ZASTOSOWANIE ALGORYTMÓW GENETYCZNYCH DO PROJEKTOWANIA UKŁADÓW ANALOGOWYCH
|
|
- Alojzy Jarosław Bednarczyk
- 6 lat temu
- Przeglądów:
Transkrypt
1 ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ Seria: ELEKTRONIKA z Nr kol Jan MACHNIEWSKI Benedykt NOWAK Instytut Elektroniki Politechniki Śląskiej ZASTOSOWANIE ALGORYTMÓW GENETYCZNYCH DO PROJEKTOWANIA UKŁADÓW ANALOGOWYCH Streszczenie. W pracy przedstawiono nowe, heurystyczne podejście do projektowania pewnej klasy układów analogowych. Przydatność do tych celów algorytmów genetycznych została pokazana na przykładzie projektowania filtru. W końcowej części pokazano wpływ doboru parametrów algorytmu genetycznego na jakość uzyskiwanych rozwiązań. GENETICS ALGORITHMS FOR ANALOG CIRCUITS DESIGN Summary. The paper presents the new, heuristic idea of designing analog circuits. On the basis of an example of a filter there has been shown the usefulness of the genetic algorithms in electronics. At the end there has been discussed influence of GA's parameters on the solution DIE VERWENDUNG DER GENETISCHEN ALLGORITHMUSE ZUR PROJEKTIERUNG DER ELEKTRONISCHEN ANALOGSCHALTUNGEN Zusammenfassung. Im Aufsatz wurde die neue heuristische Einstellung zur Projektierung der Analogschaltung vorstellt. Die Brauchbarkeit zu diesen zwecke der genetischen Algorithmuse wurde am Beispiel der Projektierung des Filters gezeigt. Zum Schluß wurde der Einfluß der Wahl der Parametere der genetischen Algorithmuse auf die Qualität der erreichten Lösungen gewiesen. 1. Wprowadzenie Podczas projektowania układów analogowych, takich jak np. filtry, nie istnieje jedna, najlepsza metoda doboru wartości elementów. Kluczowym zagadnieniem przy projektowaniu tego typu układów jest optymalizacja, dokonywana najczęściej za
2 138 Jan Machniewski, Benedykt Nowak pomocą metod numerycznych [4], nierzadko heurystycznych. Algorytmy genetyczne (AG) są jeszcze jedną próbą podejścia do tego problemu. 2. Algorytmy genetyczne AG należą do grupy metod heurystycznych i wzorują się na metodzie doboru naturalnego występującego w przyrodzie [1, 2, 3]. Jednym z podstawowych pojęć jest kod genetyczny. Kod genetyczny jest to łańcuch złożony z zer i jedynek (lub większej liczby liter zdefiniowanych dla danego problemu) jednoznacznie opisujący dany organizm. I tak w przypadku układu analogowego kolejne części łańcucha genetycznego mogą opisywać wartości elementów układu, zakładając, że struktura układu jest znana. b i b 2 I b 3 b 4 b s b 6 b 7 b 8 I b 9 b i o I b i... b n -4 b -3 b n-2 b n l b n R i k R 2 I c k Rys. 1. Kod genetyczny reprezentujący uktad analogowy Fig. 1. The genetic code representing an analog Circuit Jeśli wyróżnimy dwie wartości elementu reprezentujące zwarcie i rozwarcie, to będziemy mogli również modyfikować strukturę, choć tylko w kierunku od struktury bardziej rozbudowanej do prostszej, posiadającej jednak zadane własności. Rodzice Dzieci A l A2 A3 I Al B2 A3 I I B i B2 B3 I BI A2 B3 Rys. 2. Ilustracja krzyżowania dwupunktowego Fig. 2. Two-point crossover
3 Zastosowanie algorytmów genetycznych. 139 Ewolucyjne polepszanie osobników jest możliwe dzięki kombinacji trzech operacji: krzyżowania, mutacji i selekcji. Krzyżowanie jest podstawowym mechanizmem zapewniającym polepszanie populacji. Polepszanie to jest możliwe dzięki wymianie materiału genetycznego. Wymiana odbywa się poprzez podział łańcuchów dwóch osobników w tym samym punkcie (lub w większej liczbie punktów) i utworzenia nowych łańcuchów składających się z części łańcucha A oraz B. Nowo utworzone osobniki każdorazowo są oceniane. Osobniki najlepiej przystosowane (posiadające najwyższe oceny) mają najwięcej szans na rozmnożenie się i tym samym utrwalenie swojego kodu w populacji. Osobniki posiadające średnie o- ceny mają znacznie mniejsze szanse na rozmnożenie się, a osobniki najsłabsze giną - są usuwane z populacji. W ten sposób w populacji dokonuje się selekcja. n - ta populacja A A l A2 A3 0.8 B BI B2 B3 0.8 C C l C2 0.7 D D l D2 D3 0.6 E E 0.5 F FI F2 F3 0.4 G G 0.3 H HI H2 0.3 I I 0.2 J J 0.1 n+1 - populacja AB A1 B2 A A A 0.8 B B 0.8 C C 0.7 D D 0.6 BA B1 A2 B E E 0.5 F F 0.4 CH Cl H FD FI D2 F Rys. 3. Ilustracja zmian zachodzących w populacji na skutek operacji krzyżowania i selekcji Fig. 3. Modification of a population by crossover and selection
4 140 Jan Machniewski, Bsnedykt Nowak Pewnym ryzykiem jest grupowanie łańcuchów wokół ekstremów lokalnych uniemożliwiające - z braku materiału genetycznego - znalezienie lepszego rozwiązania. Zabezpieczeniem przed taką ewentualnością jest mutacja. Mutacja polega na przypadkowych, niewielkich zmianach w kodzie genetycznym, przerzucając rozwiązania w nowe obszary i zabezpieczając w ten sposób populację przed utknięciem w lokalnym ekstremum. Do tej pory algorytmy genetyczne doczekały się licznych zastosowań w wielu dziedzinach [1], takich jak: fizyka, nauki społeczne, przetwarzanie i rozpoznawanie obrazów, biologia, oraz wielu zastosowań inżynieryjnych Czym algorytmy genetyczne różnią się od tradycyjnych metod optymalizacji? * Algorytmy genetyczne operują parametrami nie bezpośrednio, ale w postaci zakodowanej. Dzięki tej własności można zestawić obok siebie parametry różnego typu, bez konieczności wprowadzania zmian do zasadniczej części programu realizującej algorytm genetyczny. * Algorytm genetyczny operuje nie pojedynczym punktem, ale zbiorem punktów przeszukiwanej przestrzeni. * Algorytm genetyczny nie stawia żadnych wymagań odnośnie do postaci optymalizowanej funkcji, jedynie musimy umieć ocenić otrzymane rozwiązanie. Np. nie jest wymagane, aby funkcja była różniczkowalna. * Działanie operatorów jest czysto stochastyczne, nie jest w żaden sposób zdeterminowane. 3. Przykład Poniżej przedstawiony zostanie przykład projektowania filtru dolnoprzepustowego spełniającego następujące kryteria K(0) = 1 i w0 = W przykładzie wykorzystano typową strukturę [4] przedstawioną na rysunku poniżej. Ta sama struktura została wykorzystana w naszej pierwszej pracy poświęconej zastosowaniu algorytmów genetycznych w elektronice. Ponieważ otrzymane wtedy rezultaty okazały się interesujące, postanowiliśmy kontynuować temat.
5 Zastosowanie algorytmów genetycznych. 141 Rys. 4. Filtr dolnoprzepustowy Fig. 4. The low-pass filter Znając strukturę filtru możemy wyliczać jego transmitancję jako funkcję częstotliwości i wartości elementów K(co, R,, R2,...Rn, C,, C2,...Cm) i porównywać z zadaną transmitancją. W prezentowanym przykładzie transmitancja była porównywana w 9 punktach, dla następujących pulsacjiico, = 0, co2 = 100, co3 = 200, a>4 = 500, co5 = 1000, co6 = 2000, co7 = 5000, co8 = i co9 = W tym przykładzie dobór wartości elementów jest w całości dokonany przez algorytm genetyczny bez korzystania jakichkolwiek wskazówek wynikających z teorii i znanych metod projektowania filtrów, aby uniknąć wątpliwości, co jest zasługą algorytmu genetycznego, a co metod tradycyjnych. Jednakże w aplikacjach praktycznych należałoby wykorzystywać wszelkie informacje pozwalające ograniczyć przestrzeń projektową.
6 142 Jan Machniewski, Benedykt Nowak Rezystory były dobierane z zakresu od 10 Q do 8,2 MC2 z następującej serii: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82, natomiast kondensatory były dobierane z zakresu od 10 pf do 680 ^F z serii: 10, 22, 47, 68. Poniżej przedstawione są oceny układów (odległości uzyskanych transmitancji od transmitancji zadanej) dla różnych kombinacji parametrów algorytmu genetycznego, takich jak: prawdopodobieństwo mutacji (M), ilość par rozmnażanych (P), wysokość progu pierwszej selekcji (S), liczba generacji (G) oraz wartości elementów dla trzech przypadków. G=300, P=5, M=0.001 M=0.001, P=5, S=0.75, S Ocena G Ocena G=300, P=5, S=0.75 G=300, M=0.001, S=0.75 M Ocena P Ocena Rys. 5. Oceny rozwiązań dla różnych kombinacji parametrów Fig. 5. Fitness function for various value of parameters R im c r F i próg=0.9 próg=0.75 próg=0.6 R k 6800 R ll R k 820 R k 22k C OOOn looon 6 800n C p 47p 68n R R32 82k R42 8.2M 12k 3.9M C22 68n 47 OOOn 680n C52 680p 47p 22n Rfl k 8.2M Rf R00 3.9M M ROI 3.9M 56k 56k R Ra k Rys. 6. Wartości elementów dla przypadku G=300, M=0,001, P=5 Fig. 6. Elements value for G=300, M=0,001, P=5
7 Rys. 7. Rezultaty symulacji dla G = 300, P = 5, M = 0,001 Fig. 7. Simulations results for G = 300, P = 5, M = 0,001
8 144 Jan Machniewski, Benedykt Nowak 4. Wnioski Przeprowadzony eksperyment wykazał, że algorytmy genetyczne mogą być użyteczne przy projektowaniu układów analogowych. Szczególnie w przypadkach, gdy trzeba spełnić różnorakie, powiązane ze sobą wymagania. Na szczególną uwagę zasługuje możliwość zestawiania różnych wymagań, bez konieczności dokonywania zmian w zasadniczym algorytmie. Zmiany ograniczają się w takim przypadku do skonstruowania nowej funkcji oceniającej, co nie jest ani trudne, ani czasochłonne. Jak wykazał przeprowadzony eksperyment, zależność między parametrami algorytmu genetycznego a jakością uzyskanego rozwiązania nie jest prosta. Nie można poprzez proste zwiększanie wartości tych parametrów uzyskiwać coraz to lepszych wyników. Istnieje pewne optimum, dla którego szybko uzyskuje się dobre rozwiązanie. Dotychczasowe doświadczenia wskazują, że liczba par rozmnażanych powinna stanowić kilka-kilkanaście procent całej populacji, natomiast prawdopodobieństwo mutacji powinno być rzędu tysięczych. Jednak na razie trudno jest od razu przewidzieć optymalny dobór wartości parametrów; wymaga to przeprowadzenia kilku eksperymentów. LITERATURA 1. Goldberg D.E.: Genetic algorithms in search, optymization, and machine learning. Addison-Wesley, Holland J.H., Holyoak K.J., Nisbett R.E., Thagard P.R.: Induction: processes of inference, learning, and discovery. Mit Press, Holland J.H.: Adaptation in natural and artificial systems. Mit Press, Temes G.C., Mitra S.K.: Modern filter theory and design. Warsaw Machniewski J., Nowak B.: Application of genetic algorithms for designing and optimization of electronic circuits. XIV National Conference - Circuit Theory and Electronic Circuits, Kołobrzeg, Poland, Oct , Recenzent: Prof.dr hab.inż. Ryszard Tadeusiewicz Wpłynęło do Redakcji r.
9 Zastosowanie algorytmów genetycznych. 145 Abstract The paper presents the new, heuristic idea of designing analog circuits. At the begining the paper introduce the theory of genetic algorithms - search algorithms based on the mechanics of natural selection and genetics. Chapter 2 explain what are genetic algorithms? and how are genetic algorithms different from traditional methods and illustrate the operators of genetic algorithms. On the basic of an example of a typical structure of a low-pass filter there has been shown how to use genetic algorithms in optimisation of electronic circuits. This is our original application of genetic algorithms. There has been shown influence of genetic algorithm s parameters such: number of pair intercrossed, mutation probability, treshold of the first selection on the solution. At the end there has been presented the result of simulation by SPICE and value of elements generated by genetic algorithms.
ALGORYTMY GENETYCZNE ćwiczenia
ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację
Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba
Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania
LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 3: Wpływ operatorów krzyżowania na skuteczność
Algorytm genetyczny (genetic algorithm)-
Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie
Algorytmy ewolucyjne NAZEWNICTWO
Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Algorytmy Genetyczne Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Metody heurystyczne Algorytm efektywny: koszt zastosowania (mierzony
Algorytmy genetyczne
Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą
LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch
OBLICZENIA EWOLUCYJNE LABORATORIUM 2: Wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE opracował: dr inż. Witold Beluch witold.beluch@polsl.pl Gliwice 12 OBLICZENIA EWOLUCYJNE LABORATORIUM
OPTYMALIZACJA STRUKTUR ELEKTROENERGETYCZNYCH SIECI PROMIENIOWYCH
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 78 Electrical Engineering 2014 Janusz BROŻEK* Wojciech BĄCHOREK* OPTYMALIZACJA STRUKTUR ELEKTROENERGETYCZNYCH SIECI PROMIENIOWYCH Optymalizacja promieniowych
WYKORZYSTANIE METOD OPTYMALIZACJI DO ESTYMACJI ZASTĘPCZYCH WŁASNOŚCI MATERIAŁOWYCH UZWOJENIA MASZYNY ELEKTRYCZNEJ
MODELOWANIE INŻYNIERSKIE ISNN 1896-771X 3, s. 71-76, Gliwice 006 WYKORZYSTANIE METOD OPTYMALIZACJI DO ESTYMACJI ZASTĘPCZYCH WŁASNOŚCI MATERIAŁOWYCH UZWOJENIA MASZYNY ELEKTRYCZNEJ TOMASZ CZAPLA MARIUSZ
LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania i mutacji na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 4: Algorytmy ewolucyjne cz. 2 wpływ operatorów krzyżowania
Automatyczny dobór parametrów algorytmu genetycznego
Automatyczny dobór parametrów algorytmu genetycznego Remigiusz Modrzejewski 22 grudnia 2008 Plan prezentacji Wstęp Atrakcyjność Pułapki Klasyfikacja Wstęp Atrakcyjność Pułapki Klasyfikacja Konstrukcja
Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych
Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w
LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch
OBLICZENIA EWOLUCYJNE LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE opracował: dr inż. Witold Beluch witold.beluch@polsl.pl Gliwice 2012 OBLICZENIA EWOLUCYJNE LABORATORIUM 5 2 Cel ćwiczenia
Zadanie 5 - Algorytmy genetyczne (optymalizacja)
Zadanie 5 - Algorytmy genetyczne (optymalizacja) Marcin Pietrzykowski mpietrzykowski@wi.zut.edu.pl wersja 1.0 1 Cel Celem zadania jest zapoznanie się z Algorytmami Genetycznymi w celu rozwiązywanie zadania
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58 Anna LANDOWSKA ROZWIĄZANIE PROBLEMU OPTYMALNEGO PRZYDZIAŁU ZA POMOCĄ KLASYCZNEGO
Dobór parametrów algorytmu ewolucyjnego
Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.
Algorytmy genetyczne
9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom
Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne
Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,
OPTYMALIZACJA KONFIGURACJI ALGORYTMU EWOLUCYJNEGO DO PLANOWANIA PROCESU MONTAŻU
OPTYMALIZACJA KONFIGURACJI ALGORYTMU EWOLUCYJNEGO DO PLANOWANIA PROCESU MONTAŻU Tomasz JANKOWSKI Streszczenie Jednym z pierwszych zadań, jakie należy wykonać w trakcie projektowania procesu technologicznego
Algorytmy genetyczne (AG)
Algorytmy genetyczne (AG) 1. Wprowadzenie do AG a) ewolucja darwinowska b) podstawowe definicje c) operatory genetyczne d) konstruowanie AG e) standardowy AG f) przykład rozwiązania g) naprawdę bardzo,
Katedra Informatyki Stosowanej. Algorytmy ewolucyjne. Inteligencja obliczeniowa
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Treść wykładu Wprowadzenie Zasada działania Podział EA Cechy EA Algorytm genetyczny 2 EA - wprowadzenie Algorytmy ewolucyjne
ALGORYTMY GENETYCZNE (wykład + ćwiczenia)
ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja
Algorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny
Algorytmy stochastyczne, wykład 01 J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-21 In memoriam prof. dr hab. Tomasz Schreiber (1975-2010) 1 2 3 Różne Orientacyjny
Teoria algorytmów ewolucyjnych
Teoria algorytmów ewolucyjnych 1 2 Dlaczego teoria Wynik analiza teoretycznej może pokazać jakie warunki należy spełnić, aby osiągnąć zbieżność do minimum globalnego. Np. sukcesja elitarystyczna. Może
ZASTOSOWANIE METOD OPTYMALIZACJI W DOBORZE CECH GEOMETRYCZNYCH KARBU ODCIĄŻAJĄCEGO
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 40, s. 43-48, Gliwice 2010 ZASTOSOWANIE METOD OPTYMALIZACJI W DOBORZE CECH GEOMETRYCZNYCH KARBU ODCIĄŻAJĄCEGO TOMASZ CZAPLA, MARIUSZ PAWLAK Katedra Mechaniki Stosowanej,
WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA KOŁA NA ZMIANĘ SZTYWNOŚCI ZAZĘBIENIA
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2009 Seria: TRANSPORT z. 65 Nr kol. 1807 Tomasz FIGLUS, Piotr FOLĘGA, Piotr CZECH, Grzegorz WOJNAR WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA
Algorytmy ewolucyjne 1
Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz
WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM
2/1 Archives of Foundry, Year 200, Volume, 1 Archiwum Odlewnictwa, Rok 200, Rocznik, Nr 1 PAN Katowice PL ISSN 1642-308 WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM D.
Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach
Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital
THE MODELLING OF CONSTRUCTIONAL ELEMENTS OF HARMONIC DRIVE
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2008 Seria: TRANSPORT z. 64 Nr kol. 1803 Piotr FOLĘGA MODELOWANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH PRZEKŁADNI FALOWYCH Streszczenie. W pracy na podstawie rzeczywistych
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50 Anna Landowska KLASYCZNY ALGORYTM GENETYCZNY W DYNAMICZNEJ OPTYMALIZACJI MODELU
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA
PLAN WYKŁADU Operator krzyżowania Operator mutacji Operator inwersji Sukcesja Przykłady symulacji AG Kodowanie - rodzaje OPTYMALIZACJA GLOBALNA Wykład 3 dr inż. Agnieszka Bołtuć OPERATOR KRZYŻOWANIA Wymiana
Standardowy algorytm genetyczny
Standardowy algorytm genetyczny 1 Szybki przegląd 2 Opracowany w USA w latach 70. Wcześni badacze: John H. Holland. Autor monografii Adaptation in Natural and Artificial Systems, wydanej w 1975 r., (teoria
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 72 Electrical Engineering 2012
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 72 Electrical Engineering 2012 Wiktor HUDY* Kazimierz JARACZ* ANALIZA WYNIKÓW SYMULACJI EWOLUCYJNEJ OPTYMALIZACJI PARAMETRYCZNEJ UKŁADU STEROWANIA
Optymalizacja optymalizacji
7 maja 2008 Wstęp Optymalizacja lokalna Optymalizacja globalna Algorytmy genetyczne Badane czasteczki Wykorzystane oprogramowanie (Algorytm genetyczny) 2 Sieć neuronowa Pochodne met-enkefaliny Optymalizacja
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
6. Klasyczny algorytm genetyczny. 1
6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu
Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek
Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę
ALGORYTMY GENETYCZNE JAKO NARZĘDZIE OPTYMALIZACYJNE STOSOWANE W SIECIACH NEURONOWYCH
Inżynieria Rolnicza 2/2005 Instytut Inżynierii Rolniczej Akademia Rolnicza w Poznaniu ALGORYTMY GENETYCZNE JAKO NARZĘDZIE OPTYMALIZACYJNE STOSOWANE W SIECIACH NEURONOWYCH Streszczenie Rewolucyjne wynalazki
Numeryczna symulacja rozpływu płynu w węźle
231 Prace Instytutu Mechaniki Górotworu PAN Tom 7, nr 3-4, (2005), s. 231-236 Instytut Mechaniki Górotworu PAN Numeryczna symulacja rozpływu płynu w węźle JERZY CYGAN Instytut Mechaniki Górotworu PAN,
Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego
Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis
Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane
Plan. Zakres badań teorii optymalizacji. Teoria optymalizacji. Teoria optymalizacji a badania operacyjne. Badania operacyjne i teoria optymalizacji
Badania operacyjne i teoria optymalizacji Instytut Informatyki Poznań, 2011/2012 1 2 3 Teoria optymalizacji Teoria optymalizacji a badania operacyjne Teoria optymalizacji zajmuje się badaniem metod optymalizacji
BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE. Adrian Horzyk. Akademia Górniczo-Hutnicza
BIOCYBERNETYKA ALGORYTMY GENETYCZNE I METODY EWOLUCYJNE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2017, 337(88)3, 5 12
DOI: 10.21005/oe.2017.88.3.01 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2017, 337(88)3, 5 12 Anna LANDOWSKA ZASTOSOWANIE KLASYCZNEGO ALGORYTMU
CHARAKTERYSTYKA I ZASTOSOWANIA ALGORYTMÓW OPTYMALIZACJI ROZMYTEJ. E. ZIÓŁKOWSKI 1 Wydział Odlewnictwa AGH, ul. Reymonta 23, Kraków
36/3 Archives of Foundry, Year 004, Volume 4, 3 Archiwum Odlewnictwa, Rok 004, Rocznik 4, Nr 3 PAN Katowice PL ISSN 64-5308 CHARAKTERYSTYKA I ZASTOSOWANIA ALGORYTMÓW OPTYMALIZACJI ROZMYTEJ E. ZIÓŁKOWSKI
Obliczenia ewolucyjne - plan wykładu
Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja
przetworzonego sygnału
Synteza falek ortogonalnych na podstawie oceny przetworzonego sygnału Instytut Informatyki Politechnika Łódzka 28 lutego 2012 Plan prezentacji 1 Sformułowanie problemu 2 3 4 Historia przekształcenia falkowego
WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego
WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego Algorytm ewolucyjny algorytm ewolucyjny inicjuj P 0 {P 0 1, P 0 2... P 0 μ } t 0 H P 0 while! stop for (i 1: λ) if (a< p c ) O t i mutation(crossover
ALGORYTMY EWOLUCYJNE W ZASTOSOWANIU DO ROZWIĄZYWANIA WYBRANYCH ZADAŃ OPTYMALIZACJI1
Acta Sci. Pol., Geodesia et Descriptio Terrarum 12 (2) 2013, 21-28 ISSN 1644 0668 (print) ISSN 2083 8662 (on-line) ALGORYTMY EWOLUCYJNE W ZASTOSOWANIU DO ROZWIĄZYWANIA WYBRANYCH ZADAŃ OPTYMALIZACJI1 Józef
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA HISTORIA NA CZYM BAZUJĄ AG
PLAN WYKŁADU OPTYMALIZACJA GLOBALNA Wykład 2 dr inż. Agnieszka Bołtuć Historia Zadania Co odróżnia od klasycznych algorytmów Nazewnictwo Etapy Kodowanie, inicjalizacja, transformacja funkcji celu Selekcja
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej
ZASTOSOWANIE ALGORYTMÓW GENETYCZNYCH DO WYZNACZANIA NAJLEPSZYCH KODÓW TAIL-BITING
Piotr Remlein Dawid Szłapka Politechnika Poznańska Instytut Elektroniki i Telekomunikacji ul. Piotrowo 3a; 60-965 Poznań e-mail: remlein@et.put.poznan.pl 2004 Poznańskie Warsztaty Telekomunikacyjne Poznań
Strategie ewolucyjne. Gnypowicz Damian Staniszczak Łukasz Woźniak Marek
Strategie ewolucyjne Gnypowicz Damian Staniszczak Łukasz Woźniak Marek Strategie ewolucyjne, a algorytmy genetyczne Podobieństwa: Oba działają na populacjach rozwiązań Korzystają z zasad selecji i przetwarzania
Równoważność algorytmów optymalizacji
Równoważność algorytmów optymalizacji Reguła nie ma nic za darmo (ang. no free lunch theory): efektywność różnych typowych algorytmów szukania uśredniona po wszystkich możliwych problemach optymalizacyjnych
Aproksymacja funkcji a regresja symboliczna
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą
Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS
Algorytmy ewolucyjne Łukasz Przybyłek Studenckie Koło Naukowe BRAINS 1 Wprowadzenie Algorytmy ewolucyjne ogólne algorytmy optymalizacji operujące na populacji rozwiązań, inspirowane biologicznymi zjawiskami,
LABORATORIUM 1: Program Evolutionary Algorithms
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 1: Program Evolutionary Algorithms opracował:
A Zadanie
where a, b, and c are binary (boolean) attributes. A Zadanie 1 2 3 4 5 6 7 8 9 10 Punkty a (maks) (2) (2) (2) (2) (4) F(6) (8) T (8) (12) (12) (40) Nazwisko i Imiȩ: c Uwaga: ta część zostanie wypełniona
Modelowanie stochastyczne Stochastic Modeling. Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 2W E, 2C
Nazwa przedmiotu: Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności matematyka przemysłowa Rodzaj zajęć: wykład, ćwiczenia Modelowanie stochastyczne Stochastic Modeling Poziom przedmiotu:
Kryteria optymalizacji w systemach sterowania rozmytego piecami odlewniczymi
A R C H I V E S of F O U N D R Y E N G I N E E R I N G Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (1897-3310) Volume 14 Special Issue 2/2014 95 100
XII International PhD Workshop OWD 2010, 23 26 October 2010. Metodyka pozyskiwania i analizy wyników badań symulacyjnych ścieżek klinicznych
XII International PhD Workshop OWD 2010, 23 26 October 2010 Metodyka pozyskiwania i analizy wyników badań symulacyjnych ścieżek klinicznych Methodology of Acquiring and Analyzing Results of Simulation
Gospodarcze zastosowania algorytmów genetycznych
Marta Woźniak Gospodarcze zastosowania algorytmów genetycznych 1. Wstęp Ekonometria jako nauka zajmująca się ustalaniem za pomocą metod statystycznych ilościowych prawidłowości zachodzących w życiu gospodarczym
MODEL SYMULACYJNY ENERGOELEKTRONICZNEGO STEROWANEGO ŹRÓDŁA PRĄDOWEGO PRĄDU STAŁEGO BAZUJĄCEGO NA STRUKTURZE BUCK-BOOST CZĘŚĆ 2
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 87 Electrical Engineering 2016 Michał KRYSTKOWIAK* Dominik MATECKI* MODEL SYMULACYJNY ENERGOELEKTRONICZNEGO STEROWANEGO ŹRÓDŁA PRĄDOWEGO PRĄDU STAŁEGO
Strategie ewolucyjne (ang. evolution strategies)
Strategie ewolucyjne (ang. evolution strategies) 1 2 Szybki przegląd Rozwijane w Niemczech w latach 60-70. Wcześni badacze: I. Rechenberg, H.-P. Schwefel (student Rechenberga). Typowe zastosowanie: Optymalizacja
ZESZYTY NAUKOWE WYDZIAŁU ETI POLITECHNIKI GDAŃSKIEJ Nr 5 Seria: Technologie Informacyjne 2007
ZESZYTY NAUKOWE WYDZIAŁU ETI POLITECHNIKI GDAŃSKIEJ Nr 5 Seria: Technologie Informacyjne 2007 Katedra Inżynierii Komputerowej, Politechnika Koszalińska ALGORYTMY EWOLUCYJNE O WIELOWARSTWOWYCH CHROMOSOMACH
DWUETAPOWA OPTYMALIZACJA MAGNETO- ELEKTRYCZNYCH SILNIKÓW SYNCHRONICZNYCH Z UWZGLĘDNIENIM WSPÓŁCZYNNIKA THD
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 66 Politechniki Wrocławskiej Nr 66 Studia i Materiały Nr 32 2012 Łukasz KNYPIŃSKI, Lech NOWAK * Magnetoelektryczne silniki synchroniczne,
IMPLIKACJE ZASTOSOWANIA KODOWANIA OPARTEGO NA LICZBACH CAŁKOWITYCH W ALGORYTMIE GENETYCZNYM
IMPLIKACJE ZASTOSOWANIA KODOWANIA OPARTEGO NA LICZBACH CAŁKOWITYCH W ALGORYTMIE GENETYCZNYM Artykuł zawiera opis eksperymentu, który polegał na uyciu algorytmu genetycznego przy wykorzystaniu kodowania
Wykorzystanie metod ewolucyjnych w projektowaniu algorytmów kwantowych
Wykorzystanie metod ewolucyjnych w projektowaniu algorytmów kwantowych mgr inż. Robert Nowotniak Politechnika Łódzka 1 października 2008 Robert Nowotniak 1 października 2008 1 / 18 Plan referatu 1 Informatyka
Zadania laboratoryjne i projektowe - wersja β
Zadania laboratoryjne i projektowe - wersja β 1 Laboratorium Dwa problemy do wyboru (jeden do realizacji). 1. Water Jug Problem, 2. Wieże Hanoi. Water Jug Problem Ograniczenia dla każdej z wersji: pojemniki
APLIKACJA NAPISANA W ŚRODOWISKU LABVIEW SŁUŻĄCA DO WYZNACZANIA WSPÓŁCZYNNIKA UZWOJENIA MASZYNY INDUKCYJNEJ
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 83 Electrical Engineering 2015 Damian BURZYŃSKI* Leszek KASPRZYK* APLIKACJA NAPISANA W ŚRODOWISKU LABVIEW SŁUŻĄCA DO WYZNACZANIA WSPÓŁCZYNNIKA UZWOJENIA
ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 4(90)/2012
ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 4(9)/212 Katarzyna Rutczyńska-Wdowiak 1, Michał Makowski 2 ANALIZA WPŁYWU METODY SELEKCJI W PROBLEMIE IDENTYFIKACJI MODELU TŁUMIKA MR Z ZASTOSOWANIEM ALGORYTMU GENETYCZNEGO
Metody Optymalizacji: Przeszukiwanie z listą tabu
Metody Optymalizacji: Przeszukiwanie z listą tabu Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: wtorek
Politechnika Wrocławska Wydział Elektroniki INFORMATYKA SYSTEMÓW AUTONOMICZNYCH. Heurystyka, co to jest, potencjalne zastosowania
Politechnika Wrocławska Wydział Elektroniki INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Autor: Łukasz Patyra indeks: 133325 Prowadzący zajęcia: dr inż. Marek Piasecki Ocena pracy: Wrocław 2007 Spis treści 1 Wstęp
OKREŚLENIE WPŁYWU WYŁĄCZANIA CYLINDRÓW SILNIKA ZI NA ZMIANY SYGNAŁU WIBROAKUSTYCZNEGO SILNIKA
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2008 Seria: TRANSPORT z. 64 Nr kol. 1803 Rafał SROKA OKREŚLENIE WPŁYWU WYŁĄCZANIA CYLINDRÓW SILNIKA ZI NA ZMIANY SYGNAŁU WIBROAKUSTYCZNEGO SILNIKA Streszczenie. W
Algorytmy genetyczne i wielomiany w zagadnieniu interpolacji
Algorytmy genetyczne i wielomiany w zagadnieniu interpolacji Seminarium Metod Inteligencji Obliczeniowej Warszawa 30 V 2007 mgr inż. Marcin Borkowski Dziś opowiem o: Algorytmie genetycznym i niszach Starszym
ZASTOSOWANIE ANALOGII BIOLOGICZNEJ DO
Aktualne Problemy Biomechaniki, nr 8/2014 63 Instytut Podstaw Konstrukcji Maszyn, ZASTOSOWANIE ANALOGII BIOLOGICZNEJ DO Streszczenie: W strukturze typu sandwicz z rdzeniem typu pianoaluminium oraz na strukturze
w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.
Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą
Obliczenia Naturalne - Algorytmy genetyczne
Literatura Obliczenia Naturalne - Algorytmy genetyczne Paweł Paduch Politechnika Świętokrzyska 20 marca 2014 Paweł Paduch Obliczenia Naturalne - Algorytmy genetyczne 1 z 45 Plan wykładu Literatura 1 Literatura
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction
Metody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Rozwiązywanie problemów-i Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Rozwiązywanie problemów Podstawowe fazy: Sformułowanie celu -
Algorytm Grovera. Kwantowe przeszukiwanie zbiorów. Robert Nowotniak
Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka 13 listopada 2007 Plan wystapienia 1 Informatyka Kwantowa podstawy 2 Opis problemu (przeszukiwanie zbioru) 3 Intuicyjna
Algorytmy ewolucyjne
Algorytmy ewolucyjne wprowadzenie Piotr Lipiński lipinski@ii.uni.wroc.pl Piotr Lipiński Algorytmy ewolucyjne p.1/16 Cel wykładu zapoznanie studentów z algorytmami ewolucyjnymi, przede wszystkim nowoczesnymi
PEWNE METODY HYBRYDOWE W JEDNOKRYTERIALNEJ OPTYMALIZACJI KONSTRUKCJI SOME HYBRID METHODS FOR SINGLE CRITERIA DESIGN OPTIMIZATION
STANISŁAW KRENICH PEWNE METODY HYBRYDOWE W JEDNOKRYTERIALNEJ OPTYMALIZACJI KONSTRUKCJI SOME HYBRID METHODS FOR SINGLE CRITERIA DESIGN OPTIMIZATION S t r e s z c z e n i e A b s t r a c t W artykule przedstawiono
Techniki optymalizacji
Techniki optymalizacji Algorytm kolonii mrówek Idea Smuga feromonowa 1 Sztuczne mrówki w TSP Sztuczna mrówka agent, który porusza się z miasta do miasta Mrówki preferują miasta połączone łukami z dużą
NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH POBRANYCH Z PŁYT EPS O RÓŻNEJ GRUBOŚCI
PRACE INSTYTUTU TECHNIKI BUDOWLANEJ - KWARTALNIK 1 (145) 2008 BUILDING RESEARCH INSTITUTE - QUARTERLY No 1 (145) 2008 Zbigniew Owczarek* NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH
Inżynieria danych I stopień Praktyczny Studia stacjonarne Wszystkie specjalności Katedra Inżynierii Produkcji Dr Małgorzata Lucińska
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 205/206 Z-ID-602 Wprowadzenie do uczenia maszynowego Introduction to Machine Learning
Zaawansowane programowanie
Zaawansowane programowanie wykład 1: wprowadzenie + algorytmy genetyczne Plan wykładów 1. Wprowadzenie + algorytmy genetyczne 2. Metoda przeszukiwania tabu 3. Inne heurystyki 4. Jeszcze o metaheurystykach
Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny
Soft computing Soft computing tym róŝni się od klasycznych obliczeń (hard computing), Ŝe jest odporny na brak precyzji i niepewność danych wejściowych. Obliczenia soft computing mają inspiracje ze świata
PORÓWNANIE ALGORYTMÓW OPTYMALIZACJI GLOBALNEJ W MODELOWANIU ODWROTNYM PROCESÓW SUSZENIA PRODUKTÓW ROLNICZYCH
Inżynieria Rolnicza 7(125)/2010 PORÓWNANIE ALGORYTMÓW OPTYMALIZACJI GLOBALNEJ W MODELOWANIU ODWROTNYM PROCESÓW SUSZENIA PRODUKTÓW ROLNICZYCH Michał Siatkowski, Jerzy Weres, Sebastian Kujawa Zakład Informatyki
ĆWICZENIE 2: Algorytmy ewolucyjne cz. 1 wpływ wielkości populacji i liczby pokoleń na skuteczność poszukiwań AE
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE studia niestacjonarne ĆWICZENIE 2: Algorytmy ewolucyjne cz. 1
MODELOWANIE I SYMULACJA Kościelisko, 19-23 czerwca 2006r. Oddział Warszawski PTETiS Wydział Elektryczny Politechniki Warszawskiej Polska Sekcja IEEE
ODELOWANIE I SYULACJA Kościelisko, 9-3 czerwca 006r. Oddział Warszawski PTETiS Wydział Elektryczny Politechniki Warszawskiej Polska Sekcja IEEE SYSTE DO KOPUTEROWEGO ODELOWANIA I SYULACJI UKŁADÓW DYNAICZNYCH
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311
Sztuczne sieci neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 Wykład 7 PLAN: - Repetitio (brevis) -Algorytmy miękkiej selekcji: algorytmy ewolucyjne symulowane wyżarzanie
Metody przeszukiwania
Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania
Generowanie i optymalizacja harmonogramu za pomoca
Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska