MAGICIAN: GUIDED UCT. Zastosowanie automatycznie generowanej funkcji oceny w GGP
|
|
- Wiktor Zając
- 6 lat temu
- Przeglądów:
Transkrypt
1 MAGICIAN: GUIDED UCT Zastosowanie automatycznie generowanej funkcji oceny w GGP
2 GENERAL GAME PLAYING
3 General Game Playing? Cel: stworzenie systemu umiejącego grać/nauczyć się grać we wszystkie gry Turniej w ramach AAAI National Conference corocznie od 2005 roku Przebieg rozgrywki w ramach turnieju: prezentacja zasad i czas na ich analizę (np. 5m) rozgrywka z ograniczeniem czasowym na wykonanie pojedynczego ruchu
4 Model gry Skończona Skończona liczba graczy w tym 1 czyli de facto łamigłówka synchroniczna wszyscy gracze ruszają się równocześnie (ale dopuszczalne ruchy typu noop) skończona liczba legalnych ruchów w każdym ze skończonej liczby stanów zmiany stanu tylko w wyniku ruchów maszyna stanowa
5 Model gry c.d. M. Genesereth, N. Love, and B. Pell. General Game Playing: Overview of the AAAI Competition. AI Magazine, 26(2):62-72, 2005.
6 Game Definition Language (GDL) Opis gry jako maszyny stanowej: zbyt rozwlekły Krótszy sposób opisu: Game Definition Language (GDL) opis gry za pomocą fomuł logicznych język bazujący na zmodyfikowanym Datalogu Datalog to podzbiór Prologa podstawowe relacje: role, true, init, next, legal, does, goal, terminal
7 GDL: Tic-Tac-Toe J. Reisinger, E. Bahceci, I. Karpov, and R. Miikkulainen. Coevolving strategies for general game playing. In Proceedings of the IEEE Symposium on Computational Intelligence and Games (CIG 2007), , Honolulu, Hawaii, IEEE Press.
8 Multi- Approach Game Independent Cunningly Intelligent Arch- Nemesis
9 UCT GUIDED UCT
10 UCT Sposób wybierania kolejnego ruchu podczas symulacji (UCT): Q(s,a) średni dotychczasowy wynik pary stan-ruch N liczba wizyt w danym stanie/wykonań danej akcji akcje nigdy nie wykonane wybierane są w pierwszej kolejności
11 UCT c.d.
12 UCT c.d. Ograniczanie zużycia pamięci: usuwanie danych o węzłach powyżej aktualnego po każdym (realnie) wykonanym ruchu co z pozycjami powtórzonymi w drzewie gry 1. duplikowanie 2. intelegentne wykrywanie, kiedy można je usunąć z pamięci dodawanie tylko jednego nowego węzła per symulacja Modelowanie przeciwnika każdy przeciwnik ma przydzielony swój własny model (Cadia) przeciwnicy podejmują losowe decyzje
13 UCT - usprawnienia CADIAPlayer: history heuristic modyfikuje prawdopodobieństwo wybrania niewypróbowanej akcji (zarówno w fazie UCT, jak i MC)
14 Guided UCT Guided UCT + funkcja ewaluacyjna Gdzie ta funkcja ewaluacyjna? 1. W fazie MC: a) całkowite zastąpienia fazy (z zadanym prawdopodobieństwem) b) zakończenie symulacji przed osiągnięciem końca gry z zadanym prawdopodobieństwem w każdym węźle drzewa
15 Guided UCT Guided UCT + funkcja ewaluacyjna Gdzie ta funkcja ewaluacyjna? 2. W fazie UCT: a) jako wstępne sortowanie ruchów nigdy nie wypróbowanych b) jako startowy szacunek wartości ruchów z wagą odpowiadającą n symulacjom Problem: porównywanie bardzo podobnych pozycji (różniących się tylko ostatnim ruchem)
16 STATISTICAL GUCT: HEURYSTYCZNA FUNKCJA EWALUACYJNA
17 Generowanie komponentów Lista podstawowa: wyrażenia występujące w opisie gry cechy nie muszą być binarne zliczanie sposobów rozwiązania zmiennych w wyrażeniu Uzupełnianie listy: uogólniane przez podstawianie zmiennych za stałe i możliwych stałych za zmienne cell(1, 1, x) cell(1, 1,?) cell(?,?, x) cell(1,?, x)
18 Generowanie komponentów c.d. Podstawianie stałych za zmienne Wszystkich?? Wyznaczanie dziedzin argumentów predykatów/funkcji:
19 Złożone komponenty Relacje między wartościami komponentów różniących się na jednej pozycji: cell(?,?, w) cell(?,?, b) cell(?,?, wk) / cell(?,?, bk) a jako efekt uboczny także: cell(a, 1,?) / cell(a, 3,?) Problem: co z dzieleniem przez 0? Odp. 1: 0 Odp. 2: podzielmy przez ½ zamiast tego Odp. 3: zrezygnujmy na razie z proporcji
20 Analiza statystyczna komponentów Pula przykładowych sekwencji ok. 100 początek sekwencji: wynik losowej gry długość: do 5 pozycji odległość między pozycjami: 1-2 ruchy generowanie sekwencji: losowe ruchy powiązanie sekwencji ze średnim wynikiem: symulacje Monte Carlo (~10)
21 Analiza statystyczna komponentów c.d. Średnie wartości i wariancje wartości komponentów dla całej gry uwzględnia tylko pierwszą pozycję z każdej sekwencji dla poszczególnych sekwencji Korelacja wartości komponentów z wynikiem gry brana pod uwagę średnia wartość komponentu w sekwencji Stabilność wartości komponentów iloraz wariancji między początkami sekwencji oraz średniej wariancji w ramach sekwencji S = TV / (TV + 10*SV)
22 Funkcja ewaluacyjna - heurystyczna Wybór komponentów: sortowanie: min(stabilność, korelacja z wynikiem ) obcięcie do 30 pierwszych komponentów Wagi: stabilność * korelacja z wynikiem Składnik stały: średni wynik
23 WYNIKI EKSPERYMENTALNE
24 StatGUCT vs. UCT Wybór gier: jak najbardziej zróżnicowane wyniki (od najlepszych do najgorszych) 100% 80% 60% 40% 20% 0% -20% -40% -60% -80% -100% Chess Checkers Connect5 Connect4 Othello
25 MTD(f) vs. UCT (single threaded) 100% 80% 60% 40% 20% 0% -20% -40% -60% -80% -100% Checkers Chess Connect4 Connect5 Othello Karol Walędzik - Windows Programming 25
26 MTD(f) vs. UCT (multithreaded) 100% 80% 60% 40% 20% 0% -20% Checkers Connect4 Connect Othello 60-40% -60% -80% -100% Karol Walędzik - Windows Programming 26
27 Chess & Checkers 100% 80% 60% 40% 20% 0% -20% -40% -60% -80% Chess - UCT Chess - MTD(f) Checkers - UCT Checkers - MTD(f) -100% Karol Walędzik - Windows Programming 27
28 Connect4 & Connect5 100% 80% 60% 40% 20% 0% -20% -40% -60% -80% Connect4 - GUCT Connect4 - MTD(f) Connect5 - GUCT Connect5 - MTD(f) -100% Karol Walędzik - Windows Programming 28
29 Othello 100% 80% 60% 40% Othello - GUCT Othello - MTD(f) 20% 0% -20% % -60% -80% -100% Karol Walędzik - Windows Programming 29
30 Bibliografia J. Clune: Heuristic evaluation functions for General Game Playing. In Proceed- ings of the Twenty- Second AAAI Conference on Articial Intelligence (AAAI- 07), pages , Vancouver, BC, Canada, AAAI Press. H. Finnsson, Y. Bjornsson: Simulation-based approach to General Game Playing. In Proceedings of the Twenty-Third AAAI Conference on Articial Intelligence (AAAI-08), pages , Chicago, IL, AAAI Press. General Game Playing website by Stanford University. General Game Playing website by Dresden University of Technology. M. Genesereth, N. Love: General Game Playing: Overview of the AAAI Competition D. Kaiser: The Design and Implementation of a Successful General Game Playing Agent. In Proceedings of FLAIRS Conference, pages , 2007 G. Kuhlmann, K. Dresner, and P. Stone: Automatic heuristic construction in a complete General Game Player. In Proceedings of the Twenty-First AAAI Conference on Artificial Intelligence (AAAI-06), pages , Boston, MA, AAAI Press. N. Love, T. Hinrichs, D. Haley, E. Schkufza, M. Genesereth: General Game Playing: Game Description Language Specification. spec pdf, J. Mańdziuk, M. Kusiak, K. Walędzik: Evolutionary-based heuristic generators for checkers and give-away checkers. Expert Systems, 24(4): , Blackwell-Publishing, J. Reisinger, E. Bah ceci, I. Karpov and R. Miikkulainen: Coevolving strategies for general game playing. In Proceedings of the IEEE Symposium on Computational Intelligence and Games (CIG 07), pages , Honolulu, Hawaii, IEEE Press. S. Schiffel, M.Thielscher: Automatic Construction of a Heuristic Search Func tion for General Game Playing. In Seventh IJCAI International Workshop on Nonmonotonic Reasoning, Action and Change (NRAC07).
MAGICIAN. czyli General Game Playing w praktyce. General Game Playing
MAGICIAN czyli General Game Playing w praktyce General Game Playing 1 General Game Playing? Cel: stworzenie systemu umiejącego grać/nauczyć się grać we wszystkie gry Turniej w ramach AAAI National Conference
MAGICIAN: A GGP Agent. Analiza zależności w opisie reguł gier GGP
MAGICIAN: A GGP Agent Analiza zależności w opisie reguł gier GGP GENERAL GAME PLAYING General Game Playing? Cel: stworzenie systemu umiejącego grać/nauczyć się grać we wszystkie gry Turniej w ramach AAAI
MAGICIAN: GUIDED UCT. Ekstrakcja uniwersalnej funkcji ewaluacyjnej z rezultatów symulacji UCT
MAGICIAN: GUIDED UCT Ekstrakcja uniwersalnej funkcji ewaluacyjnej z rezultatów symulacji UCT GENERAL GAME PLAYING General Game Playing? Cel: stworzenie systemu umiejącego grać/nauczyć się grać we wszystkie
General Game Playing. Aktualnie stosowane algorytmy i metody konstrukcji agentów
General Game Playing Aktualnie stosowane algorytmy i metody konstrukcji agentów GENERAL GAME PLAYING General Game Playing? Cel: stworzenie systemu umiejącego grać/nauczyć się grać we wszystkie gry Turniej
UCT. Wybrane modyfikacje i usprawnienia
UCT Wybrane modyfikacje i usprawnienia UCT UCT Sposób wybierania kolejnego ruchu podczas symulacji (UCT): Q(s,a) średni dotychczasowy wynik pary stan-ruch N liczba wizyt w danym stanie/wykonań danej akcji
POŁĄCZENIE ALGORYTMÓW SYMULACYJNYCH ORAZ DZIEDZINOWYCH METOD HEURYSTYCZNYCH W ZAGADNIENIACH DYNAMICZNEGO PODEJMOWANIA DECYZJI
POŁĄCZENIE ALGORYTMÓW SYMULACYJNYCH ORAZ DZIEDZINOWYCH METOD HEURYSTYCZNYCH W ZAGADNIENIACH DYNAMICZNEGO PODEJMOWANIA DECYZJI mgr inż. Karol Walędzik k.waledzik@mini.pw.edu.pl prof. dr hab. inż. Jacek
Instytut Badań Systemowych Polskiej Akademii Nauk. Streszczenie rozprawy doktorskiej
Instytut Badań Systemowych Polskiej Akademii Nauk Streszczenie rozprawy doktorskiej Meta-heurystyczne metody adaptacyjne bazujące na symulacjach w synchronicznych grach wieloosobowych. Mgr inż. Maciej
Jak oceniać, gdy nic nie wiemy?
Jak oceniać, gdy nic nie wiemy? Jasiek Marcinkowski II UWr 25 października 2012 Jasiek Marcinkowski (II UWr) Jak oceniać, gdy nic nie wiemy? 25 października 2012 1 / 10 Jak się gra w gry, o których dużo
Dwaj gracze na przemian kładą jednakowe monety na stole tak, aby na siebie nie nachodziły Przegrywa ten, kto nie może dołożyć monety
Mateusz Lewandowski Krótka filozofia Ciekawość gier Poziomy rozwiązania gier Synchroniczne wykonywanie ruchów w GGP Podejścia do końcówek gier Wykrywanie symetrii Związki z innymi dziedzinami KONSPEKT
Risk-Aware Project Scheduling. SimpleUCT
Risk-Aware Project Scheduling SimpleUCT DEFINICJA ZAGADNIENIA Resource-Constrained Project Scheduling (RCPS) Risk-Aware Project Scheduling (RAPS) 1 tryb wykonywania działań Czas trwania zadań jako zmienna
AI i ML w grach. Przegląd zagadnień i inspiracje systemów human-like
Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska AI i ML w grach. Przegląd zagadnień i inspiracje systemów human-like Jacek Mańdziuk PP-RAI 2018, Poznań, 18/10/2018 Gry a poważna nauka
Algorytm memetyczny w grach wielokryterialnych z odroczoną preferencją celów. Adam Żychowski
Algorytm memetyczny w grach wielokryterialnych z odroczoną preferencją celów Adam Żychowski Definicja problemu dwóch graczy: P 1 (minimalizator) oraz P 2 (maksymalizator) S 1, S 2 zbiory strategii graczy
RISK-AWARE PROJECT SCHEDULING
RISK-AWARE PROJECT SCHEDULING Z WYKORZYSTANIEM UCT KAROL WALĘDZIK DEFINICJA ZAGADNIENIA RESOURCE-CONSTRAINED PROJECT SCHEDULING (RCPS) Karol Walędzik - RAPS 3 RISK-AWARE PROJECT SCHEDULING (RAPS) 1 tryb
Analiza stanów gry na potrzeby UCT w DVRP
Analiza stanów gry na potrzeby UCT w DVRP Seminarium IO na MiNI 04.11.2014 Michał Okulewicz based on the decision DEC-2012/07/B/ST6/01527 Plan prezentacji Definicja problemu DVRP DVRP na potrzeby UCB Analiza
Wykład 7 i 8. Przeszukiwanie z adwersarzem. w oparciu o: S. Russel, P. Norvig. Artificial Intelligence. A Modern Approach
(4g) Wykład 7 i 8 w oparciu o: S. Russel, P. Norvig. Artificial Intelligence. A Modern Approach P. Kobylański Wprowadzenie do Sztucznej Inteligencji 177 / 226 (4g) gry optymalne decyzje w grach algorytm
Obliczenia równoległe w General Game Playing
Obliczenia równoległe w General Game Playing promotor: prof. dr hab. Jacek Mańdziuk 1/66 Plan Krótkie przypomnienie GGP/MiNI-Player Motywacja Pomysł 2012 Pomysł 2013 Porównanie Podsumowanie 2/66 General
RISK-AWARE PROJECT SCHEDULING
RISK-AWARE PROJECT SCHEDULING SIMPLEUCT CZ. 2 KAROL WALĘDZIK DEFINICJA ZAGADNIENIA RESOURCE-CONSTRAINED PROJECT SCHEDULING (RCPS) Karol Walędzik - RAPS 3 RISK-AWARE PROJECT SCHEDULING (RAPS) 1 tryb wykonywania
Seminarium IO. Zastosowanie algorytmu UCT w Dynamic Vehicle Routing Problem. Michał Okulewicz
Seminarium IO Zastosowanie algorytmu UCT w Dynamic Vehicle Routing Problem Michał Okulewicz 05.11.2013 Plan prezentacji Przypomnienie Problem DVRP Algorytm UCT Zastosowanie algorytmu UCT/PSO w DVRP Zastosowanie
RISK-AWARE PROJECT SCHEDULING
RISK-AWARE PROJECT SCHEDULING METODA GRASP KAROL WALĘDZIK DEFINICJA ZAGADNIENIA RESOURCE-CONSTRAINED PROJECT SCHEDULING (RCPS) Karol Walędzik - RAPS 3 RISK-AWARE PROJECT SCHEDULING (RAPS) 1 tryb wykonywania
Systems Research Institute Polish Academy of Sciences
Systems Research Institute Polish Academy of Sciences Newelska 6, 01-447 Warszawa, Poland Phone: Directors: Fax: E-mail: Web: Tax no.: (48) 22 38 10 100 (48) 22 38 10 275 (48) 22 38 10 105 ibs@ibspan.waw.pl
Porównanie rozwiązań równowagowych Stackelberga w grach z wynikami stosowania algorytmu UCT
Porównanie rozwiązań równowagowych Stackelberga w grach z wynikami stosowania algorytmu UCT Jan Karwowski Zakład Sztucznej Inteligencji i Metod Obliczeniowych Wydział Matematyki i Nauk Informacyjnych PW
Projekt i implementacja systemu wspomagania planowania w języku Prolog
Projekt i implementacja systemu wspomagania planowania w języku Prolog Kraków, 29 maja 2007 Plan prezentacji 1 Wstęp Czym jest planowanie? Charakterystyka procesu planowania 2 Przeglad istniejacych rozwiazań
TEORIA GIER DEFINICJA (VON NEUMANN, MORGENSTERN) GRA. jednostek (graczy) znajdujących się w sytuacji konfliktowej (konflikt interesów),w
TEORIA GIER GRA DEFINICJA (VON NEUMANN, MORGENSTERN) Gra składa się z zestawu reguł określających możliwości wyboru postępowania jednostek (graczy) znajdujących się w sytuacji konfliktowej (konflikt interesów),w
RISK-AWARE PROJECT SCHEDULING
RISK-AWARE PROJECT SCHEDULING PROUCT - GRASP KAROL WALĘDZIK DEFINICJA ZAGADNIENIA RESOURCE-CONSTRAINED PROJECT SCHEDULING (RCPS) Karol Walędzik - RAPS 3 RISK-AWARE PROJECT SCHEDULING (RAPS) 1 tryb wykonywania
Algorytmy heurystyczne w UCB dla DVRP
Algorytmy heurystyczne w UCB dla DVRP Seminarium IO na MiNI 24.03.2015 Michał Okulewicz based on the decision DEC-2012/07/B/ST6/01527 Plan prezentacji Definicja problemu DVRP UCB na potrzeby DVRP Algorytmy
Algorytmy dla gier dwuosobowych
Algorytmy dla gier dwuosobowych Wojciech Dudek Seminarium Nowości Komputerowe 5 czerwca 2008 Plan prezentacji Pojęcia wstępne (gry dwuosobowe, stan gry, drzewo gry) Algorytm MiniMax Funkcje oceniające
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt
Metoda ewolucyjnego doboru współczynników funkcji oceniającej w antywarcabach
Metoda ewolucyjnego doboru współczynników funkcji oceniającej w antywarcabach Promotor: dr hab. Jacek Mańdziuk Autor: Jarosław Budzianowski Metoda ewolucyjnego doboru współczynników funkcji oceniajacej
Identyfikacja i modelowanie struktur i procesów biologicznych
Identyfikacja i modelowanie struktur i procesów biologicznych Laboratorium 2: Wprowadzenie do UML-a. mgr inż. Urszula Smyczyńska AGH Akademia Górniczo-Hutnicza 1. Cel zajęć Celem zajęć jest zapoznanie
Modelowanie sieci złożonych
Modelowanie sieci złożonych B. Wacław Instytut Fizyki UJ Czym są sieci złożone? wiele układów ma strukturę sieci: Internet, WWW, sieć cytowań, sieci komunikacyjne, społeczne itd. sieć = graf: węzły połączone
Zastosowanie sztucznej inteligencji w testowaniu oprogramowania
Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Problem NP Problem NP (niedeterministycznie wielomianowy, ang. nondeterministic polynomial) to problem decyzyjny, dla którego rozwiązanie
Tworzenie gier na urządzenia mobilne
Katedra Inżynierii Wiedzy Teoria podejmowania decyzji w grze Gry w postaci ekstensywnej Inaczej gry w postaci drzewiastej, gry w postaci rozwiniętej; formalny opis wszystkich możliwych przebiegów gry z
CogGGP kognitywnie inspirowany agent GGP podejście nr 1 wyniki eksperymentalne
CogGGP kognitywnie inspirowany agent GGP podejście nr 1 wyniki eksperymentalne mgr inż. C. Dendek prof nzw. dr hab. J. Mańdziuk Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych Outline
Testowanie hipotez statystycznych
9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :
LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.
LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja
SYMULACJA RYZYKA CZASOWO-KOSZTOWEGO PRZEDSIĘWZIĘĆ NA TLE METODY PERT/COST
Dr inż. Tomasz WIATR Politechnika Poznańska SYMULACJA RYZYKA CZASOWO-KOSZTOWEGO PRZEDSIĘWZIĘĆ NA TLE METODY PERT/COST Słowa kluczowe: PERT/cost, symulacja Monte Carlo, Pertmaster Streszczenie Referat stanowi
Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner
Problem eliminacji nieprzystających elementów w zadaniu rozpoznania wzorca Marcin Luckner Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Elementy nieprzystające Definicja odrzucania Klasyfikacja
Programowanie Funkcyjne. Prezentacja projektu, 7 stycznia 2008, Juliusz Sompolski
Programowanie Funkcyjne Prezentacja projektu, 7 stycznia 2008, Juliusz Sompolski Projekt Uniwersalny szablon pozwalający w łatwy sposób podłączać do siebie różne gry (lub ogólniejszą zawartość). Dla gier
POTRZEBY A B C D E P P P P P
1. (2p.) Narysuj przykładowy graf przydziału (jednokrotnych) zasobów (bez zakleszczenia) i sprawdź, jakie przykładowe żądania przydzielenia zasobów spowodują powstanie zakleszczenia, a jakie nie. W przypadku
The game of NoGo. The state-of-art algorithms. Arkadiusz Nowakowski.
The game of NoGo The state-of-art algorithms Arkadiusz Nowakowski arkadiusz.nowakowski@us.edu.pl Faculty of Computer Science and Materials Science University of Silesia, Poland Sosnowiec 28.11.2016 Plan
Planowanie drogi robota, algorytm A*
Planowanie drogi robota, algorytm A* Karol Sydor 13 maja 2008 Założenia Uproszczenie przestrzeni Założenia Problem planowania trasy jest bardzo złożony i trudny. W celu uproszczenia problemu przyjmujemy
Metody radzenia sobie z brakującymi obserwacjami
Metody radzenia sobie z brakującymi obserwacjami 29 kwietnia 2009 Wprowadzenie są to informacje, które zamierzaliśmy zebrać, ale nam się to nie udało. Przykłady: Badany odpowiada tylko na niektóre pytania
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania
Algorytmiczna Teoria Gier Koalicyjnych 2015/16
Algorytmiczna Teoria Gier Koalicyjnych 2015/16 Oskar Skibski MIMUW 4 października 2015 Oskar Skibski (MIMUW) ATGK-16 4 października 2015 1 / 21 Przykład Oskar Skibski (MIMUW) ATGK-16 4 października 2015
Algorytmy ewolucyjne (3)
Algorytmy ewolucyjne (3) http://zajecia.jakubw.pl/nai KODOWANIE PERMUTACJI W pewnych zastosowaniach kodowanie binarne jest mniej naturalne, niż inne sposoby kodowania. Na przykład, w problemie komiwojażera
Zarządzanie projektami. Wykład 1 - Projekt
Zarządzanie projektami Wykład 1 - Projekt Plan wykładu Informacje organizacyjne Prezentacja sylabusa Omówienie zasad zaliczenia przedmiotu Definicja projektu Współzależne cechy projektu Projekt/Program/Portfel
Mixed-UCT: Zastosowanie metod symulacyjnych do poszukiwania równowagi Stackelberga w grach wielokrokowych
Mixed-UCT: Zastosowanie metod symulacyjnych do poszukiwania równowagi Stackelberga w grach wielokrokowych Jan Karwowski Zakład Sztucznej Inteligencji i Metod Obliczeniowych Wydział Matematyki i Nauk Informacyjnych
Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych
Gdańsk, Warsztaty pt. Układy Złożone (8 10 maja 2014) Agata Fronczak Zakład Fizyki Układów Złożonych Wydział Fizyki Politechniki Warszawskiej Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań
Tomasz Pawlak. Zastosowania Metod Inteligencji Obliczeniowej
1 Zastosowania Metod Inteligencji Obliczeniowej Tomasz Pawlak 2 Plan prezentacji Sprawy organizacyjne Wprowadzenie do metod inteligencji obliczeniowej Studium wybranych przypadków zastosowań IO 3 Dane
Podstawy OpenCL część 2
Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024
Algorytmiczna Teoria Gier Koalicyjnych
Algorytmiczna Teoria Gier Koalicyjnych Oskar Skibski Institute of Informatics, University of Warsaw 15 października 2013 Oskar Skibski (University of Warsaw) Algorytmiczna Teoria Gier Koalicyjnych 15 października
Monte Carlo, bootstrap, jacknife
Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych
Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą w oddzielnej kolumnie.
STATISTICA INSTRUKCJA - 1 I. Wprowadzanie danych Podstawowe / Nowy / Arkusz Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą
WSPÓLNOTA KOMUNIKACYJNA AGENTÓW
WSPÓLNOTA KOMUNIKACYJNA AGENTÓW Modelowanie ewolucji języka DOROTA LIPOWSKA Zakład Logiki Stosowanej Instytut Językoznawstwa UAM symulacje komputerowe a problem powstania i ewolucji języka symulacje wieloagentowe
mgr inż. Sebastian Meszyński
Wykształcenie: 2011 obecnie studia doktoranckie: Wydział Fizyki, Astronomii i Informatyki Stosowanej, Katedra Informatyki Stosowanej. 2009-2011 - studia magisterskie: Wydział Fizyki, Astronomii i Informatyki
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza
DWUKROTNA SYMULACJA MONTE CARLO JAKO METODA ANALIZY RYZYKA NA PRZYKŁADZIE WYCENY OPCJI PRZEŁĄCZANIA FUNKCJI UŻYTKOWEJ NIERUCHOMOŚCI
DWUKROTNA SYMULACJA MONTE CARLO JAKO METODA ANALIZY RYZYKA NA PRZYKŁADZIE WYCENY OPCJI PRZEŁĄCZANIA FUNKCJI UŻYTKOWEJ NIERUCHOMOŚCI mgr Marcin Pawlak Katedra Inwestycji i Wyceny Przedsiębiorstw Plan wystąpienia
Wprowadzenie do teorii gier
Instytut Informatyki Uniwersytetu Śląskiego Wykład 1 1 Klasyfikacja gier 2 Gry macierzowe, macierz wypłat, strategie czyste i mieszane 3 Punkty równowagi w grach o sumie zerowej 4 Gry dwuosobowe oraz n-osobowe
Przedsiębiorczość i Podejmowanie Ryzyka. Zajęcia 1
Przedsiębiorczość i Podejmowanie Ryzyka Zajęcia 1 Zaliczenie Obecność Reguły gry: - Obecność obowiązkowa - kartkówki tylko w nagłych wypadkach (w wypadku niepożądanej aktywności) - Prace domowe (oddawane
Security Games: zastosowanie UCT na tle dotychczasowych podejść do problemu
Security Games: zastosowanie UCT na tle dotychczasowych podejść do problemu Jan Karwowski Zakład Sztucznej Inteligencji i Metod Obliczeniowych Wydział Matematyki i Nauk Informacyjnych PW 14 X 2014 Jan
Prawdopodobieństwo geometryczne
Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo
Metody Obliczeniowe w Nauce i Technice
Metody Obliczeniowe w Nauce i Technice 15. Obliczanie całek metodami Monte Carlo Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl
Kompresja danych Streszczenie Studia Dzienne Wykład 10,
1 Kwantyzacja wektorowa Kompresja danych Streszczenie Studia Dzienne Wykład 10, 28.04.2006 Kwantyzacja wektorowa: dane dzielone na bloki (wektory), każdy blok kwantyzowany jako jeden element danych. Ogólny
Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)
Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013
Analiza wariancji. dr Janusz Górczyński
Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik
Podejście memetyczne do problemu DCVRP - wstępne wyniki. Adam Żychowski
Podejście memetyczne do problemu DCVRP - wstępne wyniki Adam Żychowski Na podstawie prac X. S. Chen, L. Feng, Y. S. Ong A Self-Adaptive Memeplexes Robust Search Scheme for solving Stochastic Demands Vehicle
Nie graj w gry! Naucz swoje programy robić to za Ciebie.
Nie graj w gry! Naucz swoje programy robić to za Ciebie. Instytut Informatyki, Uniwersytet Wrocławski 29 lutego 2013 Tytułem wstępu Czym są gry programistyczne Standardowe gry komputerowe Gry programistyczne
Rozkłady dwóch zmiennych losowych
Rozkłady dwóch zmiennych losowych Uogólnienie pojęć na rozkład dwóch zmiennych Dystrybuanta i gęstość prawdopodobieństwa Rozkład brzegowy Prawdopodobieństwo warunkowe Wartości średnie i odchylenia standardowe
MODELOWANIE I SYMULACJA Kościelisko, 19-23 czerwca 2006r. Oddział Warszawski PTETiS Wydział Elektryczny Politechniki Warszawskiej Polska Sekcja IEEE
ODELOWANIE I SYULACJA Kościelisko, 9-3 czerwca 006r. Oddział Warszawski PTETiS Wydział Elektryczny Politechniki Warszawskiej Polska Sekcja IEEE SYSTE DO KOPUTEROWEGO ODELOWANIA I SYULACJI UKŁADÓW DYNAICZNYCH
Rodzaje Code slicing w weryfikacji Narzędzia Literatura. Code slicing. Bartłomiej Wołowiec. 16 lutego 2011
w weryfikacji 16 lutego 2011 w weryfikacji 1 Rodzaje Statyczny slicing (ang. Static Slicing) Dynamiczny slicing (ang. Dynamic Slicing) Warunkowy slicing (ang. Conditioned Slicing) Bezpostaciowy slicing
Logika Temporalna i Automaty Czasowe
Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (7) Automaty czasowe NuSMV Paweł Głuchowski, Politechnika Wrocławska wersja 2.3 Treść wykładu NuSMV NuSMV symboliczny
Kognitywne podejście do gry w szachy kontynuacja prac
Kognitywne podejście do gry w szachy kontynuacja prac Stanisław Kaźmierczak Opiekun naukowy: prof. dr hab. Jacek Mańdziuk 2 Agenda Motywacja Kilka badań Faza nauki Wzorce Generowanie ruchów Przykłady Pomysły
MODEL ŚRODOWISKA WIELOAGENTOWEGO W NEUROEWOLUCYJNYM STEROWANIU STATKIEM
Mirosław Łącki Akademia Morska w Gdyni MODEL ŚRODOWISKA WIELOAGENTOWEGO W NEUROEWOLUCYJNYM STEROWANIU STATKIEM W artykule tym przedstawiono propozycję użycia neuroewolucyjnego systemu wieloagentowego do
Oszacowanie złożoności problemu rozgrywki w otwarte karty w brydżu
Oszacowanie złożoności problemu rozgrywki w otwarte karty w brydżu Piotr Beling Uniwersytet Łódzki, Wydział Matematyki i Informatyki 22 września 2013 Streszczenie Artykuł zawiera analizę złożoności problemu
Strategiczne gry zarządcze jako innowacyjne narzędzie w edukacji przedsiębiorczej
Strategiczne gry zarządcze jako innowacyjne narzędzie w edukacji przedsiębiorczej Aleksandra Gaweł Uniwersytet Ekonomiczny w Poznaniu 21/11/2013 Zawartość prezentacji Istota i cechy gier strategicznych
weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)
PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
STATYSTYKA wykład 1. Wanda Olech. Katedra Genetyki i Ogólnej Hodowli Zwierząt
STTYSTYK wykład 1 Wanda Olech Katedra Genetyki i Ogólnej Hodowli Zwierząt Plan wykładów Data WYKŁDY 1.X rachunek prawdopodobieństwa; 8.X zmienna losowa jednowymiarowa, funkcja rozkładu, dystrybuanta 15.X
PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE
UNIWERSYTET WARMIŃSKO-MAZURSKI W OLSZTYNIE PODYPLOMOWE STUDIA ZAAWANSOWANE METODY ANALIZY DANYCH I DATA MINING W BIZNESIE http://matman.uwm.edu.pl/psi e-mail: psi@matman.uwm.edu.pl ul. Słoneczna 54 10-561
Podstawy inżynierii oprogramowania
Podstawy inżynierii oprogramowania Modelowanie. Podstawy notacji UML Aleksander Lamża ZKSB Instytut Informatyki Uniwersytet Śląski w Katowicach aleksander.lamza@us.edu.pl Zawartość Czym jest UML? Wybrane
Analiza zawartości dokumentów za pomocą probabilistycznych modeli graficznych
Analiza zawartości dokumentów za pomocą probabilistycznych modeli graficznych Probabilistic Topic Models Jakub M. TOMCZAK Politechnika Wrocławska, Instytut Informatyki 30.03.2011, Wrocław Plan 1. Wstęp
Gry umysłowe: człowiek kontra maszyna
Gry umysłowe: człowiek kontra maszyna Wykład przeprowadzony na Politechnice Krakowskiej 24 kwietnia 2013 w ramach projektu POKL-04.01.02-00-107/10, studia zamawiane na kierunku Informatyka Wydziału Inżynierii
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2014/15 Znajdowanie maksimum w zbiorze
Zastosowanie metody UCT i drzewa strategii behawioralnej do aproksymacji stanu równowagowego Stackelberga w grach wielokrokowych
Zastosowanie metody UCT i drzewa strategii behawioralnej do aproksymacji stanu równowagowego Stackelberga w grach wielokrokowych Jan Karwowski Zakład Sztucznej Inteligencji i Metod Obliczeniowych Wydział
Uczenie maszynowe end-to-end na przykładzie programu DeepChess. Stanisław Kaźmierczak
Uczenie maszynowe end-to-end na przykładzie programu DeepChess Stanisław Kaźmierczak 2 Agenda Wprowadzenie Dane treningowe Trening i struktura sieci Redukcja rozmiaru sieci Zmodyfikowane alfa beta Wyniki
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-10 Projekt pn. Wzmocnienie
POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH
POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH Barbara Popowska bpopowsk@math.put.poznan.pl Politechnika Poznańska http://www.put.poznan.pl/ PROGRAM REFERATU 1. WPROWADZENIE 2. GRAF JAKO MODEL
Partition Search i gry z niezupełną informacją
MIMUW 21 stycznia 2010 1 Co to jest gra? Proste algorytmy 2 Pomysł Algorytm Przykład użycia 3 Monte Carlo Inne spojrzenie Definicja Co to jest gra? Proste algorytmy Grą o wartościach w przedziale [0, 1]
Zarządzanie czasem projektu
Zarządzanie czasem projektu Narzędzia i techniki szacowania czasu zadań Opinia ekspertów Szacowanie przez analogię (top-down estimating) stopień wiarygodności = f(podobieństwo zadań), = f(dostęp do wszystkich
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Identyfikacja i modelowanie struktur i procesów biologicznych
Identyfikacja i modelowanie struktur i procesów biologicznych Laboratorium 2: Wprowadzenie do UML-a. mgr inż. Urszula Smyczyńska AGH Akademia Górniczo-Hutnicza 1. Cel zajęć Celem zajęć jest zapoznanie
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1
Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie
METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu
Kamil Figura Krzysztof Kaliński Bartek Kutera METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu Porównanie metod uczenia z rodziny TD z algorytmem Layered Learning na przykładzie gry w warcaby i gry w anty-warcaby
Adam Meissner. SZTUCZNA INTELIGENCJA Gry dwuosobowe
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Gry dwuosobowe Literatura [1] Sterling
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Sortowanie topologiczne skierowanych grafów acyklicznych
Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)