedztwa 8. wyznacz sąsiedztwo(p,ε) 9. if sąsiedztwo(p,ε) >= m 10. for każdy obiekt należący do gęstego sąsiedztwa 11. if obiekt nie należy do grupy 12. dodaj obiekt do grupy 13. if obiekt nie jest szumem 14. dodaj obiekt do analizowanego dalej gęstego sąsiedztwa
7 Algorytm DBSCAN 1. for każdy obiekt o nie należący do żadnej grupy 2. wyznacz sąsiedztwo(o,ε) 3. if sąsiedztwo(o,ε) < m 4. o szum 5. else
8 Algorytm DBSCAN 1. for każdy obiekt o nie należący do żadnej grupy 2. wyznacz sąsiedztwo(o,ε) 3. if sąsiedztwo(o,ε) < m 4. o szum 5. else
9 Algorytm DBSCAN 1. for każdy obiekt o nie należący do żadnej grupy 2. wyznacz sąsiedztwo(o,ε) 3. if sąsiedztwo(o,ε) < m 4. o szum 5. else
10 Algorytm DBSCAN 5. else 6. utwórz grupę z sąsiedztwa o
11 Algorytm DBSCAN 5. else 6. utwórz grupę z sąsiedztwa o 7. for każdy obiekt p należący do gęstego sąsiedztwa 8. wyznacz sąsiedztwo(p,ε)
12 Algorytm DBSCAN 9. if sąsiedztwo(p,ε) >= m 10. for każdy obiekt należący do gęstego sąsiedztwa 11. if obiekt nie należy do grupy 12. dodaj obiekt do grupy
13 Algorytm DBSCAN 9. if sąsiedztwo(p,ε) >= m 10. for każdy obiekt należący do gęstego sąsiedztwa 11. if obiekt nie należy do grupy 12. dodaj obiekt do grupy
14 Algorytm DBSCAN 13. if obiekt nie jest szumem 14. dodaj obiekt do analizowanego dalej gęstego sąsiedztwa
15 Algorytm DBSCAN 13. if obiekt nie jest szumem 14. dodaj obiekt do analizowanego dalej gęstego sąsiedztwa
16 Algorytm DBSCAN M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD 96), pages , 1996.
17 Algorytm DBSCAN M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD 96), pages , 1996.
18 Algorytm DBSCAN
19 Algorytm DBSCAN
20 Algorytm DBSCAN
21 Algorytm DBSCAN
22 Algorytm DBSCAN
23 Algorytm DBSCAN
24 Algorytm OPTICS
25 Algorytm OPTICS
26 Algorytm DBSCAN Podsumowanie Parametry wejściowe Promień ε określający sąsiedztwo Liczba obiektów danych m stanowiąca o gęstości sąsiedztwa Wynik grupowania Podział na grupy Grupa zawierająca szum Złożoność O(n logn)
27 Definicja gęstego sąsiedztwa w grafie Wysoki stopień węzła Wysoka wartość współczynnika grupowania dla węzła dla krawędzi Duża liczba powiązanych trójkątów
28 Przegląd istniejących rozwiązań Falkowski T., Barth A., Spiliopoulou M. DENGRAPH: A Density-based Community Detection Algorithm, IEEE/WIC/ACM International Conference on Web Intelligence, 2008, pp Zastosowanie DBSCAN do analizy grafu Odległość węzłów definiowana poprzez intensywność relacji
29 Przegląd istniejących rozwiązań Bródka, P.; Musial, K.; Kazienko, P.; A Method for Group Extraction in Complex Social Networks, CCIS Vol. 111, 2010, pp Zastosowanie operacji union i intersect wykorzystywanych także w analizie gęstości danych o wielu reprezentacjach Wykorzystanie współczynnika grupowania
30 Przegląd istniejących rozwiązań Günnemann S., Boden B. and Seidl T., DB-CSC: A Density-Based Approach for Subspace Clustering in Graphs with Feature Vectors. LNCS, Vol. 6911, 2011, pp Analiza grafu i jego reprezentacji w podprzestrzeniach atrybutów Zastosowanie operacji union i intersect wykorzystywanych także w analizie gęstości danych o wielu reprezentacjach
31 DBSCAN dla grafu Modyfikacja algorytmu Rozszerzanie grupy na podstawie struktury Macierz odległości Wyznaczenie odległości na podstawie struktury
32
33
34
35
36
37
38
39
40
41 Algorytm Girvan-Newman
42 Algorytm Clasuet et al.
43 Analiza ewolucji społeczności Adaptacja metody IncrementalDBSCAN Identyfikacja społeczności opisanych w dziedzinie atrybutów Modyfikacja DB-CSC
44 Ankerst M., Breunig M., Kriegel H.P., Sander J.: OPTICS: ordering points to identify the clustering structure, SIGMOD Rec., 1999, Vol. 28, No 2, pp M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD 96), pages , 1996.
CLUSTERING II. Efektywne metody grupowania danych
CLUSTERING II Efektywne metody grupowania danych Plan wykładu Wstęp: Motywacja i zastosowania Metody grupowania danych Algorytmy oparte na podziałach (partitioning algorithms) PAM Ulepszanie: CLARA, CLARANS
GĘSTOŚCIOWA METODA GRUPOWANIA I WIZUALIZACJI DANYCH ZŁOŻONYCH
STUDIA INFORMATICA 2012 Volume 33 Number 2A (105) Agnieszka NOWAK-BRZEZIŃSKA, Tomasz XIĘSKI Uniwersytet Śląski, Instytut Informatyki GĘSTOŚCIOWA METODA GRUPOWANIA I WIZUALIZACJI DANYCH ZŁOŻONYCH Streszczenie.
Analiza skupień. Idea
Idea Analiza skupień Analiza skupień jest narzędziem analizy danych służącym do grupowania n obiektów, opisanych za pomocą wektora p-cech, w K niepustych, rozłącznych i możliwie jednorodnych grup skupień.
DBSCAN segmentacja danych punktowych oraz rastrowych w środowisku wolnodostępnego oprogramowania R
DBSCAN segmentacja danych punktowych oraz rastrowych w środowisku wolnodostępnego oprogramowania R Mgr inż. Agnieszka Ochałek Narzędzia informatyczne w badaniach naukowych Wydział Geodezji Górniczej i
Badania w sieciach złożonych
Badania w sieciach złożonych Grant WCSS nr 177, sprawozdanie za rok 2012 Kierownik grantu dr. hab. inż. Przemysław Kazienko mgr inż. Radosław Michalski Instytut Informatyki Politechniki Wrocławskiej Obszar
Grupowanie Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 201/633
Grupowanie Grupowanie 7 6 5 4 y 3 2 1 0-3 -2-1 0 1 2 3 4 5-1 -2-3 -4 x Witold Andrzejewski, Politechnika Poznańska, Wydział Informatyki 201/633 Wprowadzenie Celem procesu grupowania jest podział zbioru
Przegląd darmowego oprogramowania do analizy dużych zbiorów danych
Przegląd darmowego oprogramowania do analizy dużych zbiorów danych Tomasz Jach, Tomasz Xięski Uniwersytet Śląski, Instytut Informatyki, ul. Będzińska 39, 41-200 Sosnowiec {tomasz.jach tomasz.xieski}@us.edu.pl
WYBÓR ALGORYTMU GRUPOWANIA A EFEKTYWNOŚĆ WYSZUKIWANIA DOKUMENTÓW
STUDIA INFORMATICA 2010 Volume 31 Number 2A (89) Agnieszka NOWAK BRZEZIŃSKA, Tomasz JACH, Tomasz XIĘSKI Uniwersytet Śląski, Wydział Informatyki i Nauki o Materiałach, Instytut Informatyki WYBÓR ALGORYTMU
LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów
LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów Łukasz Piątek, Jerzy W. Grzymała-Busse Katedra Systemów Ekspertowych i Sztucznej Inteligencji, Wydział Informatyki
Rozpoznawanie: Klasteryzacja zbioru ofert sprzedaży mieszkania.
Rozpoznawanie: Klasteryzacja zbioru ofert sprzedaży mieszkania. Paweł Szołtysek Spis treści 1 Wstęp 2 2 Wygląd oferty sprzedaży nieruchomości 2 2.1 Ogłoszenia problematyczne.................... 3 3 Wybór
Grafowy model bazy danych na przykładzie GOOD
GOOD p. 1/1 Grafowy model bazy danych na przykładzie GOOD (Graph-Oriented Object Database Model) Marcin Jakubek GOOD p. 2/1 Plan prezentacji Przykłady modeli danych Zastosowania Inne modele grafowe Wizualizacja
Zastosowanie sztucznej inteligencji w testowaniu oprogramowania
Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Problem NP Problem NP (niedeterministycznie wielomianowy, ang. nondeterministic polynomial) to problem decyzyjny, dla którego rozwiązanie
Implementacja wybranych algorytmów eksploracji danych na Oracle 10g
Implementacja wybranych algorytmów eksploracji danych na Oracle 10g Sławomir Skowyra, Michał Rudowski Instytut Informatyki Wydziału Elektroniki i Technik Informacyjnych, Politechnika Warszawska S.Skowyra@stud.elka.pw.edu.pl,
Metoda klasteryzacji i segmentacji mikrozwapnień w celu redukcji wskazań fałszywych przy komputerowym wspomaganiu mammografii
Metoda klasteryzacji i segmentacji mikrozwapnień w celu redukcji wskazań fałszywych przy komputerowym wspomaganiu mammografii Anna Wróblewska, Artur Przelaskowski, Paweł Bargieł, Piotr Boniński Zakład
TEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr 1: Definicja grafu. Rodzaje i części grafów dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100
Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki
Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First
Planowanie przejazdu przez zbiór punktów. zadania zrobotyzowanej inspekcji
dla zadania zrobotyzowanej inspekcji Katedra Sterowania i Inżynierii Systemów, Politechnika Poznańska 3 lipca 2014 Plan prezentacji 1 Wprowadzenie 2 3 4 Postawienie problemu Założenia: Rozpatrujemy kinematykę
STUDIA INFORMATICA 2011 Volume 32 Number 2A (96)
STUDIA INFORMATICA 2011 Volume 32 Number 2A (96) Agnieszka NOWAK-BRZEZIŃSKA, Tomasz XIĘSKI Uniwersytet Śląski, Instytut Informatyki GRUPOWANIE DANYCH ZŁOŻONYCH Streszczenie. Artykuł stanowi wprowadzenie
Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu
Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu
Optymalizacja reguł decyzyjnych względem pokrycia
Zakład Systemów Informatycznych Instytut Informatyki, Uniwersytet Śląski Chorzów, 9 grudzień 2014 Wprowadzenie Wprowadzenie problem skalowalności dla optymalizacji reguł decyzjnych na podstawie podejścia
STUDIA INFORMATICA 2014 Volume 35 Number 2 (116)
STUDIA INFORMATICA 2014 Volume 35 Number 2 (116) Agnieszka NOWAK-BRZEZIŃSKA, Tomasz XIĘSKI Uniwersytet Śląski, Instytut Informatyki WYDOBYWANIE WIEDZY Z DANYCH ZŁOŻONYCH Streszczenie. Artykuł przedstawia
Krzysztof Kutt Sprawozdanie 2: Modeling knowledge with Resource Description Framework (RDF)
Akademia Górniczo-Hutnicza Wydział EAIiIB Katedra Informatyki Stosowanej Semantic Web Technologies 2013 Krzysztof Kutt Sprawozdanie 2: Modeling knowledge with Resource Description Framework (RDF) Kraków
Przestrzeń algorytmów klastrowania
20 listopada 2008 Plan prezentacji 1 Podstawowe pojęcia Przykłady algorytmów klastrowania 2 Odległość algorytmów klastrowania Odległość podziałów 3 Dane wejściowe Eksperymenty Praca źródłowa Podstawowe
Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP
Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP Łukasz Strąk lukasz.strak@gmail.com Uniwersytet Śląski, Instytut Informatyki, Będzińska 39, 41-205 Sosnowiec 9 grudnia
Symulacje geometrycznych sieci neuronowych w środowisku rozproszonym
Symulacje geometrycznych sieci neuronowych w środowisku rozproszonym Jarosław Piersa, Tomasz Schreiber {piersaj, tomeks}(at)mat.umk.pl 2010-07-21 1 2 Dany podzbiór V R 3. N neuronów należących do V N Poiss(c
Informatyka w szkole - algorytm Dijkstry dla każdego. Krzysztof Diks Instytut Informatyki, Uniwersytet Warszawski
Informatyka w szkole - algorytm Dijkstry dla każdego Krzysztof Diks Instytut Informatyki, Uniwersytet Warszawski Problem 1: Labirynt Źródło: www.dla-dzieci.ugu.pl Problem : Wilk, owca i kapusta Źródło:
Grafy Alberta-Barabasiego
Spis treści 2010-01-18 Spis treści 1 Spis treści 2 Wielkości charakterystyczne 3 Cechy 4 5 6 7 Wielkości charakterystyczne Wielkości charakterystyczne Rozkład stopnie wierzchołków P(deg(x) = k) Graf jest
Zastosowania metod odkrywania wiedzy do diagnostyki maszyn i procesów
Zastosowania metod odkrywania wiedzy do diagnostyki maszyn i procesów Wojciech Moczulski Politechnika Śląska Katedra Podstaw Konstrukcji Maszyn Sztuczna inteligencja w automatyce i robotyce Zielona Góra,
METODY REPREZENTACJI DANYCH ZŁOŻONYCH
STUDIA INFORMATICA 2013 Volume 34 Number 2A (111) Agnieszka NOWAK-BRZEZIŃSKA, Tomasz XIĘSKI Uniwersytet Śląski, Instytut Informatyki METODY REPREZENTACJI DANYCH ZŁOŻONYCH Streszczenie. Artykuł dokonuje
Harmonogramowanie przedsięwzięć
Harmonogramowanie przedsięwzięć Mariusz Kaleta Instytut Automatyki i Informatyki Stosowanej Politechnika Warszawska luty 2014, Warszawa Politechnika Warszawska Harmonogramowanie przedsięwzięć 1 / 25 Wstęp
Analiza konstrukcji zawierających wskaźniki. Piotr Błaszyński
Analiza konstrukcji zawierających wskaźniki Piotr Błaszyński Wskaźniki podejście naiwne: while(ptr!=null){ a[i] = *ptr; i++; ptr++; } po zmianie: N=length(ptr); alias_ptr = ptr; for(j=0 ; j
Centralność w sieciach społecznych. Radosław Michalski Social Network Group - kwiecień 2009
Centralność w sieciach społecznych Radosław Michalski Social Network Group - kwiecień 2009 Agenda spotkania Pojęcie centralności Potrzeba pomiaru centralności Miary centralności degree centrality betweenness
Sztuczna inteligencja : Algorytm KNN
Instytut Informatyki Uniwersytetu Śląskiego 23 kwietnia 2012 1 Algorytm 1 NN 2 Algorytm knn 3 Zadania Klasyfikacja obiektów w oparciu o najbliższe obiekty: Algorytm 1-NN - najbliższego sąsiada. Parametr
ANALIZA GRUP W SERWISACH SPOŁECZNOŚCIOWYCH 1
STUDIA INFORMATICA 2011 Volume 32 Number 2A (96) Anna ZYGMUNT, Jarosław KOŹLAK, Łukasz KRUPCZAK Akademia Górniczo-Hutnicza, Katedra Informatyki ANALIZA GRUP W SERWISACH SPOŁECZNOŚCIOWYCH 1 Streszczenie.
Podstawy programowania. Wykład 7 Tablice wielowymiarowe, SOA, AOS, itp. Krzysztof Banaś Podstawy programowania 1
Podstawy programowania. Wykład 7 Tablice wielowymiarowe, SOA, AOS, itp. Krzysztof Banaś Podstawy programowania 1 Tablice wielowymiarowe C umożliwia definiowanie tablic wielowymiarowych najczęściej stosowane
Znajdowanie skojarzeń na maszynie równoległej
11 grudnia 2008 Spis treści 1 Skojarzenia w różnych klasach grafów Drzewa Grafy gęste Grafy regularne dwudzielne Claw-free graphs 2 Drzewa Skojarzenia w drzewach Fakt Wybierajac krawędź do skojarzenia
Wprowadzenie do technologii informacyjnej.
Wprowadzenie do technologii informacyjnej. Data mining i jego biznesowe zastosowania dr Tomasz Jach Definicje Eksploracja danych polega na torturowaniu danych tak długo, aż zaczną zeznawać. Eksploracja
Wykład 8. Drzewo rozpinające (minimum spanning tree)
Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,
Równowaga Heidera symulacje mitozy społecznej
Równowaga Heidera symulacje mitozy społecznej Przemysław Gawroński Katedra Informatyki Stosowanej we współpracy z Krzysztofem Kułakowskim, Piotrem Gronkiem Plan Klasyczny model równowagi Heidera. Skala
Analiza Skupień - Grupowanie Zaawansowana Eksploracja Danych
Analiza Skupień - Grupowanie Zaawansowana Eksploracja Danych JERZY STEFANOWSKI Inst. Informatyki PP Wersja dla TPD 2013 Część II Organizacja wykładu Przypomnienie wyboru liczby skupień Studium przypadku
Sprawozdanie do zadania numer 2
Sprawozdanie do zadania numer 2 Michał Pawlik 29836 Temat: Badanie efektywności algorytmów grafowych w zależności od rozmiaru instancji oraz sposobu reprezentacji grafu w pamięci komputera 1 WSTĘP W ramach
Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego
Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Mariusz Uchroński 3 grudnia 2010 Plan prezentacji 1. Wprowadzenie 2.
Próba formalizacji doboru parametrów generalizacji miejscowości dla opracowań w skalach przeglądowych
Próba formalizacji doboru parametrów generalizacji miejscowości dla opracowań w skalach przeglądowych Uniwersytet Warszawski Wydział Geografii i Studiów Regionalnych Katedra Kartografii I. Motywacja Infrastruktura
Grafy i Zastosowania. 5: Drzewa Rozpinające. c Marcin Sydow. Drzewa rozpinające. Cykle i rozcięcia fundamentalne. Zastosowania
Grafy i Grafy i 5: Rozpinające Spis zagadnień Grafy i i lasy cykle fundamentalne i własności cykli i rozcięć przestrzenie cykli i rozcięć* : zastosowanie w sieciach elektrycznych minimalne * algorytm Kruskala*
Sieci Społeczne i Analiza Sieci. P. Kazienko and K. Musial Instytut Informatyki Stosowanej, Politechnika Wrocławska Wrocław, 25 Października 2007
Sieci Społeczne i Analiza Sieci P. Kazienko and K. Musial Instytut Informatyki Stosowanej, Politechnika Wrocławska Wrocław, 25 Października 2007 Agenda Kilka słów o naszej grupie Dlaczego warto zająć się
Model relacyjny. Wykład II
Model relacyjny został zaproponowany do strukturyzacji danych przez brytyjskiego matematyka Edgarda Franka Codda w 1970 r. Baza danych według definicji Codda to zbiór zmieniających się w czasie relacji
PROBLEM ROZMIESZCZENIA MASZYN LICZĄCYCH W DUŻYCH SYSTEMACH PRZEMYSŁOWYCH AUTOMATYCZNIE STEROWANYCH
CZESŁAW KULIK PROBLEM ROZMIESZCZENIA MASZYN LICZĄCYCH W DUŻYCH SYSTEMACH PRZEMYSŁOWYCH AUTOMATYCZNIE STEROWANYCH Duże systemy przemysłowe, jak kopalnie, kombinaty metalurgiczne, chemiczne itp., mają złożoną
Siedem cudów informatyki czyli o algorytmach zdumiewajacych
Siedem cudów informatyki czyli o algorytmach zdumiewajacych Łukasz Kowalik kowalik@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski Łukasz Kowalik, Siedem cudów informatyki p. 1/25 Problem 1: mnożenie
Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów
Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69
Detekcja punktów zainteresowania
Informatyka, S2 sem. Letni, 2013/2014, wykład#8 Detekcja punktów zainteresowania dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Proces przetwarzania obrazów
Wstęp do Informatyki i Programowania (kierunek matematyka stosowana)
Wstęp do Informatyki i Programowania (kierunek matematyka stosowana) Jacek Cichoń Przemysław Kobylański Instytut Matematyki i Informatyki Politechnika Wrocławska Na podstawie: M.Summerfield.Python 3. Kompletne
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING NEURONOWE MAPY SAMOORGANIZUJĄCE SIĘ Self-Organizing Maps SOM Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki,
Informatyka I. Wykład 3. Sterowanie wykonaniem programu. Instrukcje warunkowe Instrukcje pętli. Dr inż. Andrzej Czerepicki
Informatyka I Wykład 3. Sterowanie wykonaniem programu. Instrukcje warunkowe Instrukcje pętli Dr inż. Andrzej Czerepicki Politechnika Warszawska Wydział Transportu 2018 Operacje relacji (porównania) A
Budowa modeli klasyfikacyjnych o skośnych warunkach
Budowa modeli klasyfikacyjnych o skośnych warunkach Marcin Michalak (Marcin.Michalak@polsl.pl) III spotkanie Polskiej Grupy Badawczej Systemów Uczących Się Wrocław, 17 18.03.2014 Outline 1 Dwa podejścia
Praca dyplomowa magisterska
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI I INŻYNIERII BIOMEDYCZNEJ KATEDRA Automatyki i Robotyki Praca dyplomowa magisterska Analiza położenia użytkownika sieci geo-społecznościowej Analysis of
Jarosław Kuchta Jakość Systemów Informatycznych Jakość Oprogramowania. Pomiary w inżynierii oprogramowania
Jarosław Kuchta Jakość Systemów Informatycznych Jakość Oprogramowania Pomiary w inżynierii oprogramowania Cel pomiarów ocena jakości produktu ocena procesów (produktywności ludzi) stworzenie podstawy dla
Synteza i eksploracja danych sekwencyjnych
Synteza i eksploracja danych sekwencyjnych Definicja problemu i wstępne wyniki eksperymentalne Projekt finansowany z grantu nr DEC-2011/03/D/ST6/01621 otrzymanego z Narodowego Centrum Nauki Plan prezentacji
Sortowanie topologiczne skierowanych grafów acyklicznych
Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)
Informatyka I. Klasy i obiekty. Podstawy programowania obiektowego. dr inż. Andrzej Czerepicki. Politechnika Warszawska Wydział Transportu 2018
Informatyka I Klasy i obiekty. Podstawy programowania obiektowego dr inż. Andrzej Czerepicki Politechnika Warszawska Wydział Transportu 2018 Plan wykładu Pojęcie klasy Deklaracja klasy Pola i metody klasy
Elementy analizy obrazu. W04
Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Elementy analizy obrazu. W04 Obszar zainteresowania ROI Obszar zainteresowania Region of Interest (ROI) ROI jest traktowane jako podobraz
Modelowanie sieci złożonych
Modelowanie sieci złożonych B. Wacław Instytut Fizyki UJ Czym są sieci złożone? wiele układów ma strukturę sieci: Internet, WWW, sieć cytowań, sieci komunikacyjne, społeczne itd. sieć = graf: węzły połączone
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Grafy dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 1 / 20
Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner
Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Elementy nieprzystające Definicja odrzucania Klasyfikacja
Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010
Algorytmy równoległe Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka Znajdowanie maksimum w zbiorze n liczb węzły - maksimum liczb głębokość = 3 praca = 4++ = 7 (operacji) n - liczność
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują
Język programowania komputerów kwantowych oparty o model macierzy gęstości
oparty o model macierzy gęstości (Promotorski) Piotr Gawron Instytut Informatyki Teoretycznej i Stosowanej PAN 13 grudnia 2008 Plan wystąpienia Wstęp Motywacja Teza pracy Model obliczeń kwantowych Operacje
sieci społecznych metodą analizy - future work...
Badanie cech lokalnej topologii sieci społecznych metodą analizy motywów sieciowych - perspetktywy... - zastosowania... - future work... Krzysztof Juszczyszyn Krzysztof Juszczyszyn www.iit.pwr.wroc.pl/~krzysiek
WSTĘP I TAKSONOMIA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING WSTĘP I TAKSONOMIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra
Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami
Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy
Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.
Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf
Kombinacja jądrowych estymatorów gęstości w klasyfikacji - testy na sztucznych danych
Kombinacja jądrowych estymatorów gęstości w klasyfikacji - testy na sztucznych danych Mateusz Kobos, 25.11.2009 Seminarium Metody Inteligencji Obliczeniowej 1/25 Spis treści Dolne ograniczenie na wsp.
(Raport cząstkowy z prac realizowanych w ramach projektu pt. Inteligentne metody analizy szans i zagrożeń w procesie kształcenia)
Testy porównawcze metod klasteryzacji jako narzędzia identyfikacji grup studenckich oraz tworzenia klas pytań ankietowych Marek Jaszuk, Teresa Mroczek, Barbara Fryc Wyższa Szkoła Informatyki i Zarządzania
4.3 Grupowanie według podobieństwa
4.3 Grupowanie według podobieństwa Przykłady obiektów to coś więcej niż wektory wartości atrybutów. Reprezentują one poszczególne rasy psów. Ważnym pytaniem, jakie można sobie zadać, jest to jak dobrymi
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 17. ALGORYTMY EWOLUCYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska KODOWANIE BINARNE Problem różnych struktur przestrzeni
BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat
BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,
Adrian Horzyk
Sztuczne Systemy Skojarzeniowe SSS Asocjacyjne grafowe struktury danych AGDS Associative Graph Data Structure Adrian Horzyk horzyk@agh.edu.pl AGH Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki,
3 grudnia Sieć Semantyczna
Akademia Górniczo-Hutnicza http://www.agh.edu.pl/ 1/19 3 grudnia 2005 Sieć Semantyczna Michał Budzowski budzow@grad.org 2/19 Plan prezentacji Krótka historia Problemy z WWW Koncepcja Sieci Semantycznej
Model relacyjny. Wykład II
Model relacyjny został zaproponowany do strukturyzacji danych przez brytyjskiego matematyka Edgarda Franka Codda w 1970 r. Baza danych według definicji Codda to zbiór zmieniających się w czasie relacji
Plan Prezentacji Wprowadzenie Telefonia IP a bezpieczeństwo istotne usługi ochrony informacji i komunikacji w sieci Klasyczna architektura bezpieczeńs
Wojciech Mazurczyk Instytut Telekomunikacji Politechnika Warszawska http://mazurczyk.com Możliwości wykorzystania watermarkingu do zabezpieczenia telefonii IP Plan Prezentacji Wprowadzenie Telefonia IP
Algorytm grupowania oparty o łańcuch reguł dyskryminacyjnych
AI-METH 2002 - Artificial Intelligence Methods November 13 15, 2002, Gliwice, Poland Algorytm grupowania oparty o łańcuch reguł dyskryminacyjnych Dariusz Mazur Silesian University of Technology, Faculty
Analiza stanów gry na potrzeby UCT w DVRP
Analiza stanów gry na potrzeby UCT w DVRP Seminarium IO na MiNI 04.11.2014 Michał Okulewicz based on the decision DEC-2012/07/B/ST6/01527 Plan prezentacji Definicja problemu DVRP DVRP na potrzeby UCB Analiza
Programowanie dynamiczne
Programowanie dynamiczne Programowanie rekurencyjne: ZALETY: - prostota - naturalność sformułowania WADY: - trudność w oszacowaniu zasobów (czasu i pamięci) potrzebnych do realizacji Czy jest możliwe wykorzystanie
Algorytmy rozpoznawania obrazów. 11. Analiza skupień. dr inż. Urszula Libal. Politechnika Wrocławska
Algorytmy rozpoznawania obrazów 11. Analiza skupień dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Analiza skupień Określenia: analiza skupień (cluster analysis), klasteryzacja (clustering), klasyfikacja
WYKŁAD 3. Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego
WYKŁAD 3 Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego 1 Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego (c.d.) 2 Zestawienie zbiorcze - Regulacje
Zastosowanie algorytmu DBSCAN do grupowania danych rozproszonych
Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych Instytut Informatyki Rok akademicki 2014/2015 PRACA DYPLOMOWA MAGISTERSKA Piotr Gumowski Zastosowanie algorytmu DBSCAN do grupowania
Rozwiązywanie problemów metodą przeszukiwania
Rozwiązywanie problemów metodą przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Reprezentacja problemu w przestrzeni stanów Jedną z ważniejszych metod sztucznej
PARTYCJONOWANIE GRAFÓW A OPTYMALIZACJA WYKONANIA ZBIORU ZAPYTAŃ EKSPLORACYJNYCH
PARTYCJONOWANIE GRAFÓW A OPTYMALIZACJA WYKONANIA ZBIORU ZAPYTAŃ EKSPLORACYJNYCH Marek Wojciechowski, Maciej Zakrzewicz Politechnika Poznańska, Wydział Informatyki i Zarządzania {marek, mzakrz}@cs.put.poznan.pl
Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:
Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem
Ogólne wiadomości o grafach
Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,
Algorytmy Komunikacyjne dla Trójwymiarowych Sieci Opartych na Plastrze Miodu. Ireneusz Szcześniak. Politechnika Śląska 20 czerwca 2002 r.
Algorytmy Komunikacyjne dla Trójwymiarowych Sieci Opartych na Plastrze Miodu Ireneusz Szcześniak Politechnika Śląska 20 czerwca 2002 r. 2 Plan prezentacji Wprowadzenie Prezentacja trójwymiarowych sieci
Algorytmy heurystyczne w UCB dla DVRP
Algorytmy heurystyczne w UCB dla DVRP Seminarium IO na MiNI 24.03.2015 Michał Okulewicz based on the decision DEC-2012/07/B/ST6/01527 Plan prezentacji Definicja problemu DVRP UCB na potrzeby DVRP Algorytmy
ANALIZA ZASOBÓW INTERNETOWYCH NA PODSTAWIE STRUKTURY POŁĄCZEŃ
STUDIA INFORMATICA 2010 Volume 31 Number 2B (90) Anna KOTULLA Politechnika Śląska, Instytut Informatyki ANALIZA ZASOBÓW INTERNETOWYCH NA PODSTAWIE STRUKTURY POŁĄCZEŃ Streszczenie. Opracowanie omawia możliwości
Data Warehouse Physical Design: Part III
Data Warehouse Physical Design: Part III Robert Wrembel Poznan University of Technology Institute of Computing Science Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Lecture outline Group
Detekcja motywów w złożonych strukturach sieciowych perspektywy zastosowań Krzysztof Juszczyszyn
Detekcja motywów w złożonych strukturach sieciowych perspektywy zastosowań Krzysztof Juszczyszyn Instytut Informatyki Technicznej PWr MOTYWY SIECIOWE -NETWORK MOTIFS 1. Co to jest? 2. Jak mierzyć? 3. Gdzie
Analiza Algorytmów 2018/2019 (zadania na laboratorium)
Analiza Algorytmów 2018/2019 (zadania na laboratorium) Wybór lidera (do 9 III) Zadanie 1 W dowolnym języku programowania zaimplementuj symulator umożliwiający przetestowanie algorytmu wyboru lidera ELECT
Algorytmy redukcji danych w uczeniu maszynowym i eksploracji danych. Dr inŝ. Ireneusz Czarnowski Akademia Morska w Gdyni
Algorytmy redukcji danych w uczeniu maszynowym i eksploracji danych Dr inŝ. Ireneusz Czarnowski Akademia Morska w Gdyni Plan seminarium Wprowadzenie Redukcja danych Zintegrowany model uczenia maszynowego
Wykrywanie istotnych i nieistotnych fragmentów stron WWW
Wykrywanie istotnych i nieistotnych fragmentów stron WWW Michał Wójcik opiekun naukowy: dr inż. Piotr Gawrysiak Plan prezentacji definicja fragmentów istotnych i nieistotnych, oraz powody dla których warto
Interaktywne wyszukiwanie informacji w repozytoriach danych tekstowych
Interaktywne wyszukiwanie informacji w repozytoriach danych tekstowych Marcin Deptuła Julian Szymański, Henryk Krawczyk Politechnika Gdańska Wydział Elektroniki, Telekomunikacji i Informatyki Katedra Architektury
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Rozwiązywanie problemów-i Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Rozwiązywanie problemów Podstawowe fazy: Sformułowanie celu -