Problem komputerowy Nr Element nieliniowy w obwodzie - cz. I
|
|
- Adrian Witek
- 6 lat temu
- Przeglądów:
Transkrypt
1 Problem komputerowy Nr Element nieliniowy w obwodzie - cz. I I. Z pracowni fizycznej. 1. Element nieliniowy obwodu. W paragrafie 2.4 trzeciego tomu e-podręcznika opisano doświadczenie, w którym badana jest charakterystyka napięciowo-prądowa opornika. Uzyskana tam zależność I(U) jest liniowa (rys. 1.). Oznacza to, że opór elektryczny R badanego opornika jest stały - nie zależy ani od napięcia ani od natężenia prądu. Nachylenie (stromizna) linii prostej informują nas o oporze elektrycznym badanego elementu - im nachylenie większe, tym opór ten jest mniejszy. I 1 I I w 2 U U w U Rys. 1. Dwie liniowe charakterystyki. Różnice w nachyleniu pokazują, że opór elementu 1 (stroma linia) jest mniejszy od oporu elementu 2 (mniej stroma linia). Rys. 2. Charakterystyka elementu nieliniowego. W miarę wzrostu napięcia, nachylenie linii maleje. Pokazuje to, że opór elementu wzrasta w miarę wzrostu napięcia i natężenia prądu. Napięcie U w i natężenie I w wyznaczają wzorcowy punkt na charakterystyce. Nieco inny wynik uzyskano by, gdyby badanym elementem obwodu była żarówka. Jej włókno nagrzewa się w miarę zwiększania napięcia i natężenia prądu, co powoduje wzrost oporu elektrycznego włókna. W efekcie natężenie prądu rośnie, owszem, wraz z napięciem, ale wzrost ten jest nieliniowy i coraz słabszy (rys. 2.). Żarówka jest więc przykładem nieliniowego elementu obwodu. 2. Matematyczny opis charakterystyki I(U) żarówki. Najprostszy model osiągania przez włókno żarówki równowagi termicznej z otoczeniem pozwala stwierdzić, że zależność natężenia prądu płynącego przez włókno od przyłożonego do niego napięcia ma postać funkcji potęgowej: I(U) = Iw (U/Uw) (1) Wielkości Uw i Iw to odpowiednio napięcie (dowolnie wybrane z obszaru charakterystyki) i zmierzone natężenie prądu odpowiadające temu napięciu. W praktyce najczęściej przyjmuje się dla Uw tzw. napięcie znamionowe (nominalne), podawane przez producenta żarówki. Przykładowo, dla żarówki przystosowanej do napięcia sieciowego w Polsce, Uw = 230 V. Wtedy Iw to tzw. natężenie znamionowe; wynika ono z podawanej przez producenta mocy znamionowej Pw, zgodnie z równaniem: Pw = Iw Uw (2)
2 Wykładnik w zależności (1) ma wartość 0,6 w sytuacji włókna idealnego (włókno jest traktowane jako ciało doskonale czarne, otoczone próżnią o temperaturze 0 K). W realnej sytuacji, zależnie od budowy żarówki, wartość wykładnika może wynosić ok. 0,3-0,4. Wartość tę wyznacza się doświadczalnie - patrz Problem komputerowy Element nieliniowy w obwodzie - cz. II. Zależność (1) można odwrócić i wyrazić napięcie U zasilające żarówkę w funkcji natężenia prądu I przepływającego przez żarówkę; otrzymamy także funkcję potęgową: U(I) = Uw (I/Iw) 1/ (3) 3. Szeregowe połączenie opornika i żarówki. Jeśli połączymy szeregowo dwa oporniki (elementy liniowe) o stałych oporach R1 i R2 i podłączymy je do źródła napięcia o sile elektromotorycznej ε (patrz 2.1 trzeciego tomu e- podręcznika), to II prawo Kirchhoffa (patrz 2.8) pozwala w prosty sposób określić natężenie prądu I w takim obwodzie: ε - U1 - U2 = 0 I = ε/(r1 + R2) (4) Uwzględniamy przy tym, że napięcia na każdym z oporników są powiązane z ich oporami zależnością liniową: U1 = R1 I oraz U2 = R2 I Sprawa się nieco komplikuje, gdy łączymy szeregowo opornik z żarówką (rys. 3). Równanie wynikające z II prawo Kirchhoffa przyjmuje wtedy R postać: Ż ε - UR - U = 0 ε - R I - U = 0 Symbolem U oznaczono tu napięcie panujące na żarówce. Wyraża się ono poprzez natężenie prądu równaniem (3), co daje: ε - R I - Uw (I/Iw) 1/ = 0 (5) I ε Wyznaczenie natężenia prądu I z tego równania w postaci algebraicznego wyrażenia jest dla dowolnego niemożliwe! 4. Komputerowe rozwiązanie równania (5). rys. 3. Opornik i żarówka połączone szeregowo ze źródłem napięcia. Równanie (5) można jednak rozwiązać tabelarycznie, graficznie oraz numerycznie. Można się przy tym posłużyć odpowiednio zaprogramowanym arkuszem kalkulacyjnym. Koncepcja rozwiązania tabelarycznego i graficznego wymaga zauważenia, że równanie to można przedstawić jako równość dwóch funkcji; argumentem obu jest natężenie prądu I: ε - R I = Uw (I/Iw) 1/ (6) Po lewej stronie znaku równości stoi liniowa funkcja I; jej wartość dla I = 0 wynosi ε i jest ona malejąca. Po prawej stronie widzimy funkcję potęgową, której wartość dla I = 0 wynosi zero; jest ona rosnąca. Musi więc istnieć taka wartość I, dla której obie funkcje są sobie równe (ich wykresy się wtedy przetną) - ta właśnie wartość jest rozwiązaniem równania (5). Wartość tę znajdziemy - w przybliżeniu - porównując tabele wartości oraz wykresy obu funkcji.
3 II. W pracowni informatycznej. Rozwiązanie tabelaryczne i graficzne równania (5). 1. Ustaw parametry zadania: - wykładnik, domyślnie = 0,6; - napięcie znamionowe żarówki Uw (w woltach), domyślnie Uw = 230 V; - moc znamionowa żarówki Pw (w watach), domyślnie Pw = 100 W; - natężenie znamionowe Iw (w amperach), obliczane przez program zgodnie ze wzorem (2); - znamionowy opór elektryczny żarówki Rw (w omach), obliczane przez program zgodnie z prawem Ohma; - siłę elektromotoryczną źródła napięcia ε (w woltach), domyślnie ε = 230 V; - wartość oporu R (w omach), domyślnie R = 500. A9: =A7/A5 B11: =A5/A9
4 2. Przygotuj tabelę:. 3. Pierwszą kolumnę tabeli wypełnij wartościami napięcia. Zacznij od wartości rzędu 5% Uw (około 10V).W kolejnych wierszach zwiększaj ją równomiernie co 10 tak, by uzyskać około 20 wartości, kończących się na Uw. W kolumnie tej znajdują się wartości funkcji po prawej stronie równości (6). 4. W następnej kolumnie (I) przygotuj tabelę z wartościami natężenia prądu, odpowiadającymi napięciom z kolumny U zgodnie ze wzorem (1). Ta kolumna będzie zawierała argumenty odkładane na osi odciętych (oś x ) I[A] D1: =$A$9*(C2/$A$5)^$A$3 5. Kolejne dwie kolumny ( UR i ε - UR ) zawierają: napięcia na oporniku, zgodnie z formułą UR = R I oraz funkcję po lewej stronie równości (6). UR[V] E1: =D2*$A$15 ε - UR [V] F1: =$A$13-E2 Zablokuj przy tym możliwość zmiany przez użytkownika parametrów obliczanych przez program.
5 Wypełniona tabela
6 6. Przedstaw na wspólnym wykresie funkcje U(I) oraz ε-ur (I). 7. Znajdź na wykresie punkt przecięcia obu funkcji i odczytaj - orientacyjnie - wartość natężenia prądu I tego punktu. Wartość ta jest rozwiązaniem równania (5) - określa ona natężenie prądu płynącego w obwodzie z rys. 3 z zadanymi przez Ciebie parametrami. Możesz także znaleźć wiersz, w którym wartości z kolumn U i ε - UR są najbardziej do siebie zbliżone. Wartość z kolumny I w tym wierszu jest rozwiązaniem równania (5). 8. Zaproponuj i wykonaj modyfikację (uzupełnienie) arkusza, dzięki któremu będzie można odczytać tabelaryczne i graficzne rozwiązanie równania (5) z lepszą dokładnością. Rozwiązanie numeryczne równania (5). Do dokładnego wyznaczenia dokładnego rozwiązania użyj narzędzia Solver 1. Przygotuj tabelę:
7 2. Do komórek wprowadź wzory: J24: =$A$9*(I24/$A$5)^$A$3 K24: =J24*$A$15 L24: =$A$13-K24 M24: =L24-I24 Komórkę I24 pozostaw pustą. Tu zostanie wpisany wynik rozwiązania 3. Z Dane/Analiza uruchom Solver i wprowadź parametry:
8 Otrzymane rozwiązanie:
9 III. Do pracowni fizycznej. Wykorzystaj przygotowany arkusz do rozwiązania następujących dwóch problemów. 1. Żarówka ma nominalne parametry Uw = 230 V i Pw = 100 W. Wykładnik zależności I(U) tej żarówki = 0,6. Żarówkę tę włączono do domowej instalacji w Stanach Zjednoczonych, gdzie napięcie sieciowe wynosi 110 V. a) Oblicz moc P z jaką świecić będzie ta żarówka. b) Oblicz opór elektryczny R żarówki podłączonej do napięcia 110 V i porównaj ten opór z jej oporem nominalnym Rw. c) Porównaj moc P z mocą P obliczoną przy założeniu, że opór żarówki nie zmienia się wraz z napięciem. 2. Żaróweczka do latarki ma nominalne parametry Uw = 6 V i Pw = 6 W. Wykładnik zależności I(U) tej żarówki = 0,4. Żarówkę tę zasilono płaską baterią o SEM ε = 4,5 V i oporze wewnętrznym r = 0,8. a) Oblicz moc P z jaką świeci ta żaróweczka. b) Użytkownik, niezadowolony z uzyskanego efektu, połączył szeregowo dwie identyczne płaskie baterie i zasilił nimi żaróweczkę. Zbadaj, czy uzyskał on w ten sposób świecenie z nominalną mocą. Rozwiązania i komentarze Zadanie 1 Dane zapisane w tabeli w arkuszu kalkulacyjnym mogą być przydatne do analizy różnych problemów. Spróbujmy obliczyć jaka będzie moc żarówki 100 W gdy podłączymy ją do sieci energetycznej w USA. Wykorzystamy znane wzory na moc: i zaczerpniemy dane z tabeli. P = U 2 /R oraz P = U I
10
11 Policzmy teraz opór elektryczny podłączonej żarówki do instalacji o napięciu 110 V: Widać stąd, że opór żarówki podłączonej do instalacji o napięciu 230 V jest większy niż opór żarówki podłączonej do instalacji 110 V. Jest to zgodne z tym, co napisaliśmy wcześniej: żarówka ma nieliniową charakterystykę prądowo - napięciową. Zwróćmy uwagę, że zwiększając napięcie od 110 V do 230 V czyli 2,09 razy, obserwujemy wzrost natężenia prądu tylko 1,56 razy. Spowodowane jest to tym, że wskutek przepływu prądu elektrycznego przez włókno żarówki wzrasta temperatura włókna, zatem wzrasta opór: 528,7 Ω > 393,8 Ω c) Gdyby żarówka miała charakterystykę liniową, czyli opór jej włókna nie ulegał zmianie pomimo zmiany napięcia, to moc żarówki powinna zmieniać się kwadratowo wraz z napięciem, zgodnie z równaniem: Pw P' 2 U w Rw 2 U ' R' 2 U w U ' 4,37 W powyższym równaniu przyjęliśmy R = Rw, Uw = 230 V i U = 110 V. Uzyskany wynik oznacza, że moc P wynosiłaby ok. 22,9 W. Obliczona przy założeniu zadania moc jest więc mniejsza od mocy obliczonej w tabeli, która wynosi ok. 30,7 W. Przy stałej wartości oporu, moc malałaby więc silniej wraz ze spadkiem napięcia zasilającego żarówkę niż ma to miejsce w rzeczywistości, gdy jej opór także maleje wraz ze spadkiem napięcia. Zadanie 2 W tym zadaniu rolę opornika szeregowo połączonego z żaróweczką odgrywa wewnętrzny opór r użytej baterii płaskiej. a) Zbudujmy w arkuszu tabelę analogiczną jak poprzednio, ale uwzględnijmy podane wartości wielkości fizycznych.
12 Jak widać, żaróweczka o parametrach podanych w zadaniu, zasilana płaską baterią, świecić będzie z mocą około 3,2 W, czyli niewiele ponad połowę mocy nominalnej. Jest to zrozumiałe - efektywne napięcie zasilające tę żarówkę wynosi ok. 3,82 V, podczas gdy nominalne jej napięcie wynosi 6 V. Stan ten zachęca do eksperymentu polegającego na zasileniu tej żarówki dwiema bateriami płaskimi. Musimy jednak pamiętać, że może się to skończyć przewoltowaniem żarówki (zasilenie jej napięciem większym od nominalnego), co może doprowadzić do jej przepalenia. b) Aby dowiedzieć się jaka będzie moc żaróweczki, gdy SEM ε zwiększymy do 9 V, należy zmodyfikować tabelę. Pamiętajmy, że druga bateria ma także opór wewnętrzny, więc wypadkowy r = 1,6. Uzyskana tabela oraz wykres pokazują, że teraz żarówka jest zasilana prądem o natężeniu ok. 1,08 A, przy efektywnym napięciu zasilającym ok. 7,28 V. Świeci więc ona z mocą około 7,87 W,
13 czyli ok. 30% większą od mocy nominalnej. Należy zatem przypuszczać, że żywot owej żarówki będzie krótszy, niż przewidział to producent, choć nie powinno dojść do gwałtownego jej przepalenia natychmiast po włączeniu latarki.
Co się stanie, gdy połączymy szeregowo dwie żarówki?
Różne elementy układu elektrycznego można łączyć szeregowo. Z wartości poszczególnych oporów, można wyznaczyć oporność całkowitą oraz całkowite natężenie prądu. Zadania 1. Połącz szeregowo dwie identyczne
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa
Badanie żarówki. Sprawdzenie słuszności prawa Ohma, zdejmowanie charakterystyki prądowo-napięciowej.
Badanie żarówki. Sprawdzenie słuszności prawa Ohma, zdejmowanie charakterystyki prądowo-napięciowej. Sprawdzenie słuszności prawa Stefana Boltzmanna dla metalowego drucika żarówki cz.1 i cz.2 I LO im.
E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA
E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany
Wyznaczanie krzywej ładowania kondensatora
Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa
symbol miernika amperomierz woltomierz omomierz watomierz mierzona
ZADANIA ELEKTROTECHNIKA KLASA II 1. Uzupełnij tabelkę: nazwa symbol miernika amperomierz woltomierz omomierz ----------------- watomierz ----------------- wielkość mierzona jednostka - nazwa symbol jednostki
pobrano z serwisu Fizyka Dla Każdego - - zadania fizyka, wzory fizyka, matura fizyka
6. Prąd elektryczny zadania z arkusza I 6.7 6.1 6.8 6.9 6.2 6.3 6.10 6.4 6.5 6.11 Na zmieszczonym poniżej wykresie przedstawiono charakterystykę prądowo-napięciową żarówki. 600 500 400 I, ma 300 200 6.6
LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne
LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne ZADANIE D1 Cztery identyczne diody oraz trzy oporniki o oporach nie różniących się od siebie o więcej niż % połączono szeregowo w zamknięty obwód elektryczny.
Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?
Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie
Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna
Sprawdzanie prawa Ohma i wyznaczanie wykładnika w prawie Stefana-Boltzmanna Wprowadzenie. Prawo Stefana Boltzmanna Φ λ nm Rys.1. Prawo Plancka. Pole pod każdą krzywą to całkowity strumień: Φ c = σs T 4
Ćw. 27. Wyznaczenie elementów L C metoda rezonansu
7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R
Ćw. 8 Weryfikacja praw Kirchhoffa
Ćw. 8 Weryfikacja praw Kirchhoffa. Cel ćwiczenia Wyznaczenie całkowitej rezystancji rezystorów połączonych równolegle oraz szeregowo, poprzez pomiar prądu i napięcia. Weryfikacja praw Kirchhoffa. 2. Zagadnienia
Badanie charakterystyki prądowo-napięciowej opornika, żarówki i diody półprzewodnikowej z wykorzystaniem zestawu SONDa
Badanie charakterystyki prądowo-napięciowej opornika, żarówki i diody półprzewodnikowej z wykorzystaniem zestawu SONDa Celem doświadczenia jest wyznaczenie charakterystyk prądowo-napięciowych oraz zależności
Test powtórzeniowy. Prąd elektryczny
Test powtórzeniowy. Prąd elektryczny Informacja do zadań 1. i 2. Przez dwie identyczne żarówki (o takim samym oporze), podłączone szeregowo do baterii o napięciu 1,6 V (patrz rysunek), płynie prąd o natężeniu
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości
13 K A T E D R A F I ZYKI S T O S O W AN E J
3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony
Segment B.XIII Prąd elektryczny Przygotowała: mgr Bogna Pazderska
Segment B.XIII Prąd elektryczny Przygotowała: mgr Bogna Pazderska Zad. 1 Wyznacz natężenie prądu I 5, wiedząc że I 1 = 1 A, I 2 = 3 A, I 3 = 5 A, I 4 = 4 A. Odp.: Źrd.: I 5 = 5 A Wasiak, Fizyka od A do
WYDZIAŁ.. LABORATORIUM FIZYCZNE
W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się
Test powtórzeniowy Prąd elektryczny
Test powtórzeniowy rąd elektryczny 1 Wybierz poprawne uzupełnienia zdania. W metalach kierunek przepływu prądu jest zgodny z kierunkiem ruchu elektronów, jest przeciwny do kierunku ruchu elektronów, ponieważ
Powtórzenie wiadomości z klasy II. Przepływ prądu elektrycznego. Obliczenia.
Powtórzenie wiadomości z klasy II Przepływ prądu elektrycznego. Obliczenia. Prąd elektryczny 1. Prąd elektryczny uporządkowany (ukierunkowany) ruch cząstek obdarzonych ładunkiem elektrycznym, nazywanych
Ćwiczenie nr 3 Sprawdzenie prawa Ohma.
Ćwiczenie nr 3 Sprawdzenie prawa Ohma. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne wykazanie i potwierdzenie słuszności zależności określonych prawem Ohma. Zastosowanie prawa Ohma dla zmierzenia oporności
LVII Olimpiada Fizyczna (2007/2008)
LVII Olimpiada Fizyczna (2007/2008) Zadanie doświadczalne Masz do dyspozycji: baterię słoneczną, sześć różnych oporników o oporach 100Ω, 500Ω, 1000Ω, 2200Ω, 3000Ω, 4300Ω określonych z dokładnością 5%,
Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych
Dielektryki Dielektryk- ciało gazowe, ciekłe lub stałe niebędące przewodnikiem prądu elektrycznego (ładunki elektryczne wchodzące w skład każdego ciała są w dielektryku związane ze sobą) Jeżeli do dielektryka
2 K A T E D R A F I ZYKI S T O S O W AN E J
2 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 2. Łączenie i pomiar pojemności i indukcyjności Wprowadzenie Pojemność
Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r )
Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie nr 254 Badanie ładowania i rozładowywania kondensatora Numer wybranego kondensatora: Numer wybranego opornika: Ustawiony prąd ładowania
Badanie obwodów rozgałęzionych prądu stałego z jednym źródłem. Pomiar mocy w obwodach prądu stałego
Badanie obwodów rozgałęzionych prądu stałego z jednym źródłem. Pomiar mocy w obwodach prądu stałego I. Prawa Kirchoffa Celem ćwiczenia jest zapoznanie się z rozpływami prądów w obwodach rozgałęzionych
PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3
PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!!
Matematyka licea ogólnokształcące, technika
Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem
Wyznaczanie oporu elektrycznego właściwego przewodników
Wyznaczanie oporu elektrycznego właściwego przewodników Ćwiczenie nr 7 Wprowadzenie Natężenie prądu płynącego przez przewodnik zależy od przyłożonego napięcia U oraz jego oporu elektrycznego (rezystancji)
Elementy i obwody nieliniowe
POLTCHNKA ŚLĄSKA WYDZAŁ NŻYNR ŚRODOWSKA NRGTYK NSTYTT MASZYN RZĄDZŃ NRGTYCZNYCH LABORATORM LKTRYCZN lementy i obwody nieliniowe ( 3) Opracował: Dr inż. Włodzimierz OGLWCZ 3 1. Cel ćwiczenia Celem ćwiczenia
Elementy elektroniczne i przyrządy pomiarowe
Elementy elektroniczne i przyrządy pomiarowe Cel ćwiczenia. Nabycie umiejętności posługiwania się miernikami uniwersalnymi, oscyloskopem, generatorem, zasilaczem, itp. Nabycie umiejętności rozpoznawania
Prawa Kirchhoffa. I k =0. u k =0. Suma algebraiczna natężeń prądów dopływających(+) do danego węzła i odpływających(-) z danego węzła jest równa 0.
Prawa Kirchhoffa Suma algebraiczna natężeń prądów dopływających(+) do danego węzła i odpływających(-) z danego węzła jest równa 0. k=1,2... I k =0 Suma napięć w oczku jest równa zeru: k u k =0 Elektrotechnika,
BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC
Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia
Scenariusz lekcji fizyki w klasie drugiej gimnazjum
Scenariusz lekcji fizyki w klasie drugiej gimnazjum Temat: Opór elektryczny, prawo Ohma. Czas trwania: 1 godzina lekcyjna Realizowane treści podstawy programowej Przedmiot fizyka matematyka Realizowana
LVI OLIMPIADA FIZYCZNA (2006/2007). Stopień III, zadanie doświadczalne D
LI OLIMPIADA FIZYCZNA (26/27). Stopień III, zadanie doświadczalne D Źródło: Autor: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej. Andrzej ysmołek Komitet Główny Olimpiady Fizycznej,
Funkcja wykładnicza. (x 0 oznacza tu początkowe położenie ciała) , gdzie t oznacza upływ kolejnego tygodnia.
Funkcja wykładnicza I. Z pracowni fizycznej (i nie tylko) 1. Wspólną cechą procesów przebiegających jednostajnie jest zmiana określonej wielkości fizycznej o tę samą wartość w jednakowych odstępach czasu.
Laboratorium Podstaw Elektrotechniki i Elektroniki
Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 2 OBWODY NIELINIOWE PRĄDU
E wektor natęŝenia pola, a dr element obwodu, którego zwrot określa przyjęty kierunek obchodzenia danego oczka.
Lista 9. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. InŜ. Środ.; kierunek InŜ. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;
STAŁY PRĄD ELEKTRYCZNY
STAŁY PRĄD ELEKTRYCZNY Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam
Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego:
Sprawozdanie z laboratorium elektroniki w Zakładzie Systemów i Sieci Komputerowych Temat ćwiczenia: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Sprawozdanie Rok: Grupa: Zespół:
Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO
Ć w i c z e n i e POMIAY W OBWODACH PĄDU STAŁEGO. Wiadomości ogólne.. Obwód elektryczny Obwód elektryczny jest to układ odpowiednio połączonych elementów przewodzących prąd i źródeł energii elektrycznej.
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Laboratorium Elektryczne Montaż Maszyn i Urządzeń Elektrycznych Instrukcja Laboratoryjna: Badanie ogniwa galwanicznego. Opracował: mgr inż.
Wyznaczanie charakterystyki prądowo-napięciowej wybranych elementów 1
Wyznaczanie charakterystyki prądowo-napięciowej wybranych elementów 1 Andrzej Koźmic, Natalia Kędroń 2 Cel ogólny: Wyznaczenie charakterystyki prądowo-napięciowej opornika i żarówki Cele operacyjne: uczeń,
LVI Olimpiada Fizyczna Zawody III stopnia
LVI Olimpiada Fizyczna Zawody III stopnia ZADANIE DOŚIADCZALNE Praca wyjścia wolframu Masz do dyspozycji: żarówkę samochodową 12V z dwoma włóknami wolframowymi o mocy nominalnej 5 oraz 2, odizolowanymi
Technika analogowa 2. Wykład 5 Analiza obwodów nieliniowych
Technika analogowa Wykład 5 Analiza obwodów nieliniowych 1 Plan wykładu Wprowadzenie Charakterystyki parametry dwójników nieliniowych odzaje charakterystyk elementów nieliniowych Obwody z nieliniowymi
Mierzymy opór elektryczny rezystora i żaróweczki. czy prawo Ohma jest zawsze spełnione?
1 Mierzymy opór elektryczny rezystora i żaróweczki czy prawo Ohma jest zawsze spełnione? Czas trwania zajęć: 1h Określenie wiedzy i umiejętności wymaganej u uczniów przed przystąpieniem do realizacji zajęć:
PODSTAWY ELEKTOTECHNIKI LABORATORIUM
PODSTAWY ELEKTOTECHNIKI LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 8 OBWODY PRĄDU STAŁEGO -PODSTAWOWE PRAWA 1. Cel ćwiczenia Doświadczalne zbadanie podstawowych praw teorii
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości
Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 1 Podstawowe prawa obwodów elektrycznych Prąd elektryczny definicja fizyczna Prąd elektryczny powstaje jako uporządkowany ruch
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Funkcja liniowa - podsumowanie
Funkcja liniowa - podsumowanie 1. Funkcja - wprowadzenie Założenie wyjściowe: Rozpatrywana będzie funkcja opisana w dwuwymiarowym układzie współrzędnych X. Oś X nazywana jest osią odciętych (oś zmiennych
Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)
OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu
LVII Olimpiada Fizyczna (2007/2008)
LVII Olimpiada Fizyczna (2007/2008) Zadanie doświadczalne Masz do dyspozycji: baterię słoneczną, sześć różnych oporników o oporach 100Ω, 500Ω, 1000Ω, 2200Ω, 3000Ω, 4300Ω określonych z dokładnością 5%,
Projekt efizyka. Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Prawa Kirchhoffa. Ćwiczenie wirtualne
Projekt efizyka Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Prawa Kirchhoffa Ćwiczenie wirtualne Marcin Zaremba 2015-03-31 Projekt współfinansowany przez Unię Europejską w ramach
Obwody elektryczne prądu stałego
Obwody elektryczne prądu stałego Dr inż. Andrzej Skiba Katedra Elektrotechniki Teoretycznej i Informatyki Politechniki Gdańskiej Gdańsk 12 grudnia 2015 Plan wykładu: 1. Rozwiązanie zadania z poprzedniego
Energia promieniowania termicznego sprawdzenie zależności temperaturowej
6COACH 25 Energia promieniowania termicznego sprawdzenie zależności temperaturowej Program: Coach 6 Projekt: komputer H C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6 \Termodynamika\Promieniowanie
Plan metodyczny do lekcji fizyki. TEMAT: Prawo Ohma. Opór elektryczny.
Opracowała mgr Renata Kulińska Plan metodyczny do lekcji fizyki. TEMAT: Prawo Ohma. Opór elektryczny. Cel ogólny: Badanie zależność natężenia prądu od napięcia w obwodzie prądu stałego. Sporządzenie wykresu
Obwody liniowe. Sprawdzanie praw Kirchhoffa
POLTECHNK ŚLĄSK WYDZŁ NŻYNER ŚRODOWSK ENERGETYK NSTYTT MSZYN RZĄDZEŃ ENERGETYCZNYCH LBORTORM ELEKTRYCZNE Obwody liniowe. Sprawdzanie praw Kirchhoffa (E 2) Opracował: Dr inż. Włodzimierz OGLEWCZ 3 1. Cel
Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu
Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu Prąd płynący w gałęzi obwodu jest wprost proporcjonalny do przyłożonej siły elektromotorycznej E, a odwrotnie proporcjonalne do rezystancji R umieszczonej
Sprzęt i architektura komputerów
Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Sprzęt i architektura komputerów Laboratorium Temat:Pomiary podstawowych wielkości elektryczych: prawa Ohma i Kirchhoffa Katedra Architektury
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 23 PRĄD STAŁY CZEŚĆ 1
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 23 PRĄD STAŁY CZEŚĆ 1 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt TEST JEDNOKROTNEGO WYBORU
rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym
Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie
Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu
Wykład 7 7. Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu M d x kx Rozwiązania x = Acost v = dx/ =-Asint a = d x/ = A cost przy warunku = (k/m) 1/. Obwód
ε (1) ε, R w ε WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ
WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ I. Cel ćwiczenia: wyznaczanie metodą kompensacji siły elektromotorycznej i oporu wewnętrznego kilku źródeł napięcia stałego. II. Przyrządy: zasilacz
Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Siła Coulomba. F q q = k r 1 = 1 4πεε 0 q q r 1. Pole elektrostatyczne. To przestrzeń, w której na ładunek
Charakterystyki częstotliwościowe elementów pasywnych
Charakterystyki częstotliwościowe elementów pasywnych Parametry elementów pasywnych; reaktancji indukcyjnej (XLωL) oraz pojemnościowej (XC1/ωC) zależą od częstotliwości. Ma to istotne znaczenie w wielu
Ćwiczenie A1 Zależności prąd-napięcie (I-V). Wydział Fizyki UW. Streszczenie
Wydział Fizyki UW Pracownia fizyczna i elektroniczna (w tym komputerowa) dla Inżynierii Nanostruktur (1100-1INZ27) oraz Energetyki i Chemii Jądrowej (1100-1ENPRFIZELEK2) Ćwiczenie A1 Zależności prąd-napięcie
Ćwiczenie nr 43: HALOTRON
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel
Przykłady zadań. Gimnazjum im. Jana Pawła II w Sułowie
4. Moc i praca Przykłady zadań 10 Przykład 4.1 Oblicz moc silnika elektrycznego, przez który przepływa prąd o natężeniu I = 5 A, przy napięciu U = 230 V. Dane: Szukane Wzór U = 230 V P P= U I I = 5 A Rozwiązanie
Katedra Energetyki. Laboratorium Podstaw Elektrotechniki i Elektroniki
1 Katedra Energetyki Laboratorium Podstaw Elektrotechniki i Elektroniki Temat ćwiczenia: POMIARY PODSTAWOWYCH WIELKOŚCI ELEKTRYCZNYCH W OBWODACH PRĄDU STAŁEGO (obwód 3 oczkowy) 2 1. POMIARY PRĄDÓW I NAPIĘĆ
Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji
Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 1 Temat: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Katedra Architektury Komputerów i Telekomunikacji
Odgłosy z jaskini (13) Upór elektryczny
FOTON 105, Lato 2009 47 Odgłosy z jaskini (13) Upór elektryczny Adam Smólski Z uporem godnym lepszej sprawy autorzy podręczników proponują doświadczenie, którego celem ma być odkrycie lub sprawdzenie prawa
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną opracowanie ćwiczenia: dr J. Woźnicka, dr S. Belica ćwiczenie nr 38 Zakres zagadnień obowiązujących
Numeryczne rozwiązywanie równań różniczkowych ( )
Numeryczne rozwiązywanie równań różniczkowych Równanie różniczkowe jest to równanie, w którym występuje pochodna (czyli różniczka). Przykładem najprostszego równania różniczkowego może być: y ' = 2x które
FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(
Zad Przedstaw funkcję kwadratową w postaci ogólnej Przykład y = ( x ) + 5 (postać kanoniczna) FUNKCJA KWADRATOWA Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( a 0) Aby ją uzyskać pozbywamy się
Lekcja 6. Metody pracy: pogadanka, wykład, pokaz z instruktarzem, ćwiczenia praktyczne
Lekcja 6 Temat: Równoległe łączenie diod Cele operacyjne uczeń: umie dobrać rezystancję rezystorów do diod połączonych równolegle, umie wyjaśnić, dlaczego do źródła zasilania nie można podłączyć równolegle
Odczytywanie własności funkcji z wykresu test wiedzy i kompetencji
Odczytywanie własności funkcji z wykresu test wiedzy i kompetencji Imię i nazwisko: Klasa:. Ilość punktów:../35pkt Ocena:. W zadaniach 1-4 uzupełnij luki w zdaniach. W zadaniu 5 zakreśl odpowiedź, w zadaniu
1. Właściwości obwodu elektrycznego z elementami połączonymi równolegle
. Właściwości obwodu elektrycznego z elementami połączonymi równolegle Uczeń: Uczeń: a.. Cele lekcji zna prawo Ohma, i. a) Wiadomości wie, że przy połączeniu równoległym rozgałęzieniu ulega natężenie prądu,
M10. Własności funkcji liniowej
M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji
Źródła siły elektromotorycznej = pompy prądu
Źródła siły elektromotorycznej = pompy prądu komórki elektrochemiczne ogniwo Volty akumulator generatory elektryczne baterie I urządzenia termoelektryczne E I I Prądnica (dynamo) termopara fotoogniwa ogniwa
Pomiary elektryczne: Szeregowe i równoległe łączenie żarówek
Pomiary elektryczne: Szeregowe i równoległe łączenie żarówek 1. Dane osobowe Data wykonania ćwiczenia: Nazwa szkoły, klasa: Dane uczniów: A. B. C. D. E. 2. Podstawowe informacje BHP W pracowni większość
2. Narysuj schemat zastępczy rzeczywistego źródła napięcia i oznacz jego elementy.
Ćwiczenie 2. 1. Czym się różni rzeczywiste źródło napięcia od źródła idealnego? Źródło rzeczywiste nie posiada rezystancji wewnętrznej ( wew = 0 Ω). Źródło idealne posiada pewną rezystancję własną ( wew
Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)
Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.
Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane
SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU II
SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU II Nr zadania PUNKTOWANE ELEMENTY ODPOWIEDZI.1 Za czynność Podanie nazwy przemiany (AB przemiana izochoryczna) Podanie nazwy przemiany (BC
1 K A T E D R A F I ZYKI S T O S O W AN E J
1 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 1. Łączenie i pomiar oporu Wprowadzenie Prąd elektryczny Jeżeli w przewodniku
ELEKTROTECHNIKA I ELEKTRONIKA
UNIERSYTET TECHNOLOGICZNO-PRZYRODNICZY BYDGOSZCZY YDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆICZENIE: E3 BADANIE ŁAŚCIOŚCI
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO. Instrukcja wykonawcza
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Instrukcja wykonawcza 1 Wykaz przyrządów a. Generator AG 1022F. b. Woltomierz napięcia przemiennego. c. Miliamperomierz prądu przemiennego. d. Zestaw składający
ĆWICZENIE 31 MOSTEK WHEATSTONE A
1 Maria Nowotny-Różańska Zakład Fizyki, Uniwersytet Rolniczy do użytku wewnętrznego ĆWICZENIE 31 MOSTEK WHEATSTONE A Kraków, 2016 Spis Treści: I. CZĘŚĆ TEORETYCZNA... 2 ŁADUNEK ELEKTRYCZNY... 2 PRAWO COULOMBA...
Badanie transformatora
Ćwiczenie E9 Badanie transformatora E9.1. Cel ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. W ćwiczeniu przykładając zmienne napięcie do uzwojenia pierwotnego
3) Naszkicuj wykres funkcji y=-xdo kwadratu+2x+1 i napisz równanie osi symetrii jej wykresu.
Zadanie: 1) Dana jest funkcja y=-+7.nie wykonując wykresu podaj a) miejsce zerowe b)czy funkcja jest rosnąca czy malejąca(uzasadnij) c)jaka jest rzędna punktu przecięcia wykresu z osią y. ) Wykres funkcji
Lekcja 14. Obliczanie rozpływu prądów w obwodzie
Lekcja 14. Obliczanie rozpływu prądów w obwodzie Zad 1.Oblicz wartość rezystancji zastępczej obwodu z rysunku. Dane: R1= 10k, R2= 20k. Zad 2. Zapisz równanie I prawa Kirchhoffa dla węzła obwodu elektrycznego
Elektronika. Laboratorium nr 2. Liniowe i nieliniowe elementy elektroniczne Zasada superpozycji i twierdzenie Thevenina
Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 2 emat: Liniowe i nieliniowe elementy elektroniczne Zasada superpozycji i twierdzenie hevenina SPIS REŚCI Spis treści...2
Wyznaczanie wielkości oporu elektrycznego różnymi metodami
Wyznaczanie wielkości oporu elektrycznego różnymi metodami Obowiązkowa znajomość zagadnień: Co to jest prąd elektryczny, napięcie i natężenie prądu? Co to jest opór elektryczny i od czego zależy? Prawo
Pracownia pomiarów i sterowania Ćwiczenie 4 Badanie ładowania i rozładowywania kondensatora
Małgorzata Marynowska Uniwersytet Wrocławski, I rok Fizyka doświadczalna II stopnia Prowadzący: dr M. Grodzicki Data wykonania ćwiczenia: 17.03.2015 Pracownia pomiarów i sterowania Ćwiczenie 4 Badanie
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Dział programowy. Zakres realizacji 1. Liczby, działania i procenty Liczby wymierne i liczby niewymierne-działania, kolejność
ELEKTROTECHNIKA I ELEKTRONIKA
UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIŁ INŻYNIERII MECHNICZNEJ INSTYTUT EKSPLOTCJI MSZYN I TRNSPORTU ZKŁD STEROWNI ELEKTROTECHNIK I ELEKTRONIK ĆWICZENIE: E2 POMIRY PRĄDÓW I NPIĘĆ W
Czym jest prąd elektryczny
Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,