Równania strukturalne
|
|
- Teresa Kania
- 6 lat temu
- Przeglądów:
Transkrypt
1 Po co nam SEM? Badanie zależności między latentnymi zmiennymi Porównywanie konkurencyjnych modeli Badanie efektów pośrednich i bezpośrednich Konfirmacyjne analizy struktury narzędzi badawczych Testowanie złożonych modeli mediacji zmiennych Sprawdzanie międzygrupowej stabilności modeli Równania strukturalne Paweł Kleka 25 stycznia 2017 (uaktualnione ) 3/47 Co już wiemy Y ~ X korelacja Y ~ X 1 + X X n regresja Równania strukturalne: Y 1 ~ X 1 + X 2 ; Y 2 ~ X 3 + X 4 ; Y ~ Y 2 Analiza ścieżek vs Równania strukturalne Path analysis + równania regresji wielorakiej + wszystkie zmienne są obserwowane Structural Equations Modeling + rachunek macierzowy + zmienne jawne i ukryte (latentne) 2/47 4/47
2 SEM w pigułce Wykres ścieżkowy - elementy Graficzny obraz struktury zależności między zmiennymi wraz ze współczynnikami i miarą dopasowania do danych. zmienna obserwowana a zmienna ukryta c przyczynowa kowariancja b d 5/47 7/47 Etapy postępowania Składnia 1. Zdefiniowanie modelu w oparciu o teorię 2. Przygotowanie danych usunięcie lub uzupełnienie braków danych ocena normalności i wartości odstających 3. Sporządzenie i ocena modelu współczynniki dopasowanie interpretacja 4. Opcjonalnie: modyfikacja modelu i ponowna jego ocena 5. Odniesienie wyniku do teorii 1. zmienna ukryta f1 =~ y1 + y2 + y3 2. regresja f1 ~ f3 + f4 3. kowariancja y1 ~~ y1 4. stałe f1 ~ 1 Więcej: model.syntax {lavaan} 6/47 8/47
3 Regresja jako równaie strukturalne Założenia SEM X1 β 1 liniowość zależności normalność rozkładów zmiennych ciągłość zmiennych obserwowalnych (kategorii=>7) niezależność obserwacji X2 β 2 Y losowość próby o dużej liczebności ε 9/47 11/47 Analiza czynnikowa jako SEM Estymatory ML - maksymalnej wiarygodności GLS - uogólnionych najmniejszych kwadratów ULS - nieważonych najmniejszych kwadratów SLS - niezależna od skali najmniejszych kwadratów ADF - asymptotycznie wolna od rozkładu 10/47 12/47
4 Wymagane N Wyjątkow N < 200 Metoda estymacji N obserwacji skośność i kurtoza ML x V -1 : 1 _LS x V -1 : 1 _LS ,5 : 2,5 Gdy: Modele bez zmiennych latentnych Modele z silnie skorelowanymi zmiennymi (>0.6) Proste modele Modele na ograniczonych populacjach ADF /47 15/47 Sample size Co, gdy skale porządkowe? N < 200 to mała grupa Dla estymatora ML: N >= df * 10 Czyli gdzie s to liczba ustalonych parametrów w modelu, a k liczba zmiennych Dla estymatora GLS: N >= df * 3 1 df = k (k 1) 2 s przy N < 120 minimum to n >= df przy N > 150 n > k Skale porządkowe są z natury dyskretne, likertowskie <- średnie, wariancje i kowariancje nie mają znaczenia -> związki są zawsze niedoszacowane: 1. obciążone parametry 1. obciążone błędy standardowe 1. niepoprawne wyniki testów Rozwiązanie UVA (undelraing variable approach): pod obserwowaną zmienną porządkową jest zmienna ilościowa, ciągła, dlatego można stosować korelacje terrachoryczne lub polychoryczne i estymator WLS (N >= 20*df) Dla N => 500+ można uzywać estymator DWLS, który ma zalety WLS, ale ma mniejsze wymagania co do wielkości próby. Brzeziński 1996, s /47 16/47
5 Tabelka z mocą (Konarski, 2009) Miary dopasowania CMIN* (miara niedopasowania o rozkładzie chi2) Hoelter** > 200 (dla n >200 i istotnego chi2) Miara rozbieżności dopasowania RMSEA 0 -dobre-.05 -zadowalające-.08 -mierne-.10 -brak- 1.0 Miary wyjaśnionej wariancji GFI AGFI, PGFI - jak skorygowane R2 NFI (miara różnicy od modelu niezależnego) RFI, PNFI, TLI (duże n), IFI (duże n) ->.90 Kryteria informacyjne AIC, BCC, CAIC, BIC - im niższe, tym lepiej; do porównywania modeli chi2 jest wiarygodne dla prób osób, powyżej 400 przeważnie jest istotne wielkość efektu: Z = 2χ 2 2 df 1 17/47 19/47 Szacowanie dopasowania modeli Raport z analizy SEM Porównanie między modelami: niezależny (independence) - brak związków między zmiennymi badawczy (default) nasycony (saturated) - związki między wszystkimi zmiennymi 1. przesłanki teoretyczne 2. przykładowa macierz korelacji z średnimi i odchyleniami standardowymi na przekątnej 3. minimum po jednym wskaźniku dopasowania z każdej grupy 4. interpretacja wartości wskaźników 5. współczynniki modelu 6. odniesienie do podobnych analiz 18/47 20/47
6 Overfitting Przykłady mające pokazać, że SEM jest metodą nadrzędną do wszystkiego co do tej pory było ;-) 21/47 Literatura Analiza mediacji w SEM Cwalina, W. (2000). Zastosowanie modelowania równań strukturalnych w naukach społecznych. W: Statystyka w badaniach naukowych. Materiały na seminaria organizowane przez StatSoft Polska Sp. z o.o. 9 października 2000 r. w Warszawie, (15-22). Kraków: StatSoft Polska. Gaul, M., Machowski, A. (1987). Elementy analizy cieżek. W: J. Brzeziński (red.), Wielozmiennowe modele statystyczne w badaniach psychologicznych, s Warszawa: PWN. Indeksy dopasowania: Hair, J. F., Jr., Black, W. C., Babin, B. J., Anderson, R. E. (2010). Multivariate data analysis (7 ed.), rozdział 12. Upper Saddle River: Prentice Hall. set.seed(1234) #generuję dane X <- rnorm(100) M <- 0.5 * X + rnorm(100) Y <- 0.7 * M + rnorm(100) Data <- data.frame(x = X, Y = Y, M = M) model.mediacji <- '# direct effect Y ~ c*x # mediator M ~ a*x Y ~ b*m # indirect effect (a*b) ab := a*b # total effect total := c + (a*b)' fit.m <- sem(model.mediacji, data = Data) 22/47 26/47
7 lavaan ended normally after 12 iterations Optimization method NLMINB Number of free parameters 5 Number of observations 100 Estimator ML Model Fit Test Statistic Degrees of freedom 0 Minimum Function Value Parameter Estimates: Information Expected Information saturated (h1) model Structured Standard Errors Standard Regressions: Estimate Std.Err z-value P(> z ) Y ~ X (c) M ~ X (a) Y ~ M (b) Variances: Estimate Std.Err z-value P(> z ).Y M /47 Mediacja z uwzględnieniem grup model <- ' # outcome model outcomevar ~ c*xvar + b1*medvar1 + b2*medvar2 # mediator models medvar1 ~ a1*xvar medvar2 ~ a2*xvar # indirect effects (IDE) medvar1ide := a1*b1 medvar2ide := a2*b2 sumide := (a1*b1) + (a2*b2) # total effect total := c + (a1*b1) + (a2*b2) medvar1 ~~ medvar2 # model correlation between mediators ' fit <- sem(model, data=dataframe) summary(fit, fit.measures=true, standardize=true, rsquare=true) #bootstrap confidence intervals boot.fit <- parameterestimates(fit, boot.ci.type="bca.simple") 29/47 Regressions: Estimate Std.Err Z-value P(> z ) Y ~ X (c) M ~ X (a) Y ~ M (b) Variances: Estimate Std.Err Z-value P(> z ) Y M Defined Parameters: Estimate Std.Err Z-value P(> z ) ab total Przykład analizy konfirmacyjnej 28/47
8 Dane Model str(rs) 'data.frame': 177 obs. of 8 variables: $ wiek : int $ plec : int $ CzasBrakuPartnera : int $ wsparcie.wazna.osoba : num $ wsparcie.rodzina : num $ wsparcie.przyjaciele : num $ wsparcie : num $ romantyczna.samotnosc: num model0 <- ' # regresje romantyczna.samotnosc ~ wsparcie + CzasBrakuPartnera wsparcie ~ wsparcie.wazna.osoba + wsparcie.rodzina + wsparcie.przyjaciele #kowariancje wsparcie.wazna.osoba ~~ wsparcie.rodzina wsparcie.wazna.osoba ~~ wsparcie.przyjaciele wsparcie.rodzina ~~ wsparcie.przyjaciele ' # konwersji płci na zmienną kategorialną rs$plec <- factor(rs$plec, levels=1:2, labels=c("kobieta","mężczyzna")) 31/47 33/47 Dane - płeć Estymacja table(rs$plec) kobieta mężczyzna prop.table(table(rs$plec)) kobieta mężczyzna Analizę SEM można przeprowadzić bezpośrednio w R, w Jamovi, lub JASP w oparciu o pakiet lavaan. Estymatory, które można wykorzystać: (estimator=) ML, GLS, WLS (=ADF), ULS, DWLS # Do dzieła! fit0 <- cfa(model0, data=rs, fixed.x=f) cfa = sem = lavaan Więcej ustawień zobacz:?lavaan 32/47 34/47
9 Wyniki - dopasowanie modelu # pełna lista wskaźników dopasowania #fitmeasures(fit0) summary(fit0, standardized=t, fit.measures=t) lavaan ended normally after 84 iterations Optimization method NLMINB Number of free parameters 14 Number of observations 177 Estimator ML Model Fit Test Statistic Degrees of freedom 7 P-value (Chi-square) Model test baseline model: Minimum Function Test Statistic Degrees of freedom 15 P-value User model versus baseline model: Comparative Fit Index (CFI) Tucker-Lewis Index (TLI) Loglikelihood and Information Criteria: 35/47 # wybrane wskaźniki fitmeasures(fit0, c("tli", "rmsea", "agfi")) tli rmsea agfi /47 lhs op rhs est se 1 romantyczna.samotnosc ~ wsparcie romantyczna.samotnosc ~ CzasBrakuPartnera wsparcie ~ wsparcie.wazna.osoba wsparcie ~ wsparcie.rodzina wsparcie ~ wsparcie.przyjaciele wsparcie.wazna.osoba ~~ wsparcie.rodzina wsparcie.wazna.osoba ~~ wsparcie.przyjaciele wsparcie.rodzina ~~ wsparcie.przyjaciele romantyczna.samotnosc ~~ romantyczna.samotnosc wsparcie ~~ wsparcie wsparcie.wazna.osoba ~~ wsparcie.wazna.osoba wsparcie.rodzina ~~ wsparcie.rodzina wsparcie.przyjaciele ~~ wsparcie.przyjaciele CzasBrakuPartnera ~~ CzasBrakuPartnera z pvalue ci.lower ci.upper /47 Model zmieniony model1 <- ' # regresje romantyczna.samotnosc ~ wsparcie.rodzina + CzasBrakuPartnera # usuwam: # wsparcie ~ wsparcie.wazna.osoba + wsparcie.rodzina + wsparcie.przyjaciele #kowariancje wsparcie.wazna.osoba ~~ wsparcie.rodzina wsparcie.wazna.osoba ~~ wsparcie.przyjaciele wsparcie.rodzina ~~ wsparcie.przyjaciele ' fit1 <- cfa(model1, data=rs, fixed.x=f) fitmeasures(fit1, c("tli", "rmsea", "agfi")) tli rmsea agfi /47
10 Porównywanie modeli zagnieżdżonych Najważniejsze parametry anova(fit1, fit0) Chi Square Difference Test Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq) fit fit MI <- modificationindices(fit0) subset(mi, mi>5) # wartość tu: 5 zależy od wielu czynników lhs op rhs mi epc sepc.lv 32 wsparcie.wazna.osoba ~ romantyczna.samotnosc wsparcie.wazna.osoba ~ CzasBrakuPartnera wsparcie.rodzina ~ romantyczna.samotnosc wsparcie.rodzina ~ CzasBrakuPartnera sepc.all sepc.nox /47 41/47 Filtrowanie parametrów tylko jednego rodzaju ES <- parameterestimates(fit0, ci = F) subset(es, op == "~") lhs op rhs est se z pvalue 1 romantyczna.samotnosc ~ wsparcie romantyczna.samotnosc ~ CzasBrakuPartnera wsparcie ~ wsparcie.wazna.osoba wsparcie ~ wsparcie.rodzina wsparcie ~ wsparcie.przyjaciele Overfitting Na podstawie indeksów modyfikacyjnych łatwo jest zbudować model dopasowany do danych, ale w efekcie powstaje coś, co pasuje tylko do obserwowanych danych. Taka sytuacja przeszacowania dobroci jest tak samo zła jak niedopasowania modelu. Można temu zapobiegać przez metody uczenia maszynowego (walidacja krzyżowa, bootstraping, itp.) 40/47 42/47
11 Model ulepszony Analiza w grupach Bez zmiennej wsparcie, która jest sumą pozostałych wsparć. model2 <- ' romantyczna.samotnosc ~ wsparcie.rodzina + wsparcie.wazna.osoba + wsparcie.przyjaciele + CzasBrakuPartnera wsparcie.wazna.osoba ~~ wsparcie.rodzina wsparcie.wazna.osoba ~~ wsparcie.przyjaciele wsparcie.rodzina ~~ wsparcie.przyjaciele wsparcie.rodzina ~~ CzasBrakuPartnera ' fit2 <- cfa(model2, data=rs, fixed.x=f) fitmeasures(fit2, c("tli", "rmsea", "agfi")) tli rmsea agfi # uwzględniamy płeć fit.g <- cfa(model2, data=rs, group="plec", fixed.x=f) # porównanie modeli niezagnieżdżonych fitmeasures(fit2, c("tli", "aic", "bic","rmsea", "agfi")) tli aic bic rmsea agfi fitmeasures(fit.g, c("tli", "aic", "bic","rmsea", "agfi")) tli aic bic rmsea agfi Parametry gorsze i BIC wyższy - nie warto wprowadzać grup. 43/47 45/47 Porównywanie modeli anova(fit2, fit0) Chi Square Difference Test Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq) fit fit * --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Istotna różnica (p < 0,0105). Uproszczony model jest lepszy 44/47
MODEL STRUKTURALNY RELACJI MIĘDZY SATYSFAKCJĄ
MODEL STRUKTURALNY RELACJI MIĘDZY SATYSFAKCJĄ I LOJALNOŚCIĄ WOBEC MARKI Adam Sagan Akademia Ekonomiczna w Krakowie, Katedra Analizy Rynku i Badań Marketingowych Wstęp Modelowanie strukturalne ma wielorakie
KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y. 2. Współczynnik korelacji Pearsona
KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y 2. Współczynnik korelacji Pearsona 3. Siła i kierunek związku między zmiennymi 4. Korelacja ma sens, tylko wtedy, gdy związek między zmiennymi
Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;
LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny
Statystyka i Analiza Danych
Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania wybranych technik regresyjnych do modelowania współzależności zjawisk Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki
Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii
SPIS TREŚCI Przedmowa... 11 Wykaz symboli... 15 Litery alfabetu greckiego wykorzystywane w podręczniku... 15 Symbole wykorzystywane w zagadnieniach teorii mnogości (rachunku zbiorów)... 16 Symbole stosowane
1 Modele ADL - interpretacja współczynników
1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać
ZASTOSOWANIE MODELOWANIA RÓWNAŃ STRUKTURALNYCH DO BADAŃ NAD ZACHOWANIAMI KONSUMENTÓW
ZASTOSOWANIE MODELOWANIA RÓWNAŃ STRUKTURALNYCH DO BADAŃ NAD ZACHOWANIAMI KONSUMENTÓW Grzegorz Zasuwa, Katedra Zarządzania Przedsiębiorstwem, Katolicki Uniwersytet Lubelski Jana Pawła II Technika modelowania
Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski
Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:
MODEL POMIAROWY SATYSFAKCJI I LOJALNOŚCI
MODEL POMIAROWY SATYSFAKCJI I LOJALNOŚCI Adam Sagan Akademia Ekonomiczna w Krakowie, Katedra Analizy Rynku i Badań Marketingowych Wstęp Zaletą stosowania konfirmacyjnej analizy czynnikowej (CFA) w porównaniu
(LMP-Liniowy model prawdopodobieństwa)
OGÓLNY MODEL REGRESJI BINARNEJ (LMP-Liniowy model prawdopodobieństwa) Dla k3 y α α α α + x + x + x 2 2 3 3 + α x x α x x + α x x + α x x + ε + x 4 2 5 3 6 2 3 7 2 3 Zał.: Wszystkie zmienne interakcyjne
Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe
Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje
Egzamin z ekonometrii - wersja ogólna
Egzamin z ekonometrii - wersja ogólna 06-02-2019 Regulamin egzaminu 1. Egzamin trwa 90 min. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8
Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Regresja liniowa wprowadzenie
Regresja liniowa wprowadzenie a) Model regresji liniowej ma postać: gdzie jest zmienną objaśnianą (zależną); są zmiennymi objaśniającymi (niezależnymi); natomiast są parametrami modelu. jest składnikiem
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Regresja logistyczna. Regresja logistyczna. Przykłady DV. Wymagania
Regresja logistyczna analiza relacji między zbiorem zmiennych niezależnych (ilościowych i dychotomicznych) a dychotomiczną zmienną zależną wyniki wyrażone są w prawdopodobieństwie przynależności do danej
Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22
Spis treści Przedmowa do wydania pierwszego.... 11 Przedmowa do wydania drugiego.... 15 Wykaz symboli.... 17 Litery alfabetu greckiego wykorzystywane w podręczniku.... 17 Symbole wykorzystywane w zagadnieniach
Statystyka opisowa. Wykład V. Regresja liniowa wieloraka
Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Wykład 4 Wybór najlepszej procedury. Estymacja parametrów re
Wykład 4 Wybór najlepszej procedury. Estymacja parametrów regresji z wykorzystaniem metody bootstrap. Wrocław, 22.03.2017r Wybór najlepszej procedury - podsumowanie Co nas interesuje przed przeprowadzeniem
WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno
WSTĘP DO REGRESJI LOGISTYCZNEJ Dr Wioleta Drobik-Czwarno REGRESJA LOGISTYCZNA Zmienna zależna jest zmienną dychotomiczną (dwustanową) przyjmuje dwie wartości, najczęściej 0 i 1 Zmienną zależną może być:
S t a t y s t y k a, część 3. Michał Żmihorski
S t a t y s t y k a, część 3 Michał Żmihorski Porównanie średnich -test T Założenia: Zmienne ciągłe (masa, temperatura) Dwie grupy (populacje) Rozkład normalny* Równe wariancje (homoscedasticity) w grupach
1. Pokaż, że estymator MNW parametru β ma postać β = nieobciążony. Znajdź estymator parametru σ 2.
Zadanie 1 Niech y t ma rozkład logarytmiczno normalny o funkcji gęstości postaci [ ] 1 f (y t ) = y exp (ln y t β ln x t ) 2 t 2πσ 2 2σ 2 Zakładamy, że x t jest nielosowe a y t są nieskorelowane w czasie.
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).
Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych
Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna
Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować
Stanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
wykorzystywane podczas zajęć wykład, ćwiczenia, Konwersatorium
Nazwa przedmiotu Budowanie teorii. Kryzys w psychologii. Prerejestracja. Moc statystyczna. Analiza mocy statystycznej w programie G*Power Wprowadzenie do R warsztat Forma zajęć (np. wykład, ćwiczenia,
Diagnostyka w Pakiecie Stata
Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem
Ekonometria egzamin 07/03/2018
imię, nazwisko, nr indeksu: Ekonometria egzamin 07/03/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM
Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy
Projekt Nowa oferta edukacyjna Uniwersytetu Wrocławskiego odpowiedzią na współczesne potrzeby rynku pracy i gospodarki opartej na wiedzy Dane: 2000 największych spółek światowych z 2004 (Forbes Magazine)
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Ekonometria. Wprowadzenie do modelowania ekonometrycznego Estymator KMNK. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Wprowadzenie do modelowania ekonometrycznego Estymator Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 1 Estymator 1 / 16 Agenda 1 Literatura Zaliczenie przedmiotu 2 Model
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Ekonometria. Dobór postaci analitycznej, transformacja liniowa i estymacja modelu KMNK. Paweł Cibis 9 marca 2007
, transformacja liniowa i estymacja modelu KMNK Paweł Cibis pawel@cibis.pl 9 marca 2007 1 Miary dopasowania modelu do danych empirycznych Współczynnik determinacji Współczynnik zbieżności Skorygowany R
Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1
Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów
Diagnostyka w Pakiecie Stata
Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.
MODELE LINIOWE. Dr Wioleta Drobik
MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Wprowadzenie Testy własności składnika losowego. Diagnostyka modelu. Część 1. Diagnostyka modelu
Część 1 Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy małej próby Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy małej próby Testy
Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2
Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2 Dr hab. inż. Agnieszka Wyłomańska Faculty of Pure and Applied Mathematics Hugo Steinhaus Center Wrocław University of Science and
ANALIZA REGRESJI WIELOKROTNEJ. Zastosowanie statystyki w bioinżynierii Ćwiczenia 8
ANALIZA REGRESJI WIELOKROTNEJ Zastosowanie statystyki w bioinżynierii Ćwiczenia 8 ZADANIE 1A 1. Irysy: Sprawdź zależność długości płatków korony od ich szerokości Utwórz wykres punktowy Wyznacz współczynnik
Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice
Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice Przedmowa do wydania polskiego Przedmowa CZĘŚĆ I. PODSTAWY STATYSTYKI Rozdział 1 Podstawowe pojęcia statystyki
Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, Spis treści
Statystyka w zarzadzaniu / Amir D. Aczel, Jayavel Sounderpandian. Wydanie 2. Warszawa, 2018 Spis treści Przedmowa 13 O Autorach 15 Przedmowa od Tłumacza 17 1. Wprowadzenie i statystyka opisowa 19 1.1.
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Jeżeli A wpływa na B, a B wpływa na C, to A wpływa na C czyli o efektach łącznych
modelowanie strukturalne Jeżeli A wpływa na B, a B wpływa na C, to A wpływa na C czyli o efektach łącznych Monika Książek Szkoła Główna Handlowa W poprzednim artykule wykorzystaliśmy możliwości, jakie
Statystyczna analiza danych
Statystyczna analiza danych Korelacja i regresja Ewa Szczurek szczurek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski 1/30 Ostrożnie z interpretacją p wartości p wartości zależą od dwóch rzeczy
Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych
STATYSTYKA MATEMATYCZNA WYKŁAD 3 Populacje i próby danych POPULACJA I PRÓBA DANYCH POPULACJA population Obserwacje dla wszystkich osobników danego gatunku / rasy PRÓBA DANYCH sample Obserwacje dotyczące
Metody Ekonometryczne
Metody Ekonometryczne Goodness of fit i wprowadzenie do wnioskowania statystycznego Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Metody Ekonometyczne Wykład 2 Goodness of fit i wprowadzenie do wnioskowania
Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak
Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN
Testowanie hipotez statystycznych
Część 2 Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład statystyki testowej Hipoteza łączna H 0 : Rβ = q Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak
Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN
Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Ćwiczenia nr 3 Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 3 Własności składnika losowego 1 / 18 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4 Jakub Mućk
Egzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie
Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna),
Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna Korelacja brak korelacji korelacja krzywoliniowa korelacja dodatnia korelacja ujemna Szereg korelacyjny numer
Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 13 Mikołaj Czajkowski Wiktor Budziński Endogeniczność regresja liniowa W regresji liniowej estymujemy następujące równanie: i i i Metoda Najmniejszych Kwadratów zakłada, że wszystkie zmienne
LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej
LABORATORIUM 3 Przygotowanie pliku (nazwy zmiennych, export plików.xlsx, selekcja przypadków); Graficzna prezentacja danych: Histogramy (skategoryzowane) i 3-wymiarowe; Wykresy ramka wąsy; Wykresy powierzchniowe;
Regresja liniowa w R Piotr J. Sobczyk
Regresja liniowa w R Piotr J. Sobczyk Uwaga Poniższe notatki mają charakter roboczy. Mogą zawierać błędy. Za przesłanie mi informacji zwrotnej o zauważonych usterkach serdecznie dziękuję. Weźmy dane dotyczące
Analiza zależności cech ilościowych regresja liniowa (Wykład 13)
Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny
Stanisław Cichocki. Natalia Nehrebecka. Wykład 4
Stanisław Cichocki Natalia Nehrebecka Wykład 4 1 1. Własności hiperpłaszczyzny regresji 2. Dobroć dopasowania równania regresji. Współczynnik determinacji R 2 Dekompozycja wariancji zmiennej zależnej Współczynnik
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 02/02/2011 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.
Czasowy wymiar danych
Problem autokorelacji Model regresji dla szeregów czasowych Model regresji dla szeregów czasowych y t = X t β + ε t Zasadnicze różnice 1 Budowa prognoz 2 Problem stabilności parametrów 3 Problem autokorelacji
Regresja logistyczna (LOGISTIC)
Zmienna zależna: Wybór opcji zachodniej w polityce zagranicznej (kodowana jako tak, 0 nie) Zmienne niezależne: wiedza o Unii Europejskiej (WIEDZA), zamieszkiwanie w regionie zachodnim (ZACH) lub wschodnim
, a reszta dla pominiętej obserwacji wynosi 0, RSS jest stałe, T SS rośnie, więc zarówno R 2 jak i R2 rosną. R 2 = 1 n 1 n. rosnie. n 2 (1 R2 ) = 1 59
Zadanie 1. Ekonometryk szacując funkcję konsumpcji przeprowadził estymację osobno dla tzw. Polski A oraz Polski B. Dla Polski A posiadał n 1 = 40 obserwacji i uzyskał współczynnik dopasowania RA 2 = 0.4,
Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku
Przykład 2 Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Sondaż sieciowy analiza wyników badania sondażowego dotyczącego motywacji w drodze do sukcesu Cel badania: uzyskanie
( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:
ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość
Egzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 02022015 Pytania teoretyczne 1. Podać treść twierdzenia GaussaMarkowa i wyjaśnić jego znaczenie. 2. Za pomocą jakich testów testuje się autokorelację? Jakiemu założeniu
OPIS MODUŁ KSZTAŁCENIA (SYLABUS)
OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu Metody opracowania obserwacji 2 Kod modułu 04-A-MOO-60-1L 3 Rodzaj modułu obowiązkowy 4 Kierunek studiów astronomia 5 Poziom studiów
Stanisław Cichocki. Natalia Nehrebecka. Wykład 14
Stanisław Cichocki Natalia Nehrebecka Wykład 14 1 1.Problemy z danymi Współliniowość 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji Metody radzenia sobie z heteroskedastycznością
JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY
JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model
Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 5 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.medexp3.dta przygotuj model regresji kwantylowej 1. Przygotuj model regresji kwantylowej w którym logarytm wydatków
PRACE NAUKOWE UNIWERSYTETU EKONOMICZNEGO WE WROCŁAWIU RESEARCH PAPERS OF WROCŁAW UNIVERSITY OF ECONOMICS
PRACE NAUKOWE UNIWERSYTETU EKONOMICZNEGO WE WROCŁAWIU RESEARCH PAPERS OF WROCŁAW UNIVERSITY OF ECONOMICS nr 469 207 Taksonomia 29 ISSN 899-392 Klasyfikacja i analiza danych teoria i zastosowania e-issn
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Magdalena Frąszczak Wrocław, 21.02.2018r Tematyka Wykładów: Próba i populacja. Estymacja parametrów z wykorzystaniem metody
Regresja logistyczna. Regresja logistyczna. Wymagania. Przykłady DV
Regresja logistyczna analiza relacji między zbiorem zmiennych niezależnych (ilościowych i dychotomicznych) a dychotomiczną zmienną zależną wyniki wyrażone są w prawdopodobieństwie przynależności do danej
Metoda najmniejszych kwadratów
Własności algebraiczne Model liniowy Zapis modelu zarobki = β 0 + β 1 plec + β 2 wiek + ε Oszacowania wartości współczynników zarobki = b 0 + b 1 plec + b 2 wiek + e Model liniowy Tabela: Oszacowania współczynników
Budowa modelu i testowanie hipotez
Problemy metodologiczne Gdzie jest problem? Obciążenie Lovella Dysponujemy oszacowaniami parametrów następującego modelu y t = β 0 + β 1 x 1 +... + β k x k + ε t Gdzie jest problem? Obciążenie Lovella
Wykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 24 maja 2017 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
Wykład 12 Testowanie hipotez dla współczynnika korelacji
Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem
WYBRANE METODY ANALIZY DANYCH WZDŁUŻNYCH
PRACE NAUKOWE UNIWERSYTETU EKONOMICZNEGO WE WROCŁAWIU nr 207 RESEARCH PAPERS OF WROCŁAW UNIVERSITY OF ECONOMICS nr 327 2014 Taksonomia 22 ISSN 1899-3192 Klasyfikacja i analiza danych teoria i zastosowania
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 28 listopada 2018 Plan zaj eć 1 Rozk lad estymatora b 2 3 dla parametrów 4 Hipotezy l aczne - test F 5 Dodatkowe za lożenie
METODOLOGIA BADAŃ PSYCHOLOGICZNYCH I STATYSTYKA. opracowała dr Anna Szałańska
METODOLOGIA BADAŃ PSYCHOLOGICZNYCH I STATYSTYKA opracowała dr Anna Szałańska ANALIZA WARIANCJI WPROWADZENIE TEORETYCZNE - ZASTOSOWANIE Stosujemy kiedy znane są parametry rozkładu zmiennej zależnej badanych
Ekonometria. Metodologia budowy modelu. Jerzy Mycielski. Luty, 2011 WNE, UW. Jerzy Mycielski (WNE, UW) Ekonometria Luty, / 18
Ekonometria Metodologia budowy modelu Jerzy Mycielski WNE, UW Luty, 2011 Jerzy Mycielski (WNE, UW) Ekonometria Luty, 2011 1 / 18 Sprawy organizacyjne Dyżur: środa godz. 14-15 w sali 302. Strona internetowa
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com
Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych
Własności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności