b) Umiejętność wykonania analizy zależności zmiennych i interpretacji uzyskanych wyników.

Wielkość: px
Rozpocząć pokaz od strony:

Download "b) Umiejętność wykonania analizy zależności zmiennych i interpretacji uzyskanych wyników."

Transkrypt

1 Cele: a) Umiejętność przeprowadzenia analizy struktury wybranego zbioru obserwacji Obliczanie miar tendencji centralnych, miar rozproszenia, współczynnika skośności i miary spłaszczenia z wykorzystaniem ODM, Rapid Miner Wizualizacja danych Testowanie hipotez -badanie zgodności rozkładu Umiejętność interpretacji uzyskanych wyników b) Umiejętność wykonania analizy zależności zmiennych i interpretacji uzyskanych wyników. testowanie równości wariancji (test F) i średnich (test t dla dwóch prón niezależnych) korelacja zmiennych analiza wariancji ANOVA c) Umiejętność wykonania analizy PCA (metoda głównych składowych) i interpretacji uzyskanych wyników. Zadanie 1. Badanie zgodności rozkładu zmiennej losowej z założonym rozkładem teoretycznym. Dana jest tabela (plik disttab.csv) z wartościami zmiennych num1, num2, num3, num4 a) Przeprowadź testowanie hipotez o zgodności rozkładu zmiennej losowej num1 z rozkładem normalnym, przy poziomie istotności α=0.05. Wykorzystaj test Shapiro-Wilka. H 0 : Xi, i = 1,..., n mają rozkład N(μ,σ) ; H1 : rozkład zmiennych Xi, i = 1,..., n nie jest rozkładem normalnym DECLARE mean number:=1; stdev number:=1; p number; ttype VARCHAR2(20) := 'SHAPIRO_WILKS'; begin dbms_output.put_line('normal - Shapiro-Wilka'); dbms_stat_funcs.normal_dist_fit('dmuser', 'disttab', 'num1', ttype, mean, stdev, p); dbms_output.put_line('mean : ' round(mean, 4)); dbms_output.put_line('stdev : ' round(stdev, 4)); dbms_output.put_line('p : ' to_char(p,'9.9999')); end; / b) Przeprowadź testowanie hipotez o zgodności rozkładu zmiennej losowej num2 z rozkładem wykładniczym AJK 2016

2 Zadanie 2. Waga zawodników drużyny koszykarskiej jest następująca: 158,127, 132, 169, 106, 188, 111, 143, 170, 125 Natomiast waga graczy drużyny futbolowej : 249, 236, 198, 221, 204, 216, 218, 225 Dane: zawodnicy.csv Czy różnica wag zawodników obu drużyn jest na tyle znacząca, że należy opracować odrębne plany treningów? Przyjmij poziom istotności α=0.05. Sprawdź normalność rozkładu zmiennej waga w grupach koszykarzy i piłkarzy (test Shapiro-Wilka) Przeprowadź test F na równość wariancji dwóch grup ( H0: s1=s2; H1: s1<>s2) Przeprowadź test t na równość średnich dla dwóch prób niezależnych ( H0: x1=x2; H1: x1<>x2) Przeprowadź dyskusję uzyskanych wyników Zadanie 3. Czy występuje istotna różnica pomiędzy średnimi z 5 prób, będąca wynikiem zmiany w ładunkach, czy też różnice są wyłącznie sprawą przypadku? Pliki: milaz.csv, milaza.txt. Milaż (mile na galon) Ładunek (w funtach) Stosując procedurę analizy wariancji oraz zakładając poziom istotności 0.05 należy dokonać oceny czy został spełniony warunek jednorodności wariancji oraz czy wpływ czynnika klasyfikującego jest przyczyną zmienności poziomu milażu. Przygotuj plik tekstowy z danymi Wykonaj import danych do tabeli MILAZ Sprawdź normalność rozkładu zmiennej zależnej Przy użyciu testów: Levene'a, lub Bartletta, (zależnie od normalności rozkładu) sprawdź, czy spełniony jest warunek jednorodności wariancji. Przeprowadź analizę wariancji (metoda ANOVA) H0: x1=x2=x3=x4=x5 H1:xi<>xj Przeprowadź dyskusję uzyskanych wyników AJK 2016

3 Zadanie 4. Dla próby liczącej 30 studentów podano oceny zaliczeń X oraz egzaminów Y ze statystyki Określ korelację (siłę i kierunek) ocen z zaliczeń i egzaminu ze statystyki wykorzystując znane współczynniki korelacji.. Przeprowadź dyskusję wyników. Dane plikkorelacja.txt Zadanie 5. Wykorzystaj Rapid Miner do przeprowadzenia analizy zależności zmiennych w zbiorze danych dmbase. Oceń jakie czynniki mają decydujący wpływ na wartość zmiennej salary. Zaimportuj dane z pliku dmbase.xls (zastosuj operator Retrive lub Read Excel) Przyjmij dla atrybutu id rolę id. Eksploracyjna analiza danych Wyświetl tabelę z danymi. Wyświetl tabelę ze statystykami. (Meta Data View), sprawdź czy nie ma brakujących lub odstających danych, Sprawdź rozkłady dla poszczególnych zmiennych - wygeneruj histogramy i wykresy pudełkowe (Quartile). Która zmienna charakteryzuje się największą zmiennością, a która najmniejszą? Sprawdź czy są zależności między zmiennymi - Wygeneruj wykresy rozproszenia (Scatter) np. dla pary zmiennych no_atbat no_hits. Oblicz współczynniki korelacji (operator Correlation Matrix) Przeprowadź analizę uzyskanych wyników. Czy obserwujesz korelacje w grupie zmiennych objaśniających? Wymogiem formalnym do stosowania metody głównych składowych jest dysponowanie pełnym zbiorem danych. W naszym przypadku brak jest danych dla atrybutów salary i logsalary. Wymusza to konieczność usunięcia rekordów z brakującymi danymi AJK 2016

4 bądź uzupełnienie brakujących danych. Można w tym celu zastosować operator Replice Missing Values. Wybierz uzupełnianie brakujących danych dla salary przez wypełnienie średnią Z analizy danych wynika, że zmienne mają różny zakres zmienności. W celu uniknięcia nadmiarowości zmiennych należy zastosować normalizacje danych numerycznych (operator Normalize ) Metoda analizy głównych składowych może być zastosowana tylko dla zmiennych objaśniających typu numerycznego, dlatego należy zmienić rolę zmiennych name, team, position, league i division a także logsalar(operator Set Role id).w celu pominięcia ich w modelu zaś dla zmiennej salary zmień rolę na label AJK 2016

5 Metoda PCA (analizy głównych składowych) Zamieść operator PCA Uruchom przepływ danych Przeprowadź analizę uzyskanych wyników Ile głównych składowych należy uwzględnić? (uwzględnij kryteria wartości własnej, części wariancji wyjaśnianej przez składowe główne, kryterium minimalnego zasobu zmienności wspólnej, kryterium wykresu osypiskowego) Sprawdź, czy główne składowe są ze sobą skorelowane, wygeneruj wykresy rozproszenia dla głównych składowych AJK 2016

6 Zadania do samodzielnego wykonania: Zadanie A Przeprowadź analizę następujących danych Przeciętny czas życia[lata] kobiety mężczyźni Argentyn a Australia Brazylia Chiny Egipt Indie Indonezja Iran Izrael Japonia Kanada Kazachsta n Korea Pd Meksyk Nigeria Pakistan Polska RPA Turcja USA Na podstawie danych z tabeli oceń czy średnia długość życia kobiet i mężczyzn w wybranych krajach świata różni się w sposób statystycznie istotny. Odpowiedź uzasadnij. Zadanie B Na stronie podano aktualne średnie ceny paliw w wybranych krajach europejskich. Przygotuj na tej podstawie plik tekstowy. Zaimportuj dane do tabeli CENA_PALIWA. Wprowadź atrybut, który będzie określał przynależność do jednej z 4 grup krajów. Pierwsza grupa kraje bałkańskie,druga kraje skandynawskie, trzecia kraje basenu Morza Śródziemnego, czwarta - pozostałe. Czy można uznać, że przy poziomie istotności α = 0.05 przynależność geograficzna jest czynnikiem różnicującym średnie ceny paliw w Europie? Odpowiedź uzasadnij Zadanie C. Dane: mieszkania.txt - zbiór zawierający dane dotyczące mieszkań: 35 obserwacji, 3 zmienne POWIERZCHNIA, PIETRO i CENA a) Utwórz perspektywę zawierajacą dodatkowo kolumnę CENA_ZA_METR b) Oblicz współczynniki korelacji dla wszystkich par zmiennych z powyższego zbioru danych.korzystając z funkcji CORR(x,y) ODM c) Przeprowadź analizę korelacji korzystając z aplikacji Rapid Miner Importuj dane Przygotuj diagram przepływu informacji. Stosując operator SetRole ustal dla ceny role label (zmienna objaśniana) a dla zmiennych Pietro i id role id (zmienne z rola id są pomijane w modelu) Uruchom przepływ. Porównaj wyniki z uzyskanymi przy zastosowaniu ODM. Zadanie D Czy istnieje zależność pomiędzy wartościa PKB i długością życia mieszkańców wybranych krajów. Określ siłę i kierunek korelacji AJK 2016

7 Zadanie E Przeprowadź analizę zależności zmiennych w zbiorze danych house. Oceń jakie czynniki mają decydujący wpływ na średnią wartość mieszkania. Wykonaj import danych z pliku house.xls. Przyjmij dla atrybutu id rolę id, a dla medianhousevalue (zmienna docelowa) rolę label??? Sprawdź czy nie ma brakujących lub odstających danych, jeśli tak usuń outliers, uzupełnij braki Sprawdź rozkłady dla poszczególnych zmiennych Sprawdź czy są zależności między zmiennymi Wygeneruj wykresy rozproszenia (Scatter) np. dla pary zmiennych totalrooms - population Oblicz współczynniki korelacji Przeprowadź analizę uzyskanych wyników. Przeprowadź analizę stosując metodę głównych składowych (PCA) Ile głównych składowych należy uwzględnić? (uwzględnij kryteria wartości własnej, części wariancji wyjaśnianej przez składowe główne, kryterium minimalnego zasobu zmienności wspólnej, kryterium wykresu osypiskowego) Żródła: AJK 2016

Jak sprawdzić normalność rozkładu w teście dla prób zależnych?

Jak sprawdzić normalność rozkładu w teście dla prób zależnych? Jak sprawdzić normalność rozkładu w teście dla prób zależnych? W pliku zalezne_10.sta znajdują się dwie zmienne: czasu biegu przed rozpoczęciem cyklu treningowego (zmienna 1) oraz czasu biegu po zakończeniu

Bardziej szczegółowo

1. Cele eksploracyjnej analizy danych Rapid Miner zasady pracy i wizualizacja danych Oracle Data Miner -zasady pracy.

1. Cele eksploracyjnej analizy danych Rapid Miner zasady pracy i wizualizacja danych Oracle Data Miner -zasady pracy. Spis treści: 1. Cele eksploracyjnej analizy danych...1 2. Rapid Miner zasady pracy i wizualizacja danych...3 3. Oracle Data Miner -zasady pracy.12 3.1 ODM PL/SQL.......12 3.2 ODM JAVA API......12 3.2.1

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny

Bardziej szczegółowo

Rozdział 8. Regresja. Definiowanie modelu

Rozdział 8. Regresja. Definiowanie modelu Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność

Bardziej szczegółowo

Jednoczynnikowa analiza wariancji

Jednoczynnikowa analiza wariancji Jednoczynnikowa analiza wariancji Zmienna zależna ilościowa, numeryczna Zmienna niezależna grupująca (dzieli próbę na więcej niż dwie grupy), nominalna zmienną wyrażoną tekstem należy w SPSS przerekodować

Bardziej szczegółowo

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane

Bardziej szczegółowo

Założenia do analizy wariancji. dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW

Założenia do analizy wariancji. dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW Założenia do analizy wariancji dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW anna_rajfura@sggw.pl Zagadnienia 1. Normalność rozkładu cechy Testy: chi-kwadrat zgodności, Shapiro-Wilka, Kołmogorowa-Smirnowa

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej

LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej LABORATORIUM 3 Przygotowanie pliku (nazwy zmiennych, export plików.xlsx, selekcja przypadków); Graficzna prezentacja danych: Histogramy (skategoryzowane) i 3-wymiarowe; Wykresy ramka wąsy; Wykresy powierzchniowe;

Bardziej szczegółowo

Zadania ze statystyki cz. 8 I rok socjologii. Zadanie 1.

Zadania ze statystyki cz. 8 I rok socjologii. Zadanie 1. Zadania ze statystyki cz. 8 I rok socjologii Zadanie 1. W potocznej opinii pokutuje przekonanie, że lepsi z matematyki są chłopcy niż dziewczęta. Chcąc zweryfikować tę opinię, przeprowadzono badanie w

Bardziej szczegółowo

Zmienne zależne i niezależne

Zmienne zależne i niezależne Analiza kanoniczna Motywacja (1) 2 Często w badaniach spotykamy problemy badawcze, w których szukamy zakresu i kierunku zależności pomiędzy zbiorami zmiennych: { X i Jak oceniać takie 1, X 2,..., X p }

Bardziej szczegółowo

Analizy wariancji ANOVA (analysis of variance)

Analizy wariancji ANOVA (analysis of variance) ANOVA Analizy wariancji ANOVA (analysis of variance) jest to metoda równoczesnego badania istotności różnic między wieloma średnimi z prób pochodzących z wielu populacji (grup). Model jednoczynnikowy analiza

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

author: Andrzej Dudek

author: Andrzej Dudek Edytor wprowadzone polecenia zostają w oknie edytora I mogą być uruchamiana poprzez CTRL+R lub Run (tylko zaznaczone linie, z wyświetlaniem wykonywanych linii kodu) lub poprzez Source (zawsze całość, bez

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE 1 W trakcie badania obliczono wartości średniej (15,4), mediany (13,6) oraz dominanty (10,0). Określ typ asymetrii rozkładu. 2 Wymień 3 cechy rozkładu Gauss

Bardziej szczegółowo

Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku

Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Przykład 2 Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Sondaż sieciowy analiza wyników badania sondażowego dotyczącego motywacji w drodze do sukcesu Cel badania: uzyskanie

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres

Bardziej szczegółowo

Estymacja parametrów w modelu normalnym

Estymacja parametrów w modelu normalnym Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia

Bardziej szczegółowo

Ćwiczenia IV

Ćwiczenia IV Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie

Bardziej szczegółowo

STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY)

STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) STATYSTYKA OPISOWA. LICZBOWE CHARAKTERYSTYKI(MIARY) Praca z danymi zaczyna się od badania rozkładu liczebności (częstości) zmiennych. Rozkład liczebności (częstości) zmiennej to jakie wartości zmienna

Bardziej szczegółowo

Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich

Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Zmienne muszą być zmiennymi ilościowym (liczymy i porównujemy średnie!) Są to testy parametryczne Nazwa

Bardziej szczegółowo

Zajęcia nr VII poznajemy Rattle i pakiet R.

Zajęcia nr VII poznajemy Rattle i pakiet R. Okno główne Rattle wygląda następująco: Zajęcia nr VII poznajemy Rattle i pakiet R. Widzimy główne zakładki: Data pozwala odczytad dane z różnych źródeł danych (pliki TXT, CSV) i inne bazy danych. Jak

Bardziej szczegółowo

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii SPIS TREŚCI Przedmowa... 11 Wykaz symboli... 15 Litery alfabetu greckiego wykorzystywane w podręczniku... 15 Symbole wykorzystywane w zagadnieniach teorii mnogości (rachunku zbiorów)... 16 Symbole stosowane

Bardziej szczegółowo

1. Przygotowanie danych do analizy. Transformacja danych

1. Przygotowanie danych do analizy. Transformacja danych Spis treści: 1. 2. 3. 3. Przygotowanie danych do analizy. Transformacja danych.1 Rapid Miner transformacja danych.2 Oracle Data Miner - Przygotowanie danych do analizy...5 Transformacja danych w ODM JAVA

Bardziej szczegółowo

Wykład 7 Testowanie zgodności z rozkładem normalnym

Wykład 7 Testowanie zgodności z rozkładem normalnym Wykład 7 Testowanie zgodności z rozkładem normalnym Wrocław, 05 kwietnia 2017 Rozkład normalny Niech X = (X 1, X 2,..., X n ) będzie próbą z populacji o rozkładzie normalnym określonym przez dystrybuantę

Bardziej szczegółowo

Efekt główny Efekt interakcyjny efekt jednego czynnika zależy od poziomu drugiego czynnika Efekt prosty

Efekt główny Efekt interakcyjny efekt jednego czynnika zależy od poziomu drugiego czynnika Efekt prosty ANOVA DWUCZYNNIKOWA testuje różnice między średnimi w grupach wyznaczonych przez dwa czynniki i ich kombinacje. Analiza pozwala ustalić wpływ dwóch czynników na wartości zmiennej zależnej (ilościowej!)

Bardziej szczegółowo

Badanie normalności rozkładu

Badanie normalności rozkładu Temat: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności. Badanie normalności rozkładu Shapiro-Wilka: jest on najbardziej zalecanym testem normalności rozkładu. Jednak wskazane jest, aby liczebność

Bardziej szczegółowo

Wydział Matematyki. Testy zgodności. Wykład 03

Wydział Matematyki. Testy zgodności. Wykład 03 Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy

Bardziej szczegółowo

Wykład 9 Wnioskowanie o średnich

Wykład 9 Wnioskowanie o średnich Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i

Bardziej szczegółowo

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22 Spis treści Przedmowa do wydania pierwszego.... 11 Przedmowa do wydania drugiego.... 15 Wykaz symboli.... 17 Litery alfabetu greckiego wykorzystywane w podręczniku.... 17 Symbole wykorzystywane w zagadnieniach

Bardziej szczegółowo

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować

Bardziej szczegółowo

Analiza autokorelacji

Analiza autokorelacji Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VIII: Analiza kanoniczna

Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VIII: Analiza kanoniczna 1 Laboratorium VIII: Analiza kanoniczna Spis treści Laboratorium VIII: Analiza kanoniczna... 1 Wiadomości ogólne... 2 1. Wstęp teoretyczny.... 2 Przykład... 2 Podstawowe pojęcia... 2 Założenia analizy

Bardziej szczegółowo

Wykorzystanie testu Levene a i testu Browna-Forsythe a w badaniach jednorodności wariancji

Wykorzystanie testu Levene a i testu Browna-Forsythe a w badaniach jednorodności wariancji Wydawnictwo UR 2016 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 4/18/2016 www.eti.rzeszow.pl DOI: 10.15584/eti.2016.4.48 WIESŁAWA MALSKA Wykorzystanie testu Levene a i testu Browna-Forsythe

Bardziej szczegółowo

ZJAZD 4. gdzie E(x) jest wartością oczekiwaną x

ZJAZD 4. gdzie E(x) jest wartością oczekiwaną x ZJAZD 4 KORELACJA, BADANIE NIEZALEŻNOŚCI, ANALIZA REGRESJI Analiza korelacji i regresji jest działem statystyki zajmującym się badaniem zależności i związków pomiędzy rozkładami dwu lub więcej badanych

Bardziej szczegółowo

Katedra Biotechnologii i Genetyki Zwierząt, Wydział Hodowli i Biologii Zwierząt, UTP w Bydgoszczy

Katedra Biotechnologii i Genetyki Zwierząt, Wydział Hodowli i Biologii Zwierząt, UTP w Bydgoszczy Temat: Weryfikacja hipotez statystycznych dla jednej i dwóch średnich. MS EXCEL Do weryfikacji różnic między dwiema grupami jednostek doświadczalnych w MS Excelu wykorzystujemy funkcję o nazwie T.TEST.

Bardziej szczegółowo

Żródło:

Żródło: Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Zmienne muszą być zmiennymi ilościowym (liczymy i porównujemy średnie!) Są to testy parametryczne Test

Bardziej szczegółowo

WERYFIKACJA MODELI MODELE LINIOWE. Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno

WERYFIKACJA MODELI MODELE LINIOWE. Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno WERYFIKACJA MODELI MODELE LINIOWE Biomatematyka wykład 8 Dr Wioleta Drobik-Czwarno ANALIZA KORELACJI LINIOWEJ to NIE JEST badanie związku przyczynowo-skutkowego, Badanie współwystępowania cech (czy istnieje

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich

Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich Magdalena Frąszczak Wrocław, 22.03.2017r Problem Behrensa Fishera Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu normalnego

Bardziej szczegółowo

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012

Bardziej szczegółowo

Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie

Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie Zadanie Zbadano satysfakcję z życia w skali 1 do 10 w dwóch grupach rodziców: a) Rodzice dzieci zdrowych oraz b) Rodzice dzieci z niepełnosprawnością

Bardziej szczegółowo

S t a t y s t y k a, część 3. Michał Żmihorski

S t a t y s t y k a, część 3. Michał Żmihorski S t a t y s t y k a, część 3 Michał Żmihorski Porównanie średnich -test T Założenia: Zmienne ciągłe (masa, temperatura) Dwie grupy (populacje) Rozkład normalny* Równe wariancje (homoscedasticity) w grupach

Bardziej szczegółowo

Analiza wariancji - ANOVA

Analiza wariancji - ANOVA Analiza wariancji - ANOVA Analizę wariancji, często określaną skrótem ANOVA (Analysis of Variance), zawdzięczamy angielskiemu biologowi Ronaldowi A. Fisherowi, który opracował ją w 1925 roku dla rozwiązywania

Bardziej szczegółowo

Zadania ze statystyki cz.8. Zadanie 1.

Zadania ze statystyki cz.8. Zadanie 1. Zadania ze statystyki cz.8. Zadanie 1. Wykonano pewien eksperyment skuteczności działania pewnej reklamy na zmianę postawy. Wylosowano 10 osobową próbę studentów, których poproszono o ocenę pewnego produktu,

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Elementy statystyki STA - Wykład 5

Elementy statystyki STA - Wykład 5 STA - Wykład 5 Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 ANOVA 2 Model jednoczynnikowej analizy wariancji Na model jednoczynnikowej analizy wariancji możemy traktować jako uogólnienie

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 Metody sprawdzania założeń w analizie wariancji: -Sprawdzanie równości (jednorodności) wariancji testy: - Cochrana - Hartleya - Bartletta -Sprawdzanie zgodności

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych

Bardziej szczegółowo

TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.

TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. TESTY NIEPARAMETRYCZNE 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. Standardowe testy równości średnich wymagają aby badane zmienne losowe

Bardziej szczegółowo

JEDNOCZYNNIKOWA ANOVA

JEDNOCZYNNIKOWA ANOVA Analizę ANOVA wykorzystujemy do wykrycia różnic pomiędzy średnimi w więcej niż dwóch grupach/więcej niż w dwóch pomiarach JEDNOCZYNNIKOWA ANOVA porównania jednej zmiennej pomiędzy więcej niż dwoma grupami

Bardziej szczegółowo

Testy dla dwóch prób w rodzinie rozkładów normalnych

Testy dla dwóch prób w rodzinie rozkładów normalnych Testy dla dwóch prób w rodzinie rozkładów normalnych dr Mariusz Grządziel Wykład 12; 18 maja 2009 Przykład Rozważamy dane wygenerowane losowo; ( podobne do danych z przykładu 7.2 z książki A. Łomnickiego)

Bardziej szczegółowo

Wykład 12 ( ): Testy dla dwóch prób w rodzinie rozkładów normalnych

Wykład 12 ( ): Testy dla dwóch prób w rodzinie rozkładów normalnych Wykład 12 (21.05.07): Testy dla dwóch prób w rodzinie rozkładów normalnych Przykład Rozważamy dane wygenerowane losowo; ( podobne do danych z przykładu 7.2 z książki A. Łomnickiego) n 1 = 9 poletek w dąbrowie,

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014 WydziałPrawa, Administracji i Stosunków Miedzynarodowych

Bardziej szczegółowo

Ekonometria Ćwiczenia 19/01/05

Ekonometria Ćwiczenia 19/01/05 Oszacowano regresję stopy bezrobocia (unemp) na wzroście realnego PKB (pkb) i stopie inflacji (cpi) oraz na zmiennych zero-jedynkowych związanymi z kwartałami (season). Regresję przeprowadzono na danych

Bardziej szczegółowo

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych dr Piotr Sulewski POMORSKA AKADEMIA PEDAGOGICZNA W SŁUPSKU KATEDRA INFORMATYKI I STATYSTYKI Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych Wprowadzenie Obecnie bardzo

Bardziej szczegółowo

author: Andrzej Dudek

author: Andrzej Dudek Edytor wprowadzone polecenia zostają w oknie edytora I mogą być uruchamiana poprzez CTRL+R lub Run (tylko zaznaczone linie, z wyświetlaniem wykonywanych linii kodu) lub poprzez Source (zawsze całość, bez

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM

Bardziej szczegółowo

Eksploracja Danych. Testowanie Hipotez. (c) Marcin Sydow

Eksploracja Danych. Testowanie Hipotez. (c) Marcin Sydow Testowanie Hipotez Wprowadzenie Testy statystyczne: pocz. XVII wieku (prace J.Arbuthnotta, liczba urodzeń noworodków obu płci w Londynie) Testowanie hipotez: Karl Pearson (pocz. XX w., testowanie zgodności,

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

Ćwiczenie: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Statystyka opisowa w SAS Enterprise Guide.

Ćwiczenie: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Statystyka opisowa w SAS Enterprise Guide. Ćwiczenie: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Statystyka opisowa w SAS Enterprise Guide. 1. Załóż we własnym folderze podfolder o nazwie cw2 i przekopiuj do niego plik

Bardziej szczegółowo

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Autor prezentuje spójny obraz najczęściej stosowanych metod statystycznych, dodatkowo omawiając takie

Bardziej szczegółowo

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych 9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :

Bardziej szczegółowo

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji Statystyka i opracowanie danych Ćwiczenia 5 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ MODEL REGRESJI LINIOWEJ Analiza regresji

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich

Bardziej szczegółowo

Przykład 1. (A. Łomnicki)

Przykład 1. (A. Łomnicki) Plan wykładu: 1. Wariancje wewnątrz grup i między grupami do czego prowadzi ich ocena 2. Rozkład F 3. Analiza wariancji jako metoda badań założenia, etapy postępowania 4. Dwie klasyfikacje a dwa modele

Bardziej szczegółowo

Opracowywanie wyników doświadczeń

Opracowywanie wyników doświadczeń Podstawy statystyki medycznej Laboratorium Zajęcia 6 Statistica Opracowywanie wyników doświadczeń Niniejsza instrukcja zawiera przykłady opracowywania doświadczeń jednoczynnikowy i wieloczynnikowych w

Bardziej szczegółowo

TESTOWANIE HIPOTEZ STATYSTYCZNYCH

TESTOWANIE HIPOTEZ STATYSTYCZNYCH TETOWANIE HIPOTEZ TATYTYCZNYCH HIPOTEZA TATYTYCZNA przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia jest oceniana na

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Ćwiczenie: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Podstawowa charakterystyka statystyczna

Ćwiczenie: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Podstawowa charakterystyka statystyczna Ćwiczenie: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Podstawowa charakterystyka statystyczna 1. Załóż we własnym folderze podfolder o nazwie cw2 i przekopiuj do niego plik babulice100.xls

Bardziej szczegółowo

Weryfikacja hipotez statystycznych testy dla dwóch zbiorowości

Weryfikacja hipotez statystycznych testy dla dwóch zbiorowości Weryfikacja hipotez statystycznych testy dla dwóch zbiorowości Informatyka 007 009 aktualizacja dla 00 JERZY STEFANOWSKI Instytut Informatyki Politechnika Poznańska Plan wykładu. Przypomnienie testu dla

Bardziej szczegółowo

Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015

Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015 Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015 Problem dwóch prób X = (X 1, X 2,..., X n ) - próba z rozkładu normalnego N (µ, σ 2 X ),

Bardziej szczegółowo

Podstawy statystyki matematycznej w programie R

Podstawy statystyki matematycznej w programie R Podstawy statystyki matematycznej w programie R Piotr Ćwiakowski Wydział Fizyki Uniwersytetu Warszawskiego Zajęcia 1. Wprowadzenie 1 marca 2017 r. Program R Wprowadzenie do R i badań statystycznych podstawowe

Bardziej szczegółowo

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na

Bardziej szczegółowo

1. Grupowanie Algorytmy grupowania:

1. Grupowanie Algorytmy grupowania: 1. 1.1. 2. 3. 3.1. 3.2. Grupowanie...1 Algorytmy grupowania:...1 Grupowanie metodą k-średnich...3 Grupowanie z wykorzystaniem Oracle Data Miner i Rapid Miner...3 Grupowanie z wykorzystaniem algorytmu K-Means

Bardziej szczegółowo

Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4

Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4 Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4 Konrad Miziński, nr albumu 233703 31 maja 2015 Zadanie 1 Wartości oczekiwane µ 1 i µ 2 oszacowano wg wzorów: { µ1 = 0.43925 µ = X

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

Na podstawie danych dotyczacych rocznych wydatków na pizze oszacowano parametry poniższego modelu:

Na podstawie danych dotyczacych rocznych wydatków na pizze oszacowano parametry poniższego modelu: Zadanie 1. Oszacowano model ekonometryczny liczby narodzin dzieci (w tys.) w Polsce w latach 2000 2010 w zależnosci od średniego rocznego wynagrodzenia (w ujęciu realnym, PLN), stopy bezrobocia (w punktach

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą w oddzielnej kolumnie.

Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą w oddzielnej kolumnie. STATISTICA INSTRUKCJA - 1 I. Wprowadzanie danych Podstawowe / Nowy / Arkusz Dane dotyczące wartości zmiennej (cechy) wprowadzamy w jednej kolumnie. W przypadku większej liczby zmiennych wprowadzamy każdą

Bardziej szczegółowo

P: Czy studiujący i niestudiujący preferują inne sklepy internetowe?

P: Czy studiujący i niestudiujący preferują inne sklepy internetowe? 2 Test niezależności chi-kwadrat stosuje się (między innymi) w celu sprawdzenia czy pomiędzy zmiennymi istnieje związek/zależność. Stosujemy go w sytuacji, kiedy zmienna zależna mierzona jest na skali

Bardziej szczegółowo

Porównanie wyników grupy w odniesieniu do norm Test t dla jednej próby

Porównanie wyników grupy w odniesieniu do norm Test t dla jednej próby Porównanie wyników grupy w odniesieniu do norm Test t dla jednej próby 1. Wstęp teoretyczny Prezentowane badanie dotyczy analizy wyników uzyskanych podczas badania grupy rodziców pod kątem wpływu ich przekonań

Bardziej szczegółowo

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych 1 Laboratorium III: Testy statystyczne Spis treści Laboratorium III: Testy statystyczne... 1 Wiadomości ogólne... 2 1. Krótkie przypomnienie wiadomości na temat testów statystycznych... 2 1.1. Weryfikacja

Bardziej szczegółowo

Temat: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Statystyka opisowa w SAS Enterprise Guide.

Temat: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Statystyka opisowa w SAS Enterprise Guide. Temat: Wprowadzenie do obsługi programu statystycznego SAS Enterprise Guide. Statystyka opisowa w SAS Enterprise Guide. Zadania: I. 1. Załóż we własnym folderze podfolder o nazwie cw2 i przekopiuj do niego

Bardziej szczegółowo

STATYSTYKA POWTORZENIE. Dr Wioleta Drobik-Czwarno

STATYSTYKA POWTORZENIE. Dr Wioleta Drobik-Czwarno STATYSTYKA POWTORZENIE Dr Wioleta Drobik-Czwarno Populacja Próba Parametry EX, µ Statystyki średnia D 2 X, δ 2 S 2 wnioskowanie DX, δ p ρ S w r...... JAK POWSTAJE MODEL MATEMATYCZNY Dane eksperymentalne

Bardziej szczegółowo

Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego

Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Współczynnik korelacji opisuje siłę i kierunek związku. Jest miarą symetryczną. Im wyższa korelacja tym lepiej potrafimy

Bardziej szczegółowo

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo