Sprawdzian umiejętności matematycznych uczniów narzędziem diagnozy dyspozycji nauczyciela xxi wieku?
|
|
- Leszek Witek
- 9 lat temu
- Przeglądów:
Transkrypt
1 XIX Konferencja Diagnostyki Edukacyjnej, Gniezno 2013 Monika Jonczak Elżbieta Ostaficzuk Grażyna Śleszyńska Mazowieckie Samorządowe Centrum Doskonalenia Nauczycieli Sprawdzian umiejętności matematycznych uczniów narzędziem diagnozy dyspozycji nauczyciela xxi wieku? A. Rodin, Myśliciel, fot. E. Ostaficzuk W ostatnim dziesięcioleciu, a szczególnie od 2007 roku, większość krajów wprowadziła poprawki do swoich programów nauczania matematyki, skupiając się bardziej na kompetencjach i umiejętnościach, które należy uzyskać, niż na treściach programowych 1. Analiza pięciu obszarów kompetencji opanowanie podstawowych umiejętności i procedur, znajomość pojęć i reguł matematycznych, stosowanie matematyki w realnych sytuacjach, komunikatywny język matematyki oraz rozumowanie matematyczne wykazała, że rzadko zaleca się szczegółowe metody nauczania i oceniania tych umiejętności, mimo że wszystkie z nich są wymieniane w programach nauczania poszczególnych krajów 2. Ogólnie rzecz biorąc, konieczna jest równowaga między metodami promującymi przyswajanie wiedzy matematycznej przez uczniów oraz rozwojem ich umiejętności matematycznych. Przede wszystkim można jeszcze silniej wspierać takie podejście do nauczania, które promuje aktywne uczenie się, krytyczne myślenie i umiejętność stosowania przez uczniów wiedzy teoretycznej w realnych sytuacjach. Wielokrotnie potwierdziło się, że takie metody wywierają korzystny wpływ na poziom osiągnięć, ale i na nastawienie uczniów do matematyki 3. Umiejętność stosowania wiedzy teoretycznej w realnych sytuacjach testowano wśród uczniów klas drugich ponadgimnazjalnych na Mazowszu wiosną 2013 roku w badaniach diagnostycznych projektu Połowa drogi 1 Nauczanie matematyki w Europie: ogólne wyzwania i strategie krajowe, Fundacja Rozwoju Systemu Edukacji FRSE, Warszawa 2012, s Ibidem, s Ibidem, s
2 Polska edukacja w świetle diagnoz prowadzonych z różnych perspektyw badawczych Motywem przewodnim sprawdzianów Matematyka do potęgi P oraz Matematyka do potęgi R (to znaczy na poziomie podstawowym lub rozszerzonym) były XXX Igrzyska Olimpijskie w Londynie w 2012 roku. Jednym z zadań było zadanie z akcentem patriotycznym, związane ze zdobyciem przez Tomasza Majewskiego złotego medalu w konkurencji pchnięcia kulą. W teście na poziomie rozszerzonym zadaniem ucznia było odkryć kształt wykresu toru lotu kuli, uczniowie z poziomu podstawowego taki wykres otrzymali w poleceniu. Zadaniem obu grup było wyznaczenie wzoru funkcji f(x) = ax 2 + bx + c, której fragment wykresu ilustruje tor lotu kuli pchniętej przez Tomasza Majewskiego. W tabeli 1 zawarte są sugestie, jak rozwiązać zadanie oraz jak poprowadzić ucznia, który sobie z zadaniem nie poradził. Tabela 1. Planowanie rozwoju ucznia komentarze dydaktyczne ułatwiające wskazywanie uczniom kierunku rozwoju indywidualnego Zadanie Tomasz Majewski zdobył na XXX IO złoty medal. Pchnął kulę dłonią znajdującą się nieco powyżej ramienia, na wysokości 2 m. Kula, lecąc po torze w kształcie paraboli, w odległości 10 m od zawodnika wzniosła się najwyżej. Tym pchnięciem Tomasz Majewski wyrzucił kulę na odległość 21,89 m, najdalej spośród olimpijskich finalistów. Parabolę, której fragment stanowi tor lotu kuli, przedstawiono na rys. 3. Rysunek 3. Parabola, której fragment przedstawia tor lotu kuli pchniętej przez Tomasza Majewskiego Wyznacz wzór funkcji f(x) = ax 2 + bx + c, której fragment wykresu ilustruje tor lotu kuli pchniętej przez Tomasza Majewskiego. W rozważaniach przyjmij odległość 21,89 m z dokładnością do 1 m. Wiedza i umiejętności potrzebne do rozwiązania zadania: 1. Przeanalizuj sytuację opisaną w zadaniu, znajdź model matematyczny dla tej sytuacji. 2. Podstawowe pojęcia: wykres funkcji kwadratowej wzory opisujące funkcję kwadratową znaczenie współczynników występujących we wzorach zależności między wzorami funkcji i kształtem paraboli wzory Viete a. 427
3 XIX Konferencja Diagnostyki Edukacyjnej, Gniezno 2013 Jeśli miałeś kłopot z rozwiązaniem zadania, spróbuj rozwiązać zadania pomocnicze: Naszkicuj wykres funkcji kwadratowej, wiedząc, że jej miejscami zerowymi są x 1 = -3, x 2 = 3 oraz że y w = -5. Napisz wzór tej funkcji w postaci y = a(x - x 1 ) (x - x 2 ). Naszkicuj wykres funkcji kwadratowej, korzystając tylko z jej wzorów: y = 1,5. (x + 1). (x - 3) oraz y = 1,5. (x - 1) 2-6. Wykorzystując informacje z wykresu, napisz wzór funkcji w postaci y = a. (x - x 1 ) (x - x 2 ) oraz y = a. (x - x w ) 2 + y w. Ułóż podobne zadania, wykorzystując własności współczynników we wzorach funkcji kwadratowej. Różne sposoby rozwiązania zadania wybrane modele, strategie 1. Wykorzystanie postaci ogólnej, iloczynowej oraz wzoru na x w funkcji kwadratowej Wykres funkcji y = a (x - x 1 ) (x - x 2 ) przechodzi przez punkty (-2, 0) oraz (22, 0) i (0, 2), czyli: 2 = a. (0 + 2). (0-22), stąd a = -1/22. Dla funkcji y = -1/22x2 + bx + 2 (c = 2) mamy: Wzór funkcji, której wykresem jest podana parabola: 428
4 Polska edukacja w świetle diagnoz prowadzonych z różnych perspektyw badawczych 2. Wykorzystanie postaci iloczynowej funkcji kwadratowej i rozwiązanie układu równań: Wykres funkcji y = ax 2 + bx + c przechodzi przez punkty (-2, 0), (22, 0) i (0, 2), czyli c = 2 oraz: Wzór funkcji, której wykresem jest podana parabola: 3. Wykorzystanie postaci kanonicznej oraz wzoru na x w funkcji kwadratowej Dla funkcji y = a. (x - x w ) 2 + y w. mamy w x = 10 oraz punkty (-2, 0) i (0, 2) należą do wykresu, więc: (a, b współczynniki we wzorze y = ax 2 + bx + c, gdzie c = 2 (na wykresie mamy punkt (0, 2)), czyli:, więc b = 10/11. Wzór funkcji, której wykresem jest podana parabola: 429
5 XIX Konferencja Diagnostyki Edukacyjnej, Gniezno Wykorzystanie wzorów Viete a Dla funkcji opisanej wzorem = ax 2 + bx + c, której miejscami zerowymi są x 1 = -2 oraz x 2 = 22 i której wykres przechodzi przez punkt (0, 2), mamy: Wzór funkcji, której wykresem jest podana parabola: Zadanie opisujące pchnięcie kulą okazało się dla uczniów umiarkowanie trudne. Nauczycieli sprowokowało do wielu komentarzy, które w tabeli 2 ilustrują reprezentatywne fragmenty przesłanych opinii. Tabela 2. Komentarze nauczycieli wyrażające opinie na temat treści zadania o pchnięciu kulą Fragment zadania Kula, lecąc po torze w kształcie paraboli, w odległości 10 m od zawodnika wzniosła się najwyżej. Komentarz nauczyciela matematyki Zdanie to nieprecyzyjnie określa tor lotu kuli, bo: 1) zawodnik w czasie lotu kuli nie jest nieruchomy, a jego położenie w chwili, gdy kula osiąga najwyższą wysokość, jest nam nieznane 2) nawet gdyby przyjąć, że zawodnik po wyrzuceniu kuli jest nieruchomy, nie wynika z tego zadania, jak jest mierzona odległość od kuli do zawodnika czy od środka kuli do końca dłoni, która wyrzuciła kulę, czy na przykład od środka kuli do środka ciężkości zawodnika, czy też może, jak się przyjmuje w matematyce, chodzi o odległość pomiędzy punktem kuli a punktem zawodnika znajdującym się możliwie najbliżej Niepoprawne rozumienie pojęcia odległości pomiędzy figurami: poprawne oznacza bowiem odległość między punktami, a nie odległość poziomą (czyli po ziemi przyp. autorek) 430
6 Refleksje Polska edukacja w świetle diagnoz prowadzonych z różnych perspektyw badawczych Wiosną 2013 roku badania diagnostyczne ukazały, że stosowanie wiedzy w realnej sytuacji było bardziej zrozumiałe dla uczniów niż dla nauczycieli. Może zatem ocenianie orientujące rekomendowane w projekcie Połowa drogi do wskazywania uczniom indywidualnego kierunku rozwoju należy wzbogacić o komentarze wskazujące nauczycielom kierunek zmian? Może Największa słabość w obecnym kształceniu nauczycieli tkwi w obciążeniu teorią, przy braku szeroko rozgałęzionych propozycji działania 4. Matematyka na wyższych etapach nauczania najwyraźniej dystansuje się od zagadnień problemowych i w ten sposób w projekcie Połowa drogi, realizowanym w szkołach ponadgimnazjalnych, nowe perspektywy badawcze sięgają obecnie aż po horyzont. 4 R. Miller, Jak przeżyć w szkole. Poradnik dla nauczycieli i wychowawców, wyd. WAM, Kraków 2012, s
W labiryncie projektu diagnostycznego Połowa drogi
Elżbieta Ostaficzuk Grażyna Śleszyńska Mazowieckie Samorządowe Centrum Doskonalenia Nauczycieli W labiryncie projektu diagnostycznego Połowa drogi Autorzy projektu Połowa drogi starają się znaleźć strategię
Wyniki sprawdzianu matematycznego. Matematyka do Potęgi P
Wyniki sprawdzianu matematycznego Matematyka do Potęgi P przeprowadzonego w dniu 2 kwietnia 23 r. w szkołach ponadgimnazjalnych Elżbieta Ostaficzuk Grażyna Śleszyńska Monika Jonczak I. Struktura sprawdzianu
Wyniki sprawdzianu matematycznego. Matematyka do Potęgi R
Wyniki sprawdzianu matematycznego Matematyka do Potęgi R przeprowadzonego w dniu 12 kwietnia 2013 r. w szkołach ponadgimnazjalnych Elżbieta Ostaficzuk Grażyna Śleszyńska Monika Jonczak 1 I. Struktura sprawdzianu
I. Struktura sprawdzianu matematycznego Po gimnazjum 2010
Wyniki sprawdzianu matematycznego Po gimnazjum 2010 przeprowadzonego 23 września 2010 w klasach pierwszych ponadgimnazjalnych www.polowadrogi.mscdn.pl luty 2011 1 I. Struktura sprawdzianu matematycznego
Ewaluacja opisowa osiągnięć uczniów szkół ponadgimnazjalnych z matematyki i z języka polskiego
298 XVII Konferencja Diagnostyki Edukacyjnej, Kraków 2011 Elżbieta Ostaficzuk Mazowieckie Samorządowe Centrum Doskonalenia Nauczycieli Alina Komorowska Mazowieckie Samorządowe Centrum Doskonalenia Nauczycieli
ElŜbieta Ostaficzuk. Projekt edukacyjny Połowa drogi 2012
ElŜbieta Ostaficzuk Projekt edukacyjny Połowa drogi 2012 Mazowieckie Samorządowe Centrum Doskonalenia Nauczycieli i Mazowieckie Kuratorium Oświaty w roku 2012 badaniami diagnostycznymi z zakresu matematyki
Scenariusz lekcji diagnozującej z matematyki przygotowującej do sprawdzianu z funkcji kwadratowej
Scenariusz lekcji diagnozującej z matematyki przygotowującej do sprawdzianu z funkcji kwadratowej Temat : Powtórzenie i utrwalenie wiadomości z funkcji kwadratowej Czas trwania : 90 min. Środki dydaktyczne:
Skrypt 12. Funkcja kwadratowa:
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 12 Funkcja kwadratowa: 8.
Scenariusz lekcji. 3. Temat lekcji: Zastosowanie własności trójmianu kwadratowego: rysowanie wykresu, wyznaczanie wzoru o podanych własnościach;
Scenariusz lekcji 1. Informacje wstępne: Data: 16 kwietnia 2013r.; Klasa: I c liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka; 2. Program nauczania:
SCENARIUSZ LEKCJI. Miejsca zerowe funkcji kwadratowej i ich graficzna prezentacja
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
Latentna moc różnicująca zadań z testów matematycznych dla młodzieży uzdolnionej
XVI Konferencja Diagnostyki Edukacyjnej, Toruń 200 Elżbieta Ostaficzuk Mazowieckie Samorządowe Centrum Doskonalenia Nauczycieli Grażyna Śleszyńska Mazowieckie Samorządowe Centrum Doskonalenia Nauczycieli
Jakość edukacji matematycznej na półmetku kształcenia w szkołach ponadgimnazjalnych
Elżbieta Ostaficzuk Mazowieckie Samorządowe Centrum Doskonalenia Nauczycieli Andrzej Wawrzyniak Honorowy doradca metodyczny m. st. Warszawy Andrzej Werner Doradca metodyczny m. st. Warszawy Jakość edukacji
KONSPEKT ZAJĘĆ EDUKACYJNYCH
KONSPEKT ZAJĘĆ EDUKACYJNYCH Część organizacyjna: Opracowała: grupa 4 ds. korelacji matematyczno-fizycznej Przedmiot: matematyka Klasa: I technikum poziom podstawowy Czas trwania: 45 min. Data: Część merytoryczna
ARKUSZ HOSPITACJI DIAGNOZUJĄCEJ
ARKUSZ HOSPITACJI DIAGNOZUJĄCEJ Przedmiot: matematyka Data: 07.04.2006 Klasa: I T inf i I T mech Imię i nazwisko nauczyciela prowadzącego: Agnieszka Hodor Cel hospitacji: zdiagnozowanie umiejętności posługiwania
II. Ewaluacja formatywna w projekcie Połowa drogi - wieloaspektowa anagnoza umiejętności matematycznych
Poziom umiejętności Elżbieta Ostaficzuk II. Ewaluacja formatywna w projekcie Połowa drogi - wieloaspektowa anagnoza umiejętności matematycznych Strach przed lataniem i głód doświadczeń. Wstyd przed mówieniem
ZADANIE 1. ZADANIE 2 Wyznacz wzór funkcji f (x) = 2x 2 + bx + c w postaci kanonicznej wiedzac, że jej miejsca zerowe sa niami równania x 3 = ZADANIE 3
ZADANIE 1 i największa wartość funkcji f (x) = (x )(x + 1) w przedziale 0; 4. ZADANIE Wyznacz wzór funkcji f (x) = x + bx + c w postaci kanonicznej wiedzac, że jej miejsca zerowe sa rozwiaza- niami równania
Scenariusz lekcji 1. Informacje wst pne: 2. Program nauczania: 3. Temat zaj 4. Integracja: 5. Cele lekcji: Ucze potrafi:
Scenariusz lekcji 1. Informacje wstępne: Data: 25 września 2012r. Klasa: II a 2 liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka. 2. Program nauczania:
SCENARIUSZ LEKCJI Przesuwanie paraboli - wykorzystanie arkusza kalkulacyjnego na lekcjach matematyki
SCENARIUSZ LEKCJI Przesuwanie paraboli - wykorzystanie arkusza kalkulacyjnego na lekcjach matematyki OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA
Matematyka 2 wymagania edukacyjne
Matematyka wymagania edukacyjne Zakres podstawowy POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ
KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające (W).
FUNKCJA KWADRATOWA. Wykresem funkcji kwadratowej jest parabola o wierzchołku w punkcie W = (p, q), gdzie
Funkcja kwadratowa jest to funkcja postaci y = ax 2 + bx + c, wyrażenie ax 2 + bx + c nazywamy trójmianem kwadratowym, gdzie x, a, oraz a, b, c - współczynniki liczbowe trójmianu kwadratowego. ó ó Wykresem
Kształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
RAPORT z diagnozy umiejętności matematycznych na poziomie podstawowym uczniów liceów i techników w połowie drogi przed maturą
RAPORT z diagnozy umiejętności matematycznych na poziomie podstawowym uczniów liceów i techników w połowie drogi przed maturą marzec 09 Plan testu wymagania ogólne Wymagania ogólne zapisane w podstawie
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie
Analiza wyników egzaminu gimnazjalnego przeprowadzonego w roku szkolnym 2011/2012 w części matematyczno przyrodniczej z zakresu matematyki
Analiza wyników egzaminu gimnazjalnego przeprowadzonego w roku szkolnym 2011/2012 w części matematyczno przyrodniczej z zakresu matematyki Zestaw zadań egzaminacyjnych zawierał 23, w tym 20 zadań zamkniętych
Test sprawdzający wiadomości i umiejętności funkcja kwadratowa
Test sprawdzający wiadomości i umiejętności funkcja kwadratowa W zadaniach zamkniętych 1 5 zaznacz prawidłową odpowiedź: Zadanie 1 () y f(x)=1/*x^-x+ + 1/ 6 5 4 3 1 x Wykres funkcji f ( rysunek obok )
SCENARIUSZ LEKCJI: TEMAT LEKCJI: Postać kanoniczna funkcji kwadratowej. Interpretacja danych w arkuszu kalkulacyjnym
Autorzy scenariusza: SCENARIUSZ LEKCJI: OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH
RAPORT z diagnozy umiejętności matematycznych
RAPORT z diagnozy umiejętności matematycznych przeprowadzonej w klasach pierwszych szkół ponadgimnazjalnych 1 Analiza statystyczna Wskaźnik Liczba uczniów Liczba punktów Łatwość zestawu Wyjaśnienie Liczba
RAPORT z diagnozy umiejętności matematycznych
RAPORT z diagnozy umiejętności matematycznych przeprowadzonej w klasach czwartych szkoły podstawowej 1 Analiza statystyczna Wskaźnik Liczba uczniów Liczba punktów Łatwość zestawu Wyjaśnienie Liczba uczniów,
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 6 Teoria funkcje cz. 2
1 FUNKCJE Wykres i własności funkcji kwadratowej Funkcja kwadratowa może występować w 3 postaciach: postać ogólna: f(x) ax 2 + bx + c, postać kanoniczna: f(x) a(x - p) 2 + q postać iloczynowa: f(x) a(x
Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność
Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych
Ostatnia aktualizacja: 30 stycznia 2015 r.
Ostatnia aktualizacja: 30 stycznia 2015 r. Spis treści 1. Funkcja liniowa 5 2. Funkcja kwadratowa 7 3. Trygonometria 11 4. Ciagi liczbowe 13 5. Wielomiany 15 6. Funkcja wykładnicza 17 7. Funkcja wymierna
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.
I. Funkcje. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. 1. Pojęcie funkcji i jej dziedzina. 2. Zbiór wartości funkcji. 3. Wykres funkcji liczbowej i odczytywanie jej własności
KURS FUNKCJE. LEKCJA 6 PODSTAWOWA Funkcje zadania maturalne ZADANIE DOMOWE. Strona 1
KURS FUNKCJE LEKCJA 6 PODSTAWOWA Funkcje zadania maturalne ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Dana jest funkcja f przedstawiona
RAPORT ZBIORCZY z diagnozy Matematyka PP
RAPORT ZBIORCZY z diagnozy Matematyka PP przeprowadzonej w klasach drugich szkół ponadgimnazjalnych Analiza statystyczna Wskaźnik Wartość wskaźnika Wyjaśnienie Liczba uczniów Liczba uczniów, którzy przystąpili
SCENARIUSZ LEKCJI. Wielomiany komputerowe wykresy funkcji wielomianowych
Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH
RAPORT ZBIORCZY z diagnozy umiejętności matematycznych
RAPORT ZBIORCZY z diagnozy umiejętności matematycznych przeprowadzonej w klasach szóstych szkół podstawowych Analiza statystyczna Wskaźnik Wartość wskaźnika Wyjaśnienie Liczba uczniów Liczba uczniów, którzy
SCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka)
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Moduł interdyscyplinarny:
RAPORT z diagnozy Matematyka na starcie
RAPORT z diagnozy Matematyka na starcie przeprowadzonej w klasach czwartych szkoły podstawowej Analiza statystyczna Wyjaśnienie Wartość wskaźnika Liczba uczniów Liczba uczniów, którzy przystąpili do sprawdzianu
K P K P R K P R D K P R D W
KLASA II TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str
FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci
Skrypt 13. Funkcje. Opracowanie L7
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 13 Funkcje 16. Wykorzystanie
Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej.
Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej. Definicja 1 Jednomianem stopnia drugiego nazywamy funkcję postaci: i a 0. Dziedziną tej funkcji jest zbiór liczb rzeczywistych
ZARYS WYTYCZNYCH/REKOMENDACJI
ZARYS WYTYCZNYCH/REKOMENDACJI dotyczących realizacji działania: Budowanie kompetencji w zakresie matematyki, informatyki i nauk przyrodniczych jako podstawy do uczenia się przez cale życie (w tym wspieranie
Dział I FUNKCJE I ICH WŁASNOŚCI
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie
TEMAT: PRZEKSZTAŁCENIA WYKRESÓW FUNKCJI PRZESUNIĘCIE O WEKTOR
TEMAT: PRZEKSZTAŁCENIA WYKRESÓW FUNKCJI PRZESUNIĘCIE O WEKTOR W układzie współrzędnych zaznaczmy dowolny punkt A = (x, y) oraz wektor u r = [p, q]. Po przesunięciu punktu A o wektor u r otrzymamy punkt
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI (zakres podstawowy) Rok szkolny 2017/2018 - klasa 2a, 2b, 2c 1. Funkcja
a =, gdzie A(x 1, y 1 ),
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI 1. Funkcja liniowa (zakres podstawowy) Rok szkolny 2018/2019 - klasa
SCENARIUSZ LEKCJI MATEMATYKI
Wiesław Maleszewski Maj 2015r. SCENARIUSZ LEKCJI MATEMATYKI W SZKOLE PONADGIMNAZJALNEJ Temat: Nierówności kwadratowe zupełne Cele nauczania: ogólne o rozwijanie aktywności umysłowej, a w tym umiejętności
Przedmiotowy system oceniania z matematyki w III Liceum Ogólnokształcącym im. Marii Skłodowskiej Curie w Opolu
Przedmiotowy system oceniania z matematyki w III Liceum Ogólnokształcącym im. Marii Skłodowskiej Curie w Opolu I. Podstawy prawne opracowania PSO. Przedmiotowy system oceniania z matematyki jest zgodny
========================= Zapisujemy naszą funkcję kwadratową w postaci kanonicznej: 2
Leszek Sochański Arkusz przykładowy, poziom podstawowy (A1) Zadanie 1. Wykresem funkcji kwadratowej f jest parabola o wierzchołku 5,7 Wówczas prawdziwa jest równość W. A. f 1 f 9 B. f 1 f 11 C. f 1 f 1
. Funkcja ta maleje dla ( ) Zadanie 1 str. 180 b) i c) Zadanie 2 str. 180 a) i b)
Lekcja 1 -. Lekcja organizacyjna kontrakt diagnoza i jej omówienie Podręcznik: W. Babiański, L. Chańko, D. Ponczek Matematyka. Zakres podstawowy. Wyd. Nowa Era. Zakres materiału: Funkcje kwadratowe Wielomiany
Matematyka stosowana w kształceniu szkolnym w obiektywie diagnoz Połowy drogi
Małgorzata Iwanowska Warszawskie Centrum Innowacji Edukacyjno-Społecznych i Szkoleń Grażyna Śleszyńska Mazowieckie Samorządowe Centrum Doskonalenia Nauczycieli Beata Wąsowska-Narojczyk Mazowieckie Samorządowe
NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI FUNKCJE KWADRATOWE PARAMETRY
www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI FUNKCJE KWADRATOWE PARAMETRY 1 www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 Wyznacz wzór funkcji f (x) = 2x
50 kl.via 23ucz.kl.VIb 27ucz.
SPRAWDZIAN SZKÓŁ PODSTAWOWYCH Sprawdzian w szóstej klasie przeprowadzono 4 kwietnia 2013 r. W Gminie do sprawdzianu przystąpiło 148 uczniów Liczba uczniów piszących sprawdzian w poszczególnych szkołach:
Lekcja 2. Pojęcie równania kwadratowego. Str Teoria 1. Równaniem wielomianowym nazywamy równanie postaci: n
Lekcja 1. Lekcja organizacyjna kontrakt. Podręcznik: A. Ceve, M. Krawczyk, M. Kruk, A. Magryś-Walczak, H. Nahorska Matematyka w zasadniczej szkole zawodowej. Wydawnictwo Podkowa. Zakres materiału: Równania
II Liceum Ogólnokształcące im. Ks. Prof. Józefa Tischnera W Wodzisławiu Śl. WYMAGANIA EDUKACYJNE FIZYKA
II Liceum Ogólnokształcące im. Ks. Prof. Józefa Tischnera W Wodzisławiu Śl. WYMAGANIA EDUKACYJNE FIZYKA Opracował: Tadeusz Winkler Obowiązuje od 1 września 2018r. 1 Narzędzia i częstotliwość pomiaru dydaktycznego
Spis treści Wstęp Zadania maturalne Szkice rozwiązań.
Spis treści Wstęp.... Zadania maturalne......................................................... 5. Liczby. Potęgi.... 5. Logarytmy.... Procenty.... Wartość bezwzględna... 7 5. Równania. Nierówności...
Temat (rozumiany jako lekcja) Propozycje środków dydaktycznych. Liczba godzin. Uwagi
Roczny plan dydaktyczny z matematyki dla pierwszej klasy szkoły branżowej I stopnia dla uczniów będących absolwentami ośmioletniej szkoły podstawowej, uwzględniający kształcone umiejętności i treści podstawy
PRZEDMIOTOWE ZASADY OCENIANIA Z FIZYKI dla klas I-III
PRZEDMIOTOWE ZASADY OCENIANIA Z FIZYKI dla klas I-III Przedmiotowy system oceniania z fizyki w gimnazjum sporządzono w oparciu o : 1.Wewnątrzszkolny system oceniania. 2.Podstawę programową. Cele edukacyjne
Funkcje IV. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) określa funkcję za pomocą wzoru, tabeli, wykresu, opisu słownego, b) odczytuje z wykresu funkcji: dziedzinę i zbiór wartości, miejsca zerowe, maksymalne przedziały, w których
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Liceum Ogólnokształcące Klasa I Poniżej przedstawiony został podział wymagań edukacyjnych na poszczególne oceny. Wiedza i umiejętności konieczne do opanowania (K) to zagadnienia,
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
Raport z analizy badania diagnostycznego uczniów klas czwartych 2016
Raport z analizy badania diagnostycznego uczniów klas czwartych 216 Zgodnie z Uchwałą Rady Pedagogicznej z dnia 17 czerwca 21 roku objęto badaniem diagnozującym stopień opanowania umiejętności polonistycznych,
Diagnoza wstępna z matematyki Klasa pierwsza szkoły ponadgimnazjalnej
Diagnoza wstępna z matematyki Klasa pierwsza szkoły ponadgimnazjalnej 1 Cel: Uzyskanie informacji o poziomie wiedzy i umiejętności uczniów, które pozwolą efektywniej zaplanować pracę z zespołem klasowym.
FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c
FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie
PRZEDMIOTOWE ZASADY OCENIANIA Z FIZYKI
PRZEDMIOTOWE ZASADY OCENIANIA Z FIZYKI Dla klas I III gimnazjum Opracowała Beata Giza 1 1. Przedmiotowe Zasady Oceniania z fizyki obejmują ocenę wiadomości i umiejętności wynikających z programu nauczania.
Kolce kompetencji matematycznych w gimnazjum Kompetencje matematyczne jako efekty kształcenia w gimnazjum
Marek Legutko Wydawnictwa Szkolne i Pedagogiczne Kolce kompetencji matematycznych w gimnazjum Kompetencje matematyczne jako efekty kształcenia w gimnazjum Nowa podstawa programowa zobowiązuje nauczycieli
Przedmiotowy system oceniania z matematyki w klasach technikum
Przedmiotowy system oceniania z matematyki w klasach technikum Zasady oceniania określone w niniejszym dokumencie zostały opracowane na podstawie: Statutu Zespołu Szkół Zawodowych im. Władysława Sikorskiego
Scenariusz lekcji z matematyki w szkole ponadgimnazjalnej
Scenariusz lekcji z matematyki w szkole ponadgimnazjalnej Temat: Wzory Viete a. Zastosowanie wzorów Viete a w zadaniach. Czas trwania lekcji: dwie jednostki lekcyjne (90 minut) Powiązanie z wcześniejszą
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
Analiza wyników egzaminu maturalnego z matematyki 2014/2015. Poziom podstawowy
Analiza wyników egzaminu maturalnego z matematyki 2014/2015 Poziom podstawowy Analiza wyników egzaminu maturalnego z matematyki na poziomie podstawowym. Do egzaminu maturalnego w Technikum Zawodowym w
PRZEDMIOTOWE ZASADY OCENIANIA - BIOLOGIA I. PSO z biologii powstał w oparciu o analizę następujących dokumentów:
PRZEDMIOTOWE ZASADY OCENIANIA - BIOLOGIA I. PSO z biologii powstał w oparciu o analizę następujących dokumentów: Załącznik nr 2.8 1. Rozporządzenie MEN w sprawie oceniania, klasyfikowania i promowania
Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017
Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku
Test diagnozujący z biologii klas I rok 2014/15
Test diagnozujący z biologii klas I rok 14/15 Test diagnozujący w klasach pierwszych miał na celu sprawdzenie wiedzy uczniów z zakresu biologii. Test został podzielony na główne biologiczne: - tekstu przyrodniczego,
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Funkcja liniowa dopuszczającą jeżeli: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy
MATeMAtyka cz.1. Zakres podstawowy
MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
Analiza wyników sprawdzianu 2016
Zespół Szkolno - Przedszkolny w Rudzicy im. Jana Pawła II Analiza wyników sprawdzianu 2016 Opracowała: Magdalena Balcy SPIS TREŚCI 1. Informacje wstępne... 3 2. Wyniki uczniów Zespołu Szkolno Przedszkolnego
Analiza wyników próbnego egzaminu gimnazjalnego. z przedmiotów przyrodniczych dla uczniów klas III
Analiza wyników próbnego egzaminu gimnazjalnego z przedmiotów przyrodniczych dla uczniów klas III Publicznego Gimnazjum im. Papieża Jana Pawła II w Czerwinie w roku szkolnym 2016/2017. Próbny egzamin gimnazjalny
ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY
ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY Zadanie Wskaż w zbiorze A = Zadanie Usuń niewymierność z wyrażenia,(0); 0,9; ; 0; 8; 0; 0 liczby wymierne 6 Zadanie Rozwiąż nierówność x + > Rozwiązanie
Sprawdzian dla uczniów szóstej klasy szkoły podstawowej w nowej formule egzaminacyjnej. od roku szkolnego 2014/2015
Sprawdzian dla uczniów szóstej klasy szkoły podstawowej w nowej formule egzaminacyjnej od roku szkolnego 2014/2015 Nowa formuła sprawdzianu w aspekcie prawnym Rozporządzenie MEN z dnia 30 kwietnia 2007
Przedstawiamy Państwu propozycję sprawdzianu diagnostycznego na koniec klasy I szkoły ponadgimnazjalnej opracowanego na wzór arkusza maturalnego na
Przedstawiamy Państwu propozycję sprawdzianu diagnostycznego na koniec klasy I szkoły ponadgimnazjalnej opracowanego na wzór arkusza maturalnego na poziomie podstawowym. Narzędzie to było dostępne do pobrania
PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016
PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016 Wymagania wykraczające zawierają w sobie wymagania dopełniające, te zaś zawierają wymagania podstawowe. Ocenę dopuszczającą powinien otrzymać
Przedmiotowy system oceniania z matematyki w Publicznym Gimnazjum nr 9 w Opolu
Przedmiotowy system oceniania z matematyki w Publicznym Gimnazjum nr 9 w Opolu I Podstawy prawne opracowania PSO Przedmiotowy system oceniania z matematyki jest zgodny z 1. Rozporządzeniem Ministra Edukacji
ORGANIZACJA I EFEKTYWNOŚĆ POMOCY PSYCHOLOGICZNO-PEDAGOGICZNEJ
PUBLICZNA SZKOŁA PODSTAWOWA NR 3 IM. JANA PAWŁA II W PACZKOWIE RAPORT Z EWALUACJI WEWNĘTRZNEJ ORGANIZACJA I EFEKTYWNOŚĆ POMOCY PSYCHOLOGICZNO-PEDAGOGICZNEJ ROK SZKOLNY 2013 / 2014 1 PROBLEM BADAWCZY: Organizacja
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres podstawowy) klasa 2 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.
odczytywać własności funkcji y = ax 2 na podstawie funkcji y = ax 2 szkicować wykresy funkcji postaci y = ax,
Funkcja kwadratowa Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Zawód: FRYZJER, STOLARZ, MECHANIK POJAZDÓW SAMOCHODOWYCH, BLACHARZ SAMOCHODOWY I inne Rok szkolny 2012/2013 Przedmiot: MATEMATYKA Numer programu
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Analiza i interpretacja zewnętrznego sprawdzianu po klasie szóstej
Analiza i interpretacja zewnętrznego sprawdzianu po klasie szóstej 05 kwietnia 2016 r. W dniu 05 kwietnia 2016 r. uczniowie klas VI przystąpili do zewnętrznego sprawdzianu. Sprawdzian obejmował wiadomości
Przedmiotowy system oceniania z matematyki w Publicznym Gimnazjum nr 9 w Opolu
Przedmiotowy system oceniania z matematyki w Publicznym Gimnazjum nr 9 w Opolu I. Podstawy prawne opracowania PSO. Przedmiotowy system oceniania z matematyki jest zgodny z: 1. Rozporządzeniem Ministra
PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI W SZKOLE PODSTAWOWEJ IM. ARKADEGO FIEDLERA
PRZEDMIOTOWY SYSTEM OCENIANIA Z FIZYKI W SZKOLE PODSTAWOWEJ IM. ARKADEGO FIEDLERA W BYTYNIU W ROKU SZKOLNYM 2018 / 2019 Przedmiotowy System Oceniania z Fizyki dotyczy uczniów klas VII i VIII Szkoły Podstawowej
Przedmiotowe Zasady Oceniania z matematyki w Społecznym Gimnazjum Pyrzyckiego Stowarzyszenia Oświatowego w Pyrzycach
Przedmiotowe Zasady Oceniania z matematyki w Społecznym Gimnazjum Pyrzyckiego Stowarzyszenia Oświatowego w Pyrzycach ( programy nauczania matematyki zgodny z podstawą programową obowiązującą od września
Efektywność nauczania w gimnazjach w świetle umiejętności uczniów nabytych w szkole podstawowej
XV Konferencja Diagnostyki Edukacyjnej, Kielce 2009 dr Iwona Pecyna Okręgowa Komisja Egzaminacyjna w Łodzi Efektywność nauczania w gimnazjach w świetle umiejętności uczniów nabytych w szkole podstawowej
III. Ewaluacja formatywna w projekcie Połowa drogi - wieloaspektowa prognoza umiejętności matematycznych
Elżbieta Ostaficzuk III. Ewaluacja formatywna w projekcie Połowa drogi - wieloaspektowa prognoza umiejętności matematycznych W pałacu już orkiestra gra, Jest lemoniada, torty dwa. Wszystko gotowe, można
Zadania rozrywające w testach
Ewa Stożek Okręgowa Komisja Egzaminacyjna w Łodzi Zadania rozrywające w testach Na podstawie analizy danych empirycznych ze sprawdzianu i roku wyodrębniono zadania odpowiedzialne za dwumodalność rozkładu
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO
Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Dział programowy. Zakres realizacji 1. Liczby, działania i procenty Liczby wymierne i liczby niewymierne-działania, kolejność
SPRAWDZIAN I EGZAMINY 2013 W SZKOŁACH ARTYSTYCZNYCH. w w o je w ó dztwie śląskim
SPRAWDZIAN I EGZAMINY 2013 W SZKOŁACH ARTYSTYCZNYCH w w o je w ó dztwie śląskim Jaworzno 2013 Spis treści I. WPROWADZENIE 4 II. SPRAWDZIAN 6 2.1. Wyniki uczniów szkół podstawowych artystycznych dotyczące