EXPECTATION CROPS OF CHOSEN AGRICULTURAL FETUSES WITH THE HELP OF NEURAL MODEL BY TIME SERIES
|
|
- Tadeusz Szewczyk
- 6 lat temu
- Przeglądów:
Transkrypt
1 Piotr BONIECKI, Wojciech MUELLER Akademia Rolnicza im. A. Cieszkowskiego w Poznaniu Instytut InŜynierii Rolniczej EXPECTATION CROPS OF CHOSEN AGRICULTURAL FETUSES WITH THE HELP OF NEURAL MODEL BY TIME SERIES Summary Prediction becomes a very important stage in many activities. In case of expectation crops of chosen agricultural foetuses we deal with a number of stimuli which consequently transform into the end effect. It is clear that the quality of those predictions has a great influence on subsequent stages in the production and distribution chain of agricultural foetuses. Neural networks by time series are a sophisticated technique of modeling capable of reflecting very complex functions. In time series problems, the objective is to predict ahead the value of a variable which varies in time, using previous values of that and/or other variables. The time series training data set therefore typically has a single variable, and this has type input/output (i.e., it is used both for network input and network output). PROGNOZOWANIE PLONÓW WYBRANYCH PŁODÓW ROLNYCH Z WYKORZYSTANIEM MODELI NEURONOWYCH W POSTACI SZEREGÓW CZASOWYCH Streszczenie Jednym z waŝnych etapów badania oraz analizy systemów empirycznych jest proces prognozowania, mający praktyczne zastosowanie w szerokim zakresie działalności ludzkiej. W przypadku przewidywania wielkości płodów rolnych mamy do czynienia z szeregiem złoŝonych bodźców, które w efekcie przekładają się na wynik końcowy, jakim jest plon. Jakość tych prognoz ma ogromne znaczenie dla kolejnych etapów w łańcuchu produkcyjno-dystrybucyjnym płodów rolnych. Sieci neuronowe w postaci szeregów czasowych są wysublimowaną techniką modelowania, zdolną odwzorować bardzo zło- Ŝone funkcje. Celem analizy szeregów czasowych jest ustalenie prognozy przyszłych wartości pewnej zmiennej, której wartości zmieniają się w czasie. Najczęściej dąŝy się do obliczenia prognozy korzystając z wcześniejszych wartości tej samej zmiennej, której wartość ma być przewidywana. Zbiór uczący, wykorzystywany przy neuronowej analizie szeregów czasowych, budowany jest zwykle w oparciu o pojedynczą zmienną, której typ określony jest jako Wejściowo-Wyjściowy. Oznacza to, Ŝe jest ona wykorzystywana zarówno jako wejście sieci neuronowej jak i jako jej wyjście. Wstęp Postęp w rolnictwie moŝliwy jest dzięki rozwojowi naukowemu m.in. takich dziedzin jak: inŝynieria rolnicza, informatyka w rolnictwie, prognozowanie rolnicze itp. Sztuczne sieci neuronowe coraz częściej stanowiące obiekt zainteresowania prowadzących badania w w.w. dziedzinach, umoŝliwiają rozwiązywanie róŝnego rodzaju problemów i często z powodzeniem wykorzystywane są w nowoczesnym rolnictwie. W praktyce na ogół stanowią one jądra systemów informatycznych, efektywnie wspomagających procesy podejmowania decyzji w produkcji rolniczej. Dzieje się tak m.in. dlatego, poniewaŝ modele oparte na sztucznej inteligencji potrafią coraz lepiej prognozować, diagnozować, rozpoznawać oraz klasyfikować. Celem pracy było wykorzystanie sieci neuronowych w postaci szeregów czasowych w prognozowaniu wybranych płodów rolnych. Przewidywany był plon buraków cukrowych oraz pszenicy. Prognozy zbudowano w oparciu o dane empiryczne reprezentujące wielkości plonu buraków cukrowych i pszenicy (z jednego hektara na obszarze Polski). Dane pochodzą z Roczników Statystycznych z lat Celem dodatkowym było wytworzenie, przyjaznego uŝytkownikowi, systemu informatycznego do prognozowania ww. plonów. Szeregi czasowe w prognozowaniu Analiza szeregów czasowych opiera się na załoŝeniu, Ŝe kolejne wartości w zbiorze danych reprezentują kolejne pomiary wykonane w równych odstępach czasu. Korzystanie z szeregów czasowych ma dwa główne cele: pierwszy to wykrywanie natury zjawiska reprezentowanego przez sekwencję obserwacji a drugi to przewidywanie przyszłych wartości szeregu czasowego. Oba te priorytety wymagają zidentyfikowania i opisania, w sposób mniej lub bardziej formalny, elementów szeregu czasowego. W szeregach czasowych wyróŝnia się dwie składowe: składową systematyczną, będącą efektem oddziaływań stałego zestawu czynników na zmienną prognozowaną oraz składową przypadkową zwaną często składnikiem losowym lub wahaniami przypadkowymi. Składnik losowy jest obecny we wszystkich zjawiskach ekonomicznych, jest on reprezentowany przez proces stochastyczny. Proces ten reprezentuje ciąg zmiennych losowych o jednakowych rozkładach prawdopodobieństwa zaleŝnych od nielosowego parametru opisującego czas. Wahania w zjawiskach gospodarczych zachodzące w rolnictwie powodowane są przez róŝne czynniki. Wynikają one z biologiczno-technicznego charakteru produkcji rolniczej oraz wpływu stochastycznych czynników klimatycznych i atmosferycznych. Często 40
2 powtarzają się one w określonych porach roku, powodując występowanie sezonowości w procesie produkcji. Sezonowość ta, wywołuje wymierne skutki w sferze rynku rolnego, w szczególności w obszarze dochodów oraz nakładów. Od sezonowości uzaleŝniona jest w duŝym sposób podaŝ produktów rolnych, a takŝe wysokość cen na rynku oraz poziom cen w skupach. Mierzenie poziomu wahań sezonowych oraz ich przewidywanie stwarza warunki do podejmowania trafnych i skutecznych decyzji w gospodarstwie. Punktem wyjścia do wyboru i zastosowania odpowiedniego modelu, opisującego zmiany w szeregu czasowym, jest wstępna analiza danych empirycznych. Ma to na celu stwierdzenie, które elementy występują w danym szeregu czasowym. O wahaniach sezonowych moŝna wnioskować na podstawie: - poza statystycznej wiedzy o danym zjawisku, - analizy graficznej, - analizy statystycznej. Najczęściej do wykrycia wahań sezonowych stosuje się analizę graficzną. Polega ona na sporządzeniu dwóch wykresów. Na pierwszym przedstawiamy poziom danego zjawiska dla całego szeregu czasowego, na drugim wykresie umieszczamy poziom danego zjawiska dla jednoimiennych okresów. Metodyka badawcza Wiele waŝnych praktycznych problemów moŝna zaliczyć do klasy zagadnień związanych z analizą szeregów czasowych. Celem w.w. analizy jest predykcja wartości pewnej zmiennej, na podstawie jej wcześniejszych wartości lub wartości innych zmiennych (Bishop C., 1995). Zgodnie z def. (Tadeusiewicz R., 1993) szereg czasowy to zbiór wartości danych, na ogół empirycznych, uporządkowany w czasie. W trakcie analizy szeregów czasowych najczęściej dąŝy się do tego, by kolejne wartości szeregu prognozowane były na podstawie wcześniejszych wartości tej samej zmiennej lub na podstawie wartości innych zmiennych. Fakt ten implikuję charakterystyczną strukturę zbioru uczącego w postaci zmiennej wejściowo/wyjściowej. Efektywnym i wygodnym narzędziem do neuronowej analizy szeregów czasowych jest moduł Sieci neuronowe zaimplementowany w komercyjnym pakiecie Statistica v. 7.1 firmy StatSoft. Topologie sztucznych sieci neuronowych dostępne w tym programie doskonale nadają się do analizy i predykcji szeregów czasowych. Co więcej, nie dotyczy to jakiegoś konkretnego rodzaju sieci. MoŜna przeprowadzić uczenie praktycznie kaŝdej architektury sieciowej w taki sposób, aby operowała ona na szeregu czasowym. W tym celu naleŝy w trakcie tworzenia sieci wykonać następujące kroki: Z natury zadania, jakie jest rozwiązywane w analizie szeregów czasowych wynika, Ŝe ta sama zmienna ma być uŝywana jako wejściowa (przeszłe wartości) oraz wyjściowa (przyszłe wartości), naleŝy nadać jej w Edytorze danych charakter zmiennej Wejściowo/Wyjściowej. Warto podkreślić, Ŝe w większości problemów związanych z analizą szeregów czasowych występuje pojedyncza zmienna. Łatwo zauwaŝyć, Ŝe moduł Sieci neuronowe pozwala równieŝ na korzystanie z sieci neuronowej dokonującej analizy szeregów czasowych dla wielu zmiennych, zarówno wejściowych jak i wyjściowych. Tab. 1. Zbiór danych wejściowych szeregu czasowego dla buraków cukrowych i pszenicy Table 1. Entrance data file of time series for sugar-beets and wheat Rok Buraki cukrowe Plon w dt z 1ha Rok Pszenica Plon w dt z 1ha , , , , , , , , , , , , , , , , , , , ,8 Kolejnym krokiem jest określenie wartości parametru Rząd w oknie Tworzenie sieci, aby sprecyzować liczbę okresów czasu, z których pobierane będą wartości rozwa- Ŝanej zmiennej, pełniące rolę wielkości wejściowych dla sieci. Następnie naleŝy określić wartość parametru Horyzont prognozy, aby wskazać, o ile okresów czasu w stosunku do ostatniej wartości wejściowej przesunięta jest wartość rozwa- Ŝanej zmiennej traktowana jako wartość wyjściowa z sieci (wartość prognozowana). W znacznej większości przypadków, Horyzont prognozy przyjmuje wartość 1, poniewaŝ najczęściej próbuje się prognozować sytuację następującą natychmiast po zbiorze obserwacji stanowiących podstawę do procesu prognozowania (np. pogodę w następnym dniu). Natomiast parametr Rząd jest zróŝnicowany w zaleŝności od wymagań związanych z badaną dziedziną problemową. Wartość tego 41
3 parametru wyraŝa pogląd na temat tego, jak wiele faktów z przeszłości trzeba znać, by na ich podstawie próbować przewidzieć przyszłość. Wynika z tego pewien praktyczny wniosek. OtóŜ jeśli prognozowana jest tylko pojedyncza zmienna typu Wejściowo/Wyjściowego przy zastosowaniu Horyzontu prognozy równego 1, to liczba przesłanek, na których opiera się prognoza jest wtedy dość mała. MoŜna wtedy wprowadzić ponownie prognozowaną wartość na wejście sieci i dokonać kolejnej prognozy. Jest to moŝliwe właśnie ze względu na specyficzny, wejściowo/wyjściowy charakter uŝywanych zmiennych. Z opisanego mechanizmu rekurencyjnego wykorzystania sieci moŝna niekiedy korzystać w celu realizacji nieograniczonej prognozy szeregu czasowego. Oczywiście trzeba mieć przy tym świadomość, Ŝe im dalszy element szeregu czasowego jest przewidywany, tym bardziej niepewna i nieprecyzyjna jest uzyskiwana prognoza (Osowski S., 2000). pszenicy oraz buraków cukrowych w określonej perspektywie czasu. Bazą do zbudowania tego programu był kod wygenerowany w programie Statistica v.7.1. (moduł Sieci neuronowe ) i zaimplementowany następnie w wytworzonej aplikacji Prognoza Plonów z wykorzystaniem platformy Borland Builder v.6.0. (rys. 1). Omówienie wyników W pracy wykonano neuronową predykcję plonów buraków cukrowych oraz pszenicy. Dane wykorzystane do uczenia sieci neuronowej pochodzą ze źródła GUS: banki i bazy danych, bank danych regionalnych oraz z Roczników Statystycznych z lat Wytworzono system informatyczny PrognozaPlonów, który pokazuje moŝliwości wykorzystania sieci neuronowych typu perceptron wielowarstwowy MLP (MultiLayer Perceptron) w postaci szeregów czasowych do prognozowania wybranych plonów na przykładzie buraków cukrowych oraz pszenicy. System wyznacza przewidywany plon Rys. 1. Generator Kodu w programie Statistica v (moduł Sieci neuronowe ) Fig. 1. "Code generator in programme Statistica v (module "Neural networks ) Formularz główny wytworzonego programu Prognoza Plonów przedstawia rys. 2. Rys. 2. Diagram przypadków uŝycia programu Prognoza Plonów Fig. 2. Case diagram of using the programme Prognoza Plonów 42
4 Rys. 3. Formularz główny programu Prognoza Plonów Fig. 3. Main form of programme "Prognoza Plonów Moduły robocze aplikacji Prognoza Plonów przedstawia rys. 4. Rys. 4. Formularze robocze do prognozowania plonu pszenicy oraz buraków Fig. 4. Working forms to prognose wheat and sugar beet crops Aplikacja została wytworzona zgodnie z wymogami in- Ŝynierii oprogramowania. W związku z tym posłuŝono się m.in. nowoczesnymi technikami oferowanymi przez język UML (Unifidet Modeling Language), który słuŝy do opracowania specyfikacji, wizualizacji oraz konstruowania i dokumentowania systemów informatycznych. Pozwala on równieŝ na modelowanie szerokiej gamy dziedzin, z modelowaniem aplikacji w zakresie wspomagania zarządzania włącznie. Język UML pozwala tworzyć podstawowe w metodyce obiektowej diagramy, które umoŝliwiają wizualizację, takich jak np. diagram przypadków uŝycia. Przypadki uŝycia odwzorowują strukturę systemu tak, jak ją widzą jego uŝytkownicy. Tworzony model musi być zrozumiały dla przyszłych uŝytkowników. Diagram przypadków uŝycia programu PrognozaPlonów przedstawia rys. 2. Uwagi końcowe Sieci neuronowe typu MLP w postaci szeregów czasowych są skutecznym narzędziem do prognozowania wielkości plonu pszenicy i buraków. Wytworzony system informatyczny PrognozaPlonów do prognozowania wybranych płodów rolnych za pomocą szeregów czasowych spełnia postawione wymagania jako narzędzie prognostyczne. Aplikacja spełnia równieŝ wymagania funkcjonalne postawione w fazie określenia wymagań. Doświadczenia z badanymi sieciami neuronowymi wykazały, Ŝe istotny wpływ na jakość prognozy ma struktura danych wejściowych, a w szczególności liczba przypadków uczących. Im znana jest większa liczba danych historycznych tym prognoza obarczona jest mniejszym błędem. Stwierdzono związek jakości predykcji z wielkością horyzontu prognozy. Najlepsze rezultaty uzyskano przy predykcjach krótko terminowych, co naleŝy uznać za własność charakterystyczną dla omawianej techniki prognozowania. Literatura [1] Bishop C., (1995). Neural Networks for Pattern Recognition: Oxford University Press. [2] Fausett L., (1994). Fundamentals of Neural Networks: New York Prentice Hall. [3] Kosiński R., (2002). Sztuczne sieci neuronowe: WNT, Warszawa. [4] śurada J., Barski M. (1996). Sztuczne sieci neuronowe: Wydawnictwo Naukowe PWN, Warszawa. [5] Osowski S. (2000). Sieci neuronowe do przetwarzania informacji: Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa [6] Tadeusiewicz R. (1993). Sieci neuronowe: Akademicka Oficyna Wydawnicza, Warszawa 43
5 44
OCENA EFEKTYWNOŚCI NEURONOWEGO PROGNOZOWANIA W OPARCIU O WYBRANE METODY NA PRZYKŁADZIE DYSTRYBUCJI PRODUKTÓW ROLNICZYCH
Inżynieria Rolnicza 2/2005 Krzysztof Koszela, Piotr Boniecki, Jerzy Weres Instytut Inżynierii Rolniczej Akademia Rolnicza w Poznaniu OCENA EFEKTYWNOŚCI NEURONOWEGO PROGNOZOWANIA W OPARCIU O WYBRANE METODY
PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH
InŜynieria Rolnicza 14/2005 Sławomir Francik Katedra InŜynierii Mechanicznej i Agrofizyki Akademia Rolnicza w Krakowie PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH Streszczenie W
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia
Analiza metod prognozowania kursów akcji
Analiza metod prognozowania kursów akcji Izabela Łabuś Wydział InŜynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V Specjalność informatyka ekonomiczna Politechnika Częstochowska izulka184@o2.pl
Streszczenie. Słowa kluczowe: modele neuronowe, parametry ciągników rolniczych
InŜynieria Rolnicza 11/2006 Sławomir Francik Katedra InŜynierii Mechanicznej i Agrofizyki Akademia Rolnicza w Krakowie METODA PROGNOZOWANIA WARTOŚCI PARAMETRÓW TECHNICZNYCH NOWOCZESNYCH MASZYN ROLNICZYCH
ANALIZA WYDAJNOŚCI PRODUKCYJNEJ RODZINNEGO GOSPODARSTWA ROLNEGO PRZY POMOCY SIECI NEURONOWEJ
InŜynieria Rolnicza 12/2006 Katarzyna Siejka, Andrzej Tukiendorf Katedra Techniki Rolniczej i Leśnej Politechnika Opolska ANALIZA WYDAJNOŚCI PRODUKCYJNEJ RODZINNEGO GOSPODARSTWA ROLNEGO PRZY POMOCY SIECI
ZASTOSOWANIE AUTORSKIEJ METODY WYZNACZANIA WARTOŚCI PARAMETRÓW NOWOCZESNYCH SYSTEMÓW TECHNICZNYCH DO PŁUGÓW I OPRYSKIWACZY POLOWYCH
Inżynieria Rolnicza 9(118)/2009 ZASTOSOWANIE AUTORSKIEJ METODY WYZNACZANIA WARTOŚCI PARAMETRÓW NOWOCZESNYCH SYSTEMÓW TECHNICZNYCH DO PŁUGÓW I OPRYSKIWACZY POLOWYCH Sławomir Francik Katedra Inżynierii Mechanicznej
WYZNACZANIE WARTOŚCI PODSTAWOWYCH PARAMETRÓW TECHNICZNYCH NOWOCZESNYCH KOMBAJNÓW ZBOŻOWYCH PRZY UŻYCIU SSN
Inżynieria Rolnicza 2(9)/7 WYZNACZANIE WARTOŚCI PODSTAWOWYCH PARAMETRÓW TECHNICZNYCH NOWOCZESNYCH KOMBAJNÓW ZBOŻOWYCH PRZY UŻYCIU SSN Sławomir Francik Katedra Inżynierii Mechanicznej i Agrofizyki, Akademia
Laboratorium modelowania oprogramowania w języku UML. Ćwiczenie 4 Ćwiczenia w narzędziu CASE diagram czynności. Materiały dla nauczyciela
Zakład Elektrotechniki Teoretycznej i Informatyki Stosowanej Wydział Elektryczny, Politechnika Warszawska Laboratorium modelowania oprogramowania w języku UML Ćwiczenie 4 Ćwiczenia w narzędziu CASE diagram
Laboratorium modelowania oprogramowania w języku UML. Ćwiczenie 5 Ćwiczenia w narzędziu CASE diagram przypadków uŝycia. Materiały dla nauczyciela
Zakład Elektrotechniki Teoretycznej i Informatyki Stosowanej Wydział Elektryczny, Politechnika Warszawska Ćwiczenie 5 Ćwiczenia w narzędziu CASE diagram przypadków uŝycia Materiały dla nauczyciela Projekt
Laboratorium modelowania oprogramowania w języku UML. Ćwiczenie 2 Ćwiczenia w narzędziu CASE diagram klas. Materiały dla nauczyciela
Zakład Elektrotechniki Teoretycznej i Informatyki Stosowanej Wydział Elektryczny, Politechnika Warszawska Laboratorium modelowania oprogramowania w języku UML Ćwiczenie 2 Ćwiczenia w narzędziu CASE diagram
PRZETWARZANIE GRAFICZNYCH DANYCH EMPIRYCZNYCH DLA POTRZEB EDUKACJI SZTUCZNYCH SIECI NEURONOWYCH, MODELUJĄCYCH WYBRANE ZAGADNIENIA INŻYNIERII ROLNICZEJ
Inżynieria Rolnicza 2(90)/2007 PRZETWARZANIE GRAFICZNYCH DANYCH EMPIRYCZNYCH DLA POTRZEB EDUKACJI SZTUCZNYCH SIECI NEURONOWYCH, MODELUJĄCYCH WYBRANE ZAGADNIENIA INŻYNIERII ROLNICZEJ Krzysztof Nowakowski,
Laboratorium modelowania oprogramowania w języku UML. Ćwiczenie 1 Wprowadzenie do narzędzia CASE. Materiały dla nauczyciela
Zakład Elektrotechniki Teoretycznej i Informatyki Stosowanej Wydział Elektryczny, Politechnika Warszawska Laboratorium modelowania oprogramowania w języku UML Ćwiczenie 1 Wprowadzenie do narzędzia CASE
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE DIAGNOSTYKĘ MEDYCZNĄ Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj zajęć: wykład, projekt
Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego
Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne
METODA PROGNOZOWANIA SZEREGÓW CZASOWYCH PRZY UŻYCIU SZTUCZNYCH SIECI NEURONOWYCH
Inżynieria Rolnicza 6(115)/2009 METODA PROGNOZOWANIA SZEREGÓW CZASOWYCH PRZY UŻYCIU SZTUCZNYCH SIECI NEURONOWYCH Sławomir Francik Katedra Inżynierii Mechanicznej i Agrofizyki, Uniwersytet Rolniczy w Krakowie
Laboratorium modelowania oprogramowania w języku UML. Ćwiczenie 4 Ćwiczenia w narzędziu CASE diagram czynności. Materiały dla studenta
Zakład Elektrotechniki Teoretycznej i Informatyki Stosowanej Wydział Elektryczny, Politechnika Warszawska Laboratorium modelowania oprogramowania w języku UML Ćwiczenie 4 Ćwiczenia w narzędziu CASE diagram
ALGORYTMY SZTUCZNEJ INTELIGENCJI
ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.
Laboratorium modelowania oprogramowania w języku UML. Ćwiczenie 3 Ćwiczenia w narzędziu CASE diagram sekwencji. Materiały dla nauczyciela
Zakład Elektrotechniki Teoretycznej i Informatyki Stosowanej Wydział Elektryczny, Politechnika Warszawska Laboratorium modelowania oprogramowania w języku UML Ćwiczenie 3 Ćwiczenia w narzędziu CASE diagram
NEURAL NETWORK ) FANN jest biblioteką implementującą SSN, którą moŝna wykorzystać. w C, C++, PHP, Pythonie, Delphi a nawet w środowisku. Mathematica.
Wykorzystanie sztucznych sieci neuronowych do rozpoznawania języków: polskiego, angielskiego i francuskiego Tworzenie i nauczanie sieci przy pomocy języka C++ i biblioteki FANN (Fast Artificial Neural
Po co w ogóle prognozujemy?
Po co w ogóle prognozujemy? Pojęcie prognozy: racjonalne, naukowe przewidywanie przyszłych zdarzeń stwierdzenie odnoszącym się do określonej przyszłości formułowanym z wykorzystaniem metod naukowym, weryfikowalnym
Metody Prognozowania
Wprowadzenie Ewa Bielińska 3 października 2007 Plan 1 Wprowadzenie Czym jest prognozowanie Historia 2 Ciągi czasowe Postępowanie prognostyczne i prognozowanie Predykcja długo- i krótko-terminowa Rodzaje
WYKORZYSTANIE MODELI AUTOREGRESJI DO PROGNOZOWANIA SZEREGU CZASOWEGO ZWIĄZANEGO ZE SPRZEDAŻĄ ASORTYMENTU HUTNICZEGO
5/18 ARCHIWUM ODLEWNICTWA Rok 2006, Rocznik 6, Nr 18 (1/2) ARCHIVES OF FOUNDRY Year 2006, Volume 6, N o 18 (1/2) PAN Katowice PL ISSN 1642-5308 WYKORZYSTANIE MODELI AUTOREGRESJI DO PROGNOZOWANIA SZEREGU
Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Zastosowanie sztucznych sieci neuronowych Nazwa modułu w informatyce Application of artificial
InŜynieria Rolnicza 14/2005. Streszczenie
Michał Cupiał Katedra InŜynierii Rolniczej i Informatyki Akademia Rolnicza w Krakowie PROGRAM WSPOMAGAJĄCY NAWOśENIE MINERALNE NAWOZY 2 Streszczenie Przedstawiono program Nawozy 2 wspomagający nawoŝenie
Charakterystyka oprogramowania obiektowego
Charakterystyka oprogramowania obiektowego 1. Definicja systemu informatycznego 2. Model procesu wytwarzania oprogramowania - model cyklu Ŝycia oprogramowania 3. Wymagania 4. Problemy z podejściem nieobiektowym
Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych
Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych Autorzy: Marta Rotkiel, Anna Konik, Bartłomiej Parowicz, Robert Rudak, Piotr Otręba Spis treści: Wstęp Cel
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2018, 347(93)4, 57 68
DOI: 1.215/oe218.93.4.5 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 218, 347(93)4, 57 68 Joanna PERZYŃSKA ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH
MECHANIZACJA PRAC ŁADUNKOWYCH A NAKŁADY W TRANSPORCIE ROLNICZYM CZ. II - ANALIZA STATYSTYCZNA
InŜynieria Rolnicza 6/2005 Stanisław Kokoszka, Maciej Kuboń Katedra InŜynierii Rolniczej i Informatyki Akademia Rolnicza w Krakowie MECHANIZACJA PRAC ŁADUNKOWYCH A NAKŁADY W TRANSPORCIE ROLNICZYM CZ. II
Sieci neuronowe i algorytmy uczenia Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s.
Sieci neuronowe i algorytmy uczenia Czyli co i jak 2016 andrzej.rusiecki@pwr.edu.pl andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 230/C-3 O co chodzi? Celem przedmiotu jest ogólne zapoznanie się z podstawowymi
Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych
dr Piotr Sulewski POMORSKA AKADEMIA PEDAGOGICZNA W SŁUPSKU KATEDRA INFORMATYKI I STATYSTYKI Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych Wprowadzenie Obecnie bardzo
Wykład wprowadzający
Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji Wykład wprowadzający dr inż. Michał Grochowski kiss.pg.mg@gmail.com michal.grochowski@pg.gda.pl
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj zajęć: wykład, laboratorium BIOCYBERNETYKA Biocybernetics Forma studiów:
ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu ID1SII4 Nazwa modułu Systemy inteligentne 1 Nazwa modułu w języku angielskim Intelligent
DOBÓR ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTWA PRZY POMOCY PROGRAMU AGREGAT - 2
InŜynieria Rolnicza 14/2005 Michał Cupiał, Maciej Kuboń Katedra InŜynierii Rolniczej i Informatyki Akademia Rolnicza im. Hugona Kołłątaja w Krakowie DOBÓR ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTWA PRZY POMOCY
THE NEURAL NETWORKS OF THE TYPE MLP AND RBF AS CLASSIFYING TOOLS IN PICTURE ANALYSIS
Piotr BONIECKI Akademia Rolnicza w Poznaniu Instytut InŜynierii Rolniczej THE NEURAL NETWORKS OF THE TYPE MLP AND RBF AS CLASSIFYING TOOLS IN PICTURE ANALYSIS Summary The neuronal identification of pictorial
WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU
WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU THE USE OF ARTIFICIAL NEURAL NETWORKS IN FORECASTING Konrad BAJDA, Sebastian PIRÓG Resume Artykuł opisuje wykorzystanie sztucznych sieci neuronowych
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi
MATLAB Neural Network Toolbox przegląd
MATLAB Neural Network Toolbox przegląd WYKŁAD Piotr Ciskowski Neural Network Toolbox: Neural Network Toolbox - zastosowania: przykłady zastosowań sieci neuronowych: The 1988 DARPA Neural Network Study
Zastosowania sieci neuronowych
Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką
Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych. Informatics systems for the statistical treatment of data Kierunek:
Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych I KARTA PRZEDMIOTU CEL PRZEDMIOTU Informatics systems for the statistical treatment of data Kierunek: Forma studiów Informatyka Stacjonarne
Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
Rola innowacji w ocenie ryzyka eksploatacji obiektów hydrotechnicznych
Politechnika Krakowska Instytut Inżynierii i Gospodarki Wodnej Rola innowacji w ocenie ryzyka eksploatacji obiektów hydrotechnicznych XXVI Konferencja Naukowa Metody Komputerowe w Projektowaniu i Analizie
Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym
POLITECHNIKA WARSZAWSKA Instytut Technik Wytwarzania Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym Marcin Perzyk Dlaczego eksploracja danych?
Laboratorium modelowania oprogramowania w języku UML. Ćwiczenie 6 Modelowanie przypadków uŝycia i czynności. Materiały dla studentów
Zakład Elektrotechniki Teoretycznej i Informatyki Stosowanej Wydział Elektryczny, Politechnika Warszawska Laboratorium modelowania oprogramowania w języku UML Ćwiczenie 6 Modelowanie przypadków uŝycia
Sieci neuronowe w Statistica
http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej
Czynniki determinujące opłacalność produkcji wybranych produktów rolniczych w perspektywie średnioterminowej
Czynniki determinujące opłacalność produkcji wybranych produktów rolniczych w perspektywie średnioterminowej Konferencja nt. WPR a konkurencyjność polskiego i europejskiego sektora żywnościowego 26-28
ZASTOSOWANIE SIECI NEURONOWYCH DO OPTYMALIZACJI WARUNKÓW OBRÓBKI CIEPLNEJ STOPÓW Mg-Al
LESZEK A. DOBRZAŃSKI, TOMASZ TAŃSKI ZASTOSOWANIE SIECI NEURONOWYCH DO OPTYMALIZACJI WARUNKÓW OBRÓBKI CIEPLNEJ STOPÓW Mg-Al APPLICATION OF NEURAL NETWORKS FOR OPTIMISATION OF Mg-Al ALLOYS HEAT TREATMENT
Sztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
Nazwa przedmiotu: MODELOWANIE I ANALIZA SYSTEMÓW INFORMATYCZNYCH. Modeling and analysis of computer systems Forma studiów: Stacjonarne
Nazwa przedmiotu: MODELOWANIE I ANALIZA SYSTEMÓW INFORMATYCZNYCH Kierunek: Informatyka Modeling and analysis of computer systems Forma studiów: Stacjonarne Rodzaj przedmiotu: obowiązkowy w ramach specjalności:
XIII International PhD Workshop OWD 2011, October 2011 METODA REEINGINEERINGU ORGANIZACJI Z WYKORZYSTANIEM SYMULATORA PROCESÓW BIZNESOWYCH
XIII International PhD Workshop OWD 2011, 22 25 October 2011 METODA REEINGINEERINGU ORGANIZACJI Z WYKORZYSTANIEM SYMULATORA PROCESÓW BIZNESOWYCH METHOD OF REEINGINEERING ORGANIZATION USING BUSINESS PROCESS
KOSZTY UŻYTKOWANIA MASZYN W STRUKTURZE KOSZTÓW PRODUKCJI ROŚLINNEJ W WYBRANYM PRZEDSIĘBIORSTWIE ROLNICZYM
Inżynieria Rolnicza 13/2006 Zenon Grześ, Ireneusz Kowalik Instytut Inżynierii Rolniczej Akademia Rolnicza w Poznaniu KOSZTY UŻYTKOWANIA MASZYN W STRUKTURZE KOSZTÓW PRODUKCJI ROŚLINNEJ W WYBRANYM PRZEDSIĘBIORSTWIE
PROGRAM WSPOMAGAJĄCY OCENĘ INWESTYCJI MECHANIZACYJNYCH DOZEM 2
InŜynieria Rolnicza 6/2005 Michał Cupiał, Sylwester Tabor Katedra InŜynierii Rolniczej i Informatyki Akademia Rolnicza w Krakowie PROGRAM WSPOMAGAJĄCY OCENĘ INWESTYCJI MECHANIZACYJNYCH DOZEM 2 Streszczenie:
Sieci neuronowe - dokumentacja projektu
Sieci neuronowe - dokumentacja projektu Predykcja finansowa, modelowanie wskaźnika kursu spółki KGHM. Piotr Jakubas Artur Kosztyła Marcin Krzych Kraków 2009 1. Sieci neuronowe - dokumentacja projektu...
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: MODELOWANIE I ANALIZA SYSTEMÓW INFORMATYCZNYCH Modeling and analysis of computer systems Kierunek: Informatyka Forma studiów: Stacjonarne Rodzaj przedmiotu: Poziom kwalifikacji: obowiązkowy
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
Narzędzia Informatyki w biznesie
Narzędzia Informatyki w biznesie Przedstawiony program specjalności obejmuje obszary wiedzy informatycznej (wraz z stosowanymi w nich technikami i narzędziami), które wydają się być najistotniejsze w kontekście
EKSPLOATACJA SYSTEMÓW TECHNICZNYCH - LAB. Wprowadzenie do zajęć
Politechnika Śląska Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych EKSPLOATACJA SYSTEMÓW TECHNICZNYCH - LAB. Ćwiczenie 1 Wprowadzenie do zajęć Plan ćwiczenia 1. Zapoznanie się
INŻYNIERIA OPROGRAMOWANIA
INSTYTUT INFORMATYKI STOSOWANEJ 2013 INŻYNIERIA OPROGRAMOWANIA Inżynieria Oprogramowania Proces ukierunkowany na wytworzenie oprogramowania Jak? Kto? Kiedy? Co? W jaki sposób? Metodyka Zespół Narzędzia
SIEĆ NEURONOWA DO OCENY KOŃCOWEJ PRZEDSIĘWZIĘCIA (PROJEKTU)
SIEĆ NEURONOWA DO OCENY KOŃCOWEJ PRZEDSIĘWZIĘCIA (PROJEKTU) 1. Opis problemu - ocena końcowa projektu Projekt jako nowe, nietypowe przedsięwzięcie wymaga właściwego zarządzania. Podjęcie się realizacji
UE we Wrocławiu, WEZiT w Jeleniej Górze Katedra Ekonometrii i Informatyki
UE we Wrocławiu, WEZiT w Jeleniej Górze Katedra Ekonometrii i Informatyki http://keii.ue.wroc.pl Prognozowanie procesów gospodarczych prowadzący: dr inż. Tomasz Bartłomowicz tomasz.bartlomowicz@ue.wroc.pl
MODELOWANIE STANÓW CZYNNOŚCIOWYCH W JĘZYKU SIECI BAYESOWSKICH
Inżynieria Rolnicza 7(105)/2008 MODELOWANIE STANÓW CZYNNOŚCIOWYCH W JĘZYKU SIECI BAYESOWSKICH Katedra Podstaw Techniki, Uniwersytet Przyrodniczy w Lublinie Streszczenie. Zastosowanie sieci bayesowskiej
Inżynieria Rolnicza 5(114)/2009
Inżynieria Rolnicza (114)/29 MODELE ROZMYTE ZAPOTRZEBOWANIA NA MOC DLA POTRZEB KRÓTKOTERMINOWEGO PROGNOZOWANIA ZUŻYCIA ENERGII ELEKTRYCZNEJ NA WSI CZĘŚĆ II OPRACOWANIE PREDYKCYJNYCH MODELI RELACYJNYCH
Kumulowanie się defektów jest możliwe - analiza i potwierdzenie tezy
Kumulowanie się defektów jest możliwe - analiza i potwierdzenie tezy Marek Żukowicz 14 marca 2018 Streszczenie Celem napisania artykułu jest próba podania konstruktywnego dowodu, który wyjaśnia, że niewielka
ZASTOSOWANIE TECHNOLOGII WIRTUALNEJ RZECZYWISTOŚCI W PROJEKTOWANIU MASZYN
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 37, s. 141-146, Gliwice 2009 ZASTOSOWANIE TECHNOLOGII WIRTUALNEJ RZECZYWISTOŚCI W PROJEKTOWANIU MASZYN KRZYSZTOF HERBUŚ, JERZY ŚWIDER Instytut Automatyzacji Procesów
Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego
IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,
Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody. Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB
Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB Plan prezentacji Wprowadzenie do prognozowania Metody
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.
Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI
Spis treści. Analiza i modelowanie_nowicki, Chomiak_Księga1.indb :03:08
Spis treści Wstęp.............................................................. 7 Część I Podstawy analizy i modelowania systemów 1. Charakterystyka systemów informacyjnych....................... 13 1.1.
PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH**
Górnictwo i Geoinżynieria Rok 31 Zeszyt 3 2007 Dorota Pawluś* PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU PRZY UŻYCIU SIECI NEURONOWYCH** 1. Wstęp Eksploatacja górnicza złóż ma niekorzystny wpływ na powierzchnię
Modelowanie i obliczenia techniczne. dr inż. Paweł Pełczyński
Modelowanie i obliczenia techniczne dr inż. Paweł Pełczyński ppelczynski@swspiz.pl Literatura Z. Fortuna, B. Macukow, J. Wąsowski: Metody numeryczne, WNT Warszawa, 2005. J. Awrejcewicz: Matematyczne modelowanie
Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Modelowanie i Analiza Systemów Informatycznych Nazwa modułu w języku angielskim Modeling and Analysis of Information Systems Obowiązuje od roku akademickiego
3. Analiza własności szeregu czasowego i wybór typu modelu
3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej
technologii informacyjnych kształtowanie , procesów informacyjnych kreowanie metod dostosowania odpowiednich do tego celu środków technicznych.
Informatyka Coraz częściej informatykę utoŝsamia się z pojęciem technologii informacyjnych. Za naukową podstawę informatyki uwaŝa się teorię informacji i jej związki z naukami technicznymi, np. elektroniką,
Wprowadzenie do metodologii modelowania systemów informacyjnych. Strategia (1) Strategia (2) Etapy Ŝycia systemu informacyjnego
Etapy Ŝycia systemu informacyjnego Wprowadzenie do metodologii modelowania systemów informacyjnych 1. Strategia 2. Analiza 3. Projektowanie 4. Implementowanie, testowanie i dokumentowanie 5. WdroŜenie
S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor
S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.
KARTA PRZEDMIOTU. 1) Nazwa przedmiotu: INŻYNIERIA SYSTEMÓW I ANALIZA SYSTEMOWA. 2) Kod przedmiotu: ROZ-L3-20
Z1-PU7 WYDANIE N2 Strona: 1 z 5 (pieczęć wydziału) KARTA PRZEDMIOTU 1) Nazwa przedmiotu: INŻYNIERIA SYSTEMÓW I ANALIZA SYSTEMOWA 3) Karta przedmiotu ważna od roku akademickiego: 2014/2015 2) Kod przedmiotu:
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: INTELIGENTNE SYSTEMY OBLICZENIOWE Systems Based on Computational Intelligence Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj
Technologie obiektowe
WYKŁAD dr inż. Paweł Jarosz Instytut Informatyki Politechnika Krakowska mail: pjarosz@pk.edu.pl LABORATORIUM dr inż. Paweł Jarosz (3 grupy) mgr inż. Piotr Szuster (3 grupy) warunki zaliczenia Obecność
Kondensator, pojemność elektryczna
COACH 03 Kondensator, pojemność elektryczna Program: Coach 6 Projekt: na ZMN060F CMA Coach Projects\PTSN Coach 6\ Elektronika/Kondensator.cma Przykład: Kondensator 1.cmr Cel ćwiczenia: I. Wprowadzenie
ID1SIII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)
KARTA MODUŁU / KARTA RZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu ID1SIII4 Nazwa modułu Systemy inteligentne 2 Nazwa modułu w języku angielskim Intelligent
5 Moduył do wyboru II *[zobacz opis poniżej] 4 Projektowanie i konfiguracja sieci komputerowych Z
1. Nazwa kierunku informatyka 2. Cykl rozpoczęcia 2016/2017Z, 2016/2017L 3. Poziom kształcenia studia drugiego stopnia 4. Profil kształcenia ogólnoakademicki 5. Forma prowadzenia studiów niestacjonarna
MODELOWANIE PROCESU EKSPLOATACJI OBIEKTÓW TECHNICZNYCH ZA POMOCĄ DYNAMICZNYCH SIECI BAYESOWSKICH
InŜynieria Rolnicza 12/2006 Grzegorz Bartnik, Andrzej Kusz, Andrzej W. Marciniak Katedra Podstaw Techniki Akademia Rolnicza w Lublinie MODELOWANIE PROCESU EKSPLOATACJI OBIEKTÓW TECHNICZNYCH ZA POMOCĄ DYNAMICZNYCH
ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH DO OCENY ZDOLNOŚCI KREDYTOWYCH ROLNIKÓW KLIENTÓW FIRMY LEASINGOWEJ
Inżynieria Rolnicza 1(99)/2008 ZASTOSOWANIE SZTUCZNYCH SIECI NEURONOWYCH DO OCENY ZDOLNOŚCI KREDYTOWYCH ROLNIKÓW KLIENTÓW FIRMY LEASINGOWEJ Marta Kiljańska, Marek Klimkiewicz Katedra Organizacji i Inżynierii
Temat: Sztuczne Sieci Neuronowe. Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Sztuczne Sieci Neuronowe Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sztuczne sieci neuronowe
OPIS MODUŁU KSZTAŁCENIA (przedmiot lub grupa przedmiotów)
OPIS MODUŁU KSZTAŁCENIA (przedmiot lub grupa przedmiotów) Nazwa modułu/ przedmiotu Narzędzia informatyczne w warsztacie inżyniera Nazwa jednostki prowadzącej przedmiot Instytut Matematyki, Fizyki Przedmioty:
Układy VLSI Bramki 1.0
Spis treści: 1. Wstęp... 2 2. Opis edytora schematów... 2 2.1 Dodawanie bramek do schematu:... 3 2.2 Łączenie bramek... 3 2.3 Usuwanie bramek... 3 2.4 Usuwanie pojedynczych połączeń... 4 2.5 Dodawanie
Dariusz Brzeziński Instytut Informatyki, Politechnika Poznańska
Dariusz Brzeziński Instytut Informatyki, Politechnika Poznańska Podstawowe architektury sieci neuronowych Generowanie sztucznych danych Jak się nie przemęczyć Korzystanie z istniejących wag Zamrażanie
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: PROJEKTOWANIE SYSTEMÓW INFORMATYCZNYCH I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Podniesienie poziomu wiedzy studentów z inżynierii oprogramowania w zakresie C.
Narzędzia CASE dla.net. Łukasz Popiel
Narzędzia CASE dla.net Autor: Łukasz Popiel 2 Czym jest CASE? - definicja CASE (ang. Computer-Aided Software/Systems Engineering) g) oprogramowanie używane do komputerowego wspomagania projektowania oprogramowania
Prof. Stanisław Jankowski
Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny
5 Moduył do wyboru II *[zobacz opis poniżej] 4 Projektowanie i konfiguracja sieci komputerowych Z
1. Nazwa kierunku informatyka 2. Cykl rozpoczęcia 2016/2017L 3. Poziom kształcenia studia drugiego stopnia 4. Profil kształcenia ogólnoakademicki 5. Forma prowadzenia studiów stacjonarna Specjalizacja:
Wpływ horyzontu prognozy i długości szeregu czasowego na jakość predykcji w ruchu drogowym w Polsce
ROGOWSKI Andrzej 1 Wpływ horyzontu prognozy i długości szeregu czasowego na jakość predykcji w ruchu drogowym w Polsce bezpieczeństwo, ruch drogowy,, trend, model Streszczenie W pracy przeanalizowano moŝliwość
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
Wykaz tematów prac inżynierskich dla studentów studiów stacjonarnych kierunku Informatyka i agroinżynieria w roku akademickim 2014/2015
Wykaz tematów prac inżynierskich dla studentów studiów stacjonarnych kierunku Informatyka i agroinżynieria w roku akademickim 2014/2015 Lp. 1. 2. 3. 4. 5. 6. 7. Imię i nazwisko: dyplomanta promotora recenzenta
Wykorzystanie nowoczesnych technik prognozowania popytu i zarządzania zapasami do optymalizacji łańcucha dostaw na przykładzie dystrybucji paliw cz.
14.12.2005 r. Wykorzystanie nowoczesnych technik prognozowania popytu i zarządzania zapasami do optymalizacji łańcucha dostaw na przykładzie dystrybucji paliw cz. 2 3.2. Implementacja w Excelu (VBA for
Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.
Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji
bo od managera wymaga się perfekcji
bo od managera wymaga się perfekcji MODELOWANIE PROCESÓW Charakterystyka modułu Modelowanie Procesów Biznesowych (BPM) Modelowanie procesów biznesowych stanowi fundament wdroŝenia systemu zarządzania jakością
KOMPUTEROWE WSPOMAGANIE ZARZĄDZANIA PROJEKTAMI W PRZEDSIĘBIORSTWIE
KOMPUTEROWE WSPOMAGANIE ZARZĄDZANIA PROJEKTAMI W PRZEDSIĘBIORSTWIE Seweryn SPAŁEK Streszczenie: Zarządzanie projektami staje się coraz bardziej powszechne w przedsiębiorstwach produkcyjnych, handlowych
Z-ID-604 Metrologia. Podstawowy Obowiązkowy Polski Semestr VI
KARTA MODUŁU / KARTA PRZEDMIOTU Z-ID-604 Metrologia Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Metrology Obowiązuje od roku akademickiego 2015/2016 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW