POMIARY OPTYCZNE Współczynnik załamania #2. Damian Siedlecki
|
|
- Filip Czerwiński
- 6 lat temu
- Przeglądów:
Transkrypt
1 POMIARY OPTYCZNE 1 { 7. Współczynnik załamania #2 Damian Siedlecki
2 Służy do szybkiego pomiaru współczynnika załamania cieczy i ciał stałych. Bazuje na metodzie Wollastona-Kohlrauscha. Zasadniczą część przyrządu stanowi układ dwóch jednakowych pryzmatów. Refraktometr Abbego
3 Wypolerowana ściana B C dolnego pryzmatu przepuszcza pęk różnokierunkowych promieni, które padają na zmatowioną powierzchnię A C. Między pryzmatami znajduje się cienka (0,1 mm) warstwa mierzonej cieczy. Górny pryzmat posiada współczynnik załamania większy, niż badana ciecz dzięki temu możliwe jest zjawisko całkowitego wewnętrznego odbicia W przypadku cieczy silnie pochłaniających światło, pomiary przeprowadza się w świetle odbitym górny pryzmat oświetlony jest przez zmatowioną powierzchnię CB. Refraktometr Abbego
4 Refraktometr Abbego
5 Pomiary na refraktometrze Abbego można prowadzić również używając jako źródła światła zwykłej lampy lub światła słonecznego. Umożliwia to specjalny układ kompensujący, zbudowany z pryzmatów Amici a vision directe Potrójne pryzmaty Amici obliczone są w ten sposób, że nie zmieniają kierunku promieni żółtej linii D sodu. To wcale NIE oznacza, że są to pryzmaty o zerowej dyspersji! Refraktometr Abbego
6 Ów specjalny układ kompensujący, zbudowany jest z dwóch pryzmatów Amiciego a vision directe o takiej samej dyspersji n λ, obracających się w przeciwne strony: Dyspersja wypadkowa: Δn λ + Δn λ =2 Δn λ Dyspersja wypadkowa: Δn λ Δn λ = 0 Refraktometr Abbego
7 Taka konstrukcja umożliwia również pomiar średniej dyspersji badanej cieczy w zakresie od 0 do 2Δn λ : Δn λ c =2 Δn λ cos α Refraktometr Abbego
8 Refraktometr Abbego może również służyć do pomiaru współczynnika załamania ciał stałych w świetle odbitym. Ciało badane musi mieć wypolerowaną powierzchnię stykająca się z pryzmatem pomiarowym. Refraktometr Abbego
9 Refraktometr PZO dokładności 0,0004 dla n=1,3-1,42 i 0,0002 dla n=1,42-1,7 oraz pomiar stężenia cukru z dokładnością 0,1 do 0,2%. Refraktometr Abbego
10 Skonstruowany do pomiarów porównawczych współczynnika załamania. Pozwala na pomiar współczynnika załamania bloków szklanych, posiadających wypolerowaną jedna z powierzchni. Refraktometr Bodnara
11 Refraktometr Abbego ze specjalną półkulą i płasko-wklęsłą soczewką, które tworzą pryzmat o zmiennym kącie łamiącym. Refraktometr Abbego specjalny
12 Proste (i tanie) refraktometry do pomiaru stężenia cukru (soli) w cieczach. Inne refraktometry
13 Interferencyjne metody pomiaru współczynnika załamania
14 Światło naturalne (np. termiczne) ma charakter przypadkowy ponieważ jest superpozycją emisji bardzo dużej liczby niezależnych atomów emitujących promieniowanie w różnych częstotliwościach i różnych fazach. Przypadkowość może też wynikać z rozpraszania na nierównych powierzchniach, dyfuzji w ośrodkach niejednorodnych. Dla światła przypadkowego zależność funkcji falowych od czasu i przestrzeni nie jest jawnie określona i dla ich opisu trzeba odwoływać się do metod statystycznych Interferencja (powtórzenie?)
15 Nakładanie się fal nazywamy ogólnie superpozycją. Nakładanie się spójne (koherentne) fal interferencja. Źródła spójne drgające zgodnie w fazie albo takie, dla których fazy wiążą się ze sobą w określony sposób są skorelowane (przesunięcia fazowe między wiązkami nie powinny podlegać zbyt szybkim zmianom). Interferencja polega na nałożeniu się dwóch fal z ich fazami i amplitudami koherentne (spójne) - w odróżnieniu od zwykłego nałożenia się natężeń tych fal w przypadku źródeł niespójnych. Interferencja (powtórzenie?)
16 Światło jako fala elektromagnetyczna ma częstotliwość tak dużą, że każdy detektor rejestruje uśrednioną w czasie ( ) wartość natężenia I, proporcjonalną do modułu wektora Poyntinga S: I S E 2 = EE * oznacza liczbę zespoloną sprzężoną Jeśli nakładające się fale nie są w żaden sposób zgodne w fazie, średnia czasowa traci informację o fazach tych fal. Interferencja (powtórzenie?)
17 Każde rzeczywiste źródło światła emituje foton = kwant promieniowania elektromagnetycznego, którego odpowiednikiem falowym jest paczka falowa = ograniczony w czasie i przestrzeni zbiór fal sinusoidalnych. Żeby takie paczki mogły się nałożyć (interferować) muszą na siebie trafić! L 0 Interferencja (powtórzenie?)
18 Dla każdego źródła promieniowania istnieje pewna charakterystyczna dla niego różnica dróg L 0 pomiędzy dwiema nakładającymi się paczkami falowymi, żeby mogły one jeszcze ze sobą interferować. Nazywamy ją długością koherencji (albo drogą koherencji). Wielkość ta odpowiada z kolei różnicy czasu między paczkami czasowi koherencji t 0 związanemu z drogą wzorem: t 0 = L 0 c Jeżeli źródło światła promieniuje fale elektromagnetyczne w pewnym zakresie częstości f, zwanym szerokością widma, to czas koherencji t 0 tego źródła jest związany z tą szerokością wzorem: 2π f t 0 1 Interferencja (powtórzenie?)
19 Jednym z warunków koniecznych spójności źródła fali jest więc jego wysoka monochromatyczność (czyli jak najmniejsza szerokość f albo inaczej: jak najdokładniej określona długość fali wysyłanego przezeń promieniowania). W praktyce spójność obu źródeł realizuje się poprzez podział fali z jednego źródła (np. 2 otwory w doświadczeniu Younga lub płytka/kostka światłodzieląca). Należy jednak ciągle zadbać o to, aby różnica dróg między tak podzielonymi składowymi nie przekraczała drogi koherencji! Interferencja (powtórzenie?)
20 Interferencja fal z dwóch źródeł punktowych: Rozważmy dwa jednakowe punktowe źródła fal EM (sinusoidalnych), odległe od siebie o d. Wypadkowe pole EM obserwujemy na ekranie, dostatecznie oddalonym od obu źródeł (tzn. odległość między źródłami jest dużo mniejsza od odległości źródła-ekran). Pole w punkcie P: E P = E 1 + E 2 = E 0 cos ωt kr 1 + E 0 cos ωt kr 2 Po przekształceniu: E P = 2E 0 cos[ k(r 2 r 1 )]cos (ωt kr ) gdzie: r = r 1 + r 2 /2 r 1 r 2 Natężenie I fali wypadkowej jest proporcjonalne do średniej czasowej modułu kwadratu amplitudy (inaczej: iloczynu fali i fali sprzężonej), więc ostatecznie: I = 4I 0 cos 2 k r 2 r 1 = 2I o 1 + cos k r 2 r 1 I 0 = E 0 2 Interferencja (powtórzenie?)
21 I = 4I 0 cos 2 k r 2 r 1 = 2I o 1 + cos k r 2 r 1 - jeśli spełniony jest warunek: k r 1 r 2 albo inaczej: kiedy różnica dróg, przebytych przez fale z obu źródeł jest wielokrotnością długości fali: r 1 r 2 = n2π = nλ to w punkcie P fale spotkają się w fazach zgodnych i po nałożeniu wzmocnią się. Dla punktów, dla których: r 1 r 2 = n λ nastąpi wygaszenie, ponieważ fale będą miały fazę przeciwną. Interferencja (powtórzenie?)
22 Czas koherencji: Δt Szerokość widmowa koherencji: Δv = 1 Δt Droga koherencji: l = cδt v (Hz) t czas koherencji l droga koherencji światło słoneczne 4* ,7 fs 0,8 mm LED 1,5* fs 20 mm lampa sodowa 5* ps 600 mm laser He-Ne 1.5* ps 20 cm laser He-Ne 1 mod 1* ms 300 m Interferencja (powtórzenie?)
23 Monochromator jest przyrządem, którego zadaniem jest wydzielenie z całego widma promieniowania padającego na szczelinę wejściową tylko niewielkiej, interesującej nas części. Główną częścią monochromatora jest element dyspersyjny, który ma rozszczepić wiązkę światła. Może nim być pryzmat lub siatka dyfrakcyjna. W obydwu tych elementach wykorzystujemy fakt, że kąt załamania (pryzmat) czy ugięcia (siatka dyfrakcyjna) wiązki światła zależy od jej długości. Monochromator a/s2/monochromator.htm
24 Filtry interferencyjne wykorzystują zjawisko interferencji wielokrotnej aby wzmocnić interesujące nas długości fali a osłabić inne. kλ = 2nd cos i Filtry interferencyjne metalowe Filtry interferencyjne dielektryczne Filtry interferencyjne
25 źródło: Lasery, lampy spektralne
26 Układy interferometryczne
27 Układy interferometryczne
28 Interferometr Rayleigha Służy do pomiarów współczynnika załamania gazów i cieczy. Używa się go do analizy gazów kopalnianych, piecowych, do wykrywania domieszek w wodzie itp. Dokładności określenia współczynnika załamania wynoszą Interferometr Rayleigha
29 Interferometr Rayleigha Badane gazy lub ciecze znajdują się w jednakowych rurkach R 1 i R 2, znajdujących się między kolimatorem i lunetą. Rurki te znajdują się w dolnej części obiektywów O 1 i O 2. Interferometr Rayleigha
30 Oglądamy przez okular lunety dwa układy prążków interferencyjnych. Układ pierwszy, nieruchomy, tworzą górne połowy szczelin przysłony D 2. Układ drugi tworzą promienie przechodzące przez rurki R 1 i R 2, leżące w dolnej części przyrządu. Układy prążków się pokrywają, gdy rurki nie wnoszą różnicy dróg optycznych a więc gdy substancje je wypełniające mają ten sam współczynnik załamania (zakładamy tę samą długość rurek). Jeśli rurki napełnione są substancjami o różnych współczynnikach załamania, wówczas dolny układ prążków jest przesunięty względem górnego, a różnica dróg optycznych wynosi: Σ = n 2 n 1 l = ΔNλ Interferometr Rayleigha
31 Element mierniczy układu stanowią dwie szklane płytki płasko-równoległe P 1 i P 2, nachylone pod kątem 45 do osi kolimator-luneta. Płytka P 1 jest nieruchoma zaś P 2 może być pochylana dookoła poziomej osi za pomocą śruby mikrometrycznej. Pochylanie płytki P 2 wprowadza zmianę drogi optycznej promieni przechodzących przez nią. Płytka P 1 służy do wyrównania dróg optycznych. Interferometr Rayleigha
32 Czułość interferometru zależy od długości rurek. W celu zmniejszenia długości interferometru stosuje się układy, w których promienie przechodzą przez rurki dwa razy. Zależność między podstawowymi parametrami interferometru Rayleigha: Δnl = ΔNλ gdzie: Δn mierzona różnica współczynników załamania, l długość rurek, ΔN dokładność określenia przesunięcia prążków interferencyjnych, λ - długość używanej fali. Przykład: dla l=300 mm, λ = 600 nm i ΔN = 0,05, Δn osiąga Interferometr Rayleigha
33 Interferometr Jamina Składa się z dwóch płytek szklanych P 1 i P 2 o jednakowej grubości, których tylne powierzchnie pokryte są warstwą odbijającą. Różnica dróg promieni 1 i 2 jest równa zeru, gdy obie płytki są do siebie idealnie równoległe. Interferometr Jamina
34 Interferometr Jamina Δn = ΔNλ l
35 Interferometr Macha-Zehndera Interferometr umożliwia wsuwanie w bieg jednej z wiązek dużych obiektów. Jest to więc modyfikacja interferometru Jamina, rozdzielająca interferujące wiązki na duże odległości. Dodatkowo, umożliwia kontrolę parametrów pola prążkowego. Przyrząd wykorzystuje się np. w interferencyjnych metodach wizualizacji przepływów. Interferometr Macha-Zehndera
36 Wady? Zalety? Metody interferometryczne
37 Metoda Obreimowa - porównawcza metoda immersyjna, stosowana do pomiaru bezkształtnych kawałków szkła, soczewek itp. Badany przedmiot umieszcza się w mieszaninie cieczy immersyjnych i poprzez zmianę składu mieszaniny wyrównuje się (dla pewnej długości fali) współczynnik załamania cieczy i przedmiotu. Przedmiot staje się wtedy niewidoczny. Metoda Obreimowa
38 W kuwecie znajduje się dodatkowo płytka wzorcowa, której współczynnik załamania różni się od współczynnika załamania ciała badanego o mniej niż 0,01. Metoda Obreimowa
39 Skoro wystarczy zaobserwować znikanie badanej próbki, to po co płytka wzorcowa i gdzie tu wykorzystanie interferencji? Problem w tym, że ciecz immersyjną tworzymy na bieżąco, dolewając jednego składnika do drugiego i w momencie zniknięcia badanej próbki nie znamy jej współczynnika załamania! Dyspersja współczynnika załamania cieczy jest większa niż dyspersja szkła. W metodzie Obreimowa wyrównania współczynników załamania pomiędzy badaną płytką/wzorcem a cieczą imersyjną dokonuje się poprzez zmianę długości światła wychodzącego z monochromatora. Metoda Obreimowa
40 Różnica dróg optycznych promienia biegnącego przez ciecz i przez płytkę wzorcową wynosi: Σ = d n C n W = dδn d grubość płytki; n C wsp. zał. cieczy; n W wsp. zał. wzorca. Płytka wzorcowa znika, gdy n C =n W, albo gdy jest równa całkowitej N-krotności długości fali zeszlifowany narożnik (inna grubość i do tego zmienna!) pozwala nam odróżnić zniknięcie zerowe od pozostałych. dδn = Σ = Nλ - Krzywą dyspersji wzorca i jego grubość wyznaczamy w procesie kalibracji; - Szukamy długości fali, przy której znika brzeg próbki; - Szukamy sąsiednich długości fali L i P, przy których następują kolejne N L i N P te zniknięcia (rozjaśnienia) brzegu wzorca; Δn L = N Lλ L d, Δn P = N Pλ P d - Wyznaczamy współczynnik załamania badanej próbki (jako odstępstwo od wsp. zał. wzorca) interpolując otrzymane wyniki: Δn λ = Δn L + Δn P Δn L Metoda Obreimowa λ λ L λ P λ L
POMIARY OPTYCZNE 1. Wykład 5 Interferencyjne pomiary współczynnika załamania. Dr hab. inż. Władysław Artur Woźniak
POMIARY OPTYCZNE 1 Wykład 5 Interferencyjne pomiary współczynnika załamania. Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 18/11 bud. A-1 http://www.if.pwr.wroc.pl/~wozniak/
Wykład FIZYKA II 8. Optyka falowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ Nakładanie się fal nazywamy ogólnie superpozycją. Nakładanie
Wykład FIZYKA II. 8. Optyka falowa
Wykład FIZYKA II 8. Optyka falowa Dr hab. inż. Władysław Artur Woźniak Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka.html
OPTYKA INSTRUMENTALNA
OPTYKA INSTRUMENTALNA Wykład 11: POMIAR WSPÓŁCZYNNIKA ZAŁAMANIA II: interferencja, pojęcia spójności (koherencji) i jej warunki; zalety i wady pomiarów interferencyjnych; monochromatory; rodzaje interferometrów;
OPTYKA INSTRUMENTALNA
OPTYKA INSTRUMENTALNA Wykład 10: POMIAR WSPÓŁCZYNNIKA ZAŁAMANIA I: współczynnik załamania i dyspersja szkła: definicje, sens fizyczny; spektrometryczne metody pomiaru współczynnika załamania szkieł i cieczy,
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny
Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.
. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. Rozwiązywanie zadań wykorzystujących poznane prawa I LO im. Stefana Żeromskiego w Lęborku 27 luty 2012 Dyfrakcja światła laserowego
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Wykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
Fizyka elektryczność i magnetyzm
Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać
WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki
POMIARY OPTYCZNE Współczynnik załamania #1. Damian Siedlecki
POMIARY OPTYCZNE 1 { 6. Współczynnik załamania #1 Damian Siedlecki Przypomnienie: Współczynnik załamania ośrodka opisuje zmianę prędkości fali w ośrodku: n c v = εμ c prędkość światła w próżni; v prędkość
Rys. 1 Interferencja dwóch fal sferycznych w punkcie P.
Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.
POMIARY OPTYCZNE Pomiary kątów (klinów, pryzmatów) Damian Siedlecki
POMIARY OPTYCZNE 1 { 10. (klinów, pryzmatów) Damian Siedlecki 1) Metoda autokolimacyjna i 2φn a = 2φnf ob φ = a 2nf ob Pomiary płytek płasko-równoległych 2) Metody interferencyjne (prążki równej grubości)
Prawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
Ćwiczenie 4. Doświadczenie interferencyjne Younga. Rys. 1
Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.
Wykład XIV. wiatła. Younga. Younga. Doświadczenie. Younga
Wykład XIV Poglądy na naturęświat wiatła Dyfrakcja i interferencja światła rozwój poglądów na naturę światła doświadczenie spójność światła interferencja w cienkich warstwach interferometr Michelsona dyfrakcja
WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA
WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA 1. Interferencja fal z dwóch źródeł 2. Fale koherentne i niekoherentne 3. Interferencja fal z wielu źródeł 4. Zasada Huygensa 5.
Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób:
Zastosowanie laserów w Obrazowaniu Medycznym Spis treści 1 Powtórka z fizyki Zjawisko Interferencji 1.1 Koherencja czasowa i przestrzenna 1.2 Droga i czas koherencji 2 Lasery 2.1 Emisja Spontaniczna 2.2
Wykład III. Interferencja fal świetlnych i zasada Huygensa-Fresnela
Wykład III Interferencja fal świetlnych i zasada Huygensa-Fresnela Interferencja fal płaskich Na kliszy fotograficznej, leżącej na płaszczyźnie z=0 rejestrujemy interferencję dwóch fal płaskich, o tej
falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
Pomiar drogi koherencji wybranych źródeł światła
Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego
BADANIE INTERFEROMETRU YOUNGA
Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości
BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA
ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów
Metody Optyczne w Technice. Wykład 5 Interferometria laserowa
Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa
Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,
Laboratorium techniki laserowej. Ćwiczenie 3. Pomiar drgao przy pomocy interferometru Michelsona
Laboratorium techniki laserowej Ćwiczenie 3. Pomiar drgao przy pomocy interferometru Michelsona Katedra Optoelektroniki i Systemów Elektronicznych, WET, Politechnika Gdaoska Gdańsk 006 1. Wstęp Celem ćwiczenia
Dyfrakcja. interferencja światła. dr inż. Romuald Kędzierski
Dyfrakcja i interferencja światła. dr inż. Romuald Kędzierski Zasada Huygensa - przypomnienie Każdy punkt ośrodka, do którego dotarło czoło fali można uważać za źródło nowej fali kulistej. Fale te zwane
18 K A T E D R A F I ZYKI STOSOWAN E J
18 K A T E D R A F I ZYKI STOSOWAN E J P R A C O W N I A F I Z Y K I Ćw. 18. Wyznaczanie długości fal świetlnych diody laserowej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło jest promieniowaniem
Temat: Pomiar współczynnika załamania światła w gazie za pomocą interferometru Michelsona
Ćwiczenie Nr 450. Temat: Pomiar współczynnika załamania światła w gazie za pomocą interferometru Michelsona 1.iteratura: a) D. Halliday, R. Resnick, J. Walker, Podstawy fizyki 4, PWN, W-wa b) I. W. Sawieliew
BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA
BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA Celem ćwiczenia jest: 1. demonstracja dużej liczby prążków w interferometrze Lloyda z oświetleniem monochromatycznym,
ANALIZA SPEKTRALNA I POMIARY SPEKTROFOTOMETRYCZNE. Instrukcja wykonawcza
ĆWICZENIE 72A ANALIZA SPEKTRALNA I POMIARY SPEKTROFOTOMETRYCZNE 1. Wykaz przyrządów Spektroskop Lampy spektralne Spektrofotometr SPEKOL Filtry optyczne Suwmiarka Instrukcja wykonawcza 2. Cel ćwiczenia
Badanie właściwości optycznych roztworów.
ĆWICZENIE 4 (2018), STRONA 1/6 Badanie właściwości optycznych roztworów. Cel ćwiczenia - wyznaczenie skręcalności właściwej sacharozy w roztworach wodnych oraz badanie współczynnika załamania światła Teoria
Na ostatnim wykładzie
Na ostatnim wykładzie Falę elektromagnetyczną możemy przedstawić podając jej kierunek rozchodzenia się (promień) albo czoła fali (umowne powierzchnie, na których wartość natężenia pola elektrycznego jest
INSTRUKCJA. Analiza gazów analizatorami Fizycznymi. Interferometr. Opracował: dr inż. Franciszek Wolańczyk
INSTRUKCJA Analiza gazów analizatorami Fizycznymi. Interferometr. Opracował: dr inż. Franciszek Wolańczyk Analiza gazów analizatorami fizycznymi. Interferometr. Strona 2 1. WSTĘP Sposób badania gazów i
Materiałoznawstwo optyczne SZKŁO. (pomiar własnow. NORMY BRANŻOWE Henc T., Pomiary optyczne, WNT Warszawa, 1964
Materiałoznawstwo optyczne SZKŁO (pomiar własnow asności i jakości szkła) NORMY BRANŻOWE Henc T., Pomiary optyczne, WNT Warszawa, 1964 Badania Opis badań: sprawdzenie wymiarów sprawdzenie współczynnika
Wykład 17: Optyka falowa cz.2.
Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie
Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego
Ćwiczenie O5 Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego O5.1. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie zjawiska dyfrakcji i interferencji światła do wyznaczenia rozmiarów
Wykład 16: Optyka falowa
Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Zasada Huyghensa Christian Huygens 1678 r. pierwsza falowa
Własności światła laserowego
Własności światła laserowego Cechy światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy oraz spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność kątową awkącie
OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę
OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i
Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton
Natura światła W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton W swojej pracy naukowej najpierw zajmował się optyką. Pierwsze sukcesy odniósł właśnie w optyce, konstruując
Wykład 16: Optyka falowa
Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla
Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla wszystkich rodzajów fal, we wszystkich ośrodkach, w których
Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów
Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe
pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura
12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17
Ćwiczenie: "Zagadnienia optyki"
Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.
Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona
Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona Jakub Orłowski 6 listopada 2012 Streszczenie W doświadczeniu dokonano pomiaru krzywizny soczewki płasko-wypukłej z wykorzystaniem
Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13)
Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Celem ćwiczenia jest: obserwacja zjawiska skręcenia płaszczyzny polaryzacji światła w roztworach cukru, obserwacja zależności kąta skręcenia
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.
Badanie zjawisk optycznych przy użyciu zestawu Laser Kit
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 5 Badanie zjawisk optycznych przy użyciu zestawu Laser Kit Cel ćwiczenia: Zapoznanie studentów ze zjawiskami optycznymi. Badane elementy: Zestaw ćwiczeniowy Laser
Interferencja. Dyfrakcja.
Interferencja. Dyfrakcja. Wykład 8 Wrocław University of Technology 05-05-0 Światło jako fala Zasada Huygensa: Wszystkie punkty czoła fali zachowują się jak punktowe źródła elementarnych kulistych fal
Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki
Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki LASEROWY POMIAR ODLEGŁOŚCI INTERFEROMETREM MICHELSONA Instrukcja wykonawcza do ćwiczenia laboratoryjnego ćwiczenie
Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa
Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim
Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.
POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich
Dyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia
Dyfrakcja 1 Dyfrakcja Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia uginanie na szczelinie uginanie na krawędziach przedmiotów
2.6.3 Interferencja fal.
RUCH FALOWY 1.6.3 Interferencja fal. Pojęcie interferencja odnosi się do fizycznych efektów nie zakłóconego nakładania się dwóch lub więcej ciągów falowych. Doświadczenie uczy, że fale mogą przebiegać
OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach.
OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. Zagadnienia, które należy znać przed wykonaniem ćwiczenia: Dyfrakcja światła to zjawisko fizyczne zmiany kierunku rozchodzenia
9. Optyka Interferencja w cienkich warstwach. λ λ
9. Optyka 9.3. nterferencja w cienkich warstwach. Światło odbijając się od ośrodka optycznie gęstszego ( o większy n) zienia fazę. Natoiast gdy odbicie zachodzi od powierzchni ośrodka optycznie rzadszego,
przenikalność atmosfery ziemskiej typ promieniowania długość fali [m] ciało o skali zbliżonej do długości fal częstotliwość [Hz]
ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Tęcza pierwotna i wtórna Dyfrakcja i interferencja światła Politechnika Opolska Opole
LABORATORIUM OPTYKI GEOMETRYCZNEJ
LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR KRZYWIZNY SOCZEWEK 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania krzywizny soczewek. 2. Zakres wymaganych zagadnieo: Zjawisko dyfrakcji i interferencji
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw 1) Instrukcja wykonawcza
ĆWICZENIE 76A WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw ) Instrukcja wykonawcza. Wykaz przyrządów Spektrometr (goniometr) Lampy spektralne Pryzmaty. Cel ćwiczenia
MGR 10. Ćw. 1. Badanie polaryzacji światła 2. Wyznaczanie długości fal świetlnych 3. Pokaz zmiany długości fali świetlnej przy użyciu lasera.
MGR 10 10. Optyka fizyczna. Dyfrakcja i interferencja światła. Siatka dyfrakcyjna. Wyznaczanie długości fali świetlnej za pomocą siatki dyfrakcyjnej. Elektromagnetyczna teoria światła. Polaryzacja światła.
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Wyznaczanie wartości współczynnika załamania
Grzegorz F. Wojewoda Zespół Szkół Ogólnokształcących nr 1 Bydgoszcz Wyznaczanie wartości współczynnika załamania Jest dobrze! Nareszcie można sprawdzić doświadczalnie wartości współczynników załamania
Wyznaczanie zależności współczynnika załamania światła od długości fali światła
Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali
I PRACOWNIA FIZYCZNA, UMK TORUŃ
I PRACOWNIA FIZYCZNA, UMK TORUŃ Instrukcja do ćwiczenia nr 59 WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA W SZKLE METODĄ KĄTA NAJMNIEJSZEGO ODCHYLENIA Instrukcje wykonali: G. Maciejewski, I. Gorczyńska
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU.
0.X.00 ĆWICZENIE NR 76 A (zestaw ) WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU. I. Zestaw przyrządów:. Spektrometr (goniometr), Lampy spektralne 3. Pryzmaty II. Cel ćwiczenia: Zapoznanie
O3. BADANIE WIDM ATOMOWYCH
O3. BADANIE WIDM ATOMOWYCH tekst opracowała: Bożena Janowska-Dmoch Większość źródeł światła emituje promieniowanie elektromagnetyczne złożone z wymieszanych ze sobą fal o wielu częstotliwościach (długościach).
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego. 2. Wyznaczenie współczynnika załamania
Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego.
Ćwiczenie 6 Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Interferometr Macha-Zehndera Interferometr Macha-Zehndera jest często wykorzystywany
Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne
Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub
Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54
Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT
Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów
GŁÓWNE CECHY ŚWIATŁA LASEROWEGO
GŁÓWNE CECHY ŚWIATŁA LASEROWEGO Światło może być rozumiane jako: Strumień fotonów o energii E Fala elektromagnetyczna. = hν i pędzie p h = = hν c Najprostszym przypadkiem fali elektromagnetycznej jest
OPTYKA. Leszek Błaszkieiwcz
OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający
PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/08. PIOTR KURZYNOWSKI, Wrocław, PL JAN MASAJADA, Nadolice Wielkie, PL
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 211200 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 380223 (22) Data zgłoszenia: 17.07.2006 (51) Int.Cl. G01N 21/23 (2006.01)
Falowa natura promieniowania elektromagnetycznego.
Zadanie 1. Falowa natura promieniowania elektromagnetycznego. W telefonii komórkowej poziom bezpieczeństwa (w odniesieniu do szkodliwości oddziaływania promieniowania na materię żywą) określany jest za
Wykład 22. Interferencja światła.
Wykład Interferencja światła. 4. Falowa natura światła. Falowa teoria światła oparta jest na zasadzie Huygensa: Każdy punkt ośrodka, do którego dociera fala, staje się środkiem wtórnej fali kulistej. Obwiednia
WSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale
Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi
Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi Cele ćwiczenia Praktyczne zapoznanie się ze zjawiskiem interferencji fal akustycznych Wyznaczenie prędkości fal ultradźwiękowych
Pomiar dyspersji materiałów za pomocą spektrometru
Ćwiczenie nr 9 Pomiar dyspersji materiałów za pomocą spektrometru I. Zestaw przyrządów 1. Spektrometr 2. Lampy spektralne: helowa i rtęciowa 3. Pryzmaty szklane, których własności mierzymy II. Cel ćwiczenia
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.
OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE
LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale
PL B1. Sposób pomiaru współczynnika załamania oraz charakterystyki dyspersyjnej, zwłaszcza cieczy. POLITECHNIKA GDAŃSKA, Gdańsk, PL
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 230326 (13) B1 (21) Numer zgłoszenia: 404715 (51) Int.Cl. G01N 21/45 (2006.01) G01N 9/24 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Pomiar dyspersji materiałów za pomocą spektrometru
Ćwiczenie nr 9 Pomiar dyspersji materiałów za pomocą spektrometru I. Zestaw przyrządów 1. Spektrometr 2. Lampy spektralne: helowa i rtęciowa 3. Pryzmaty szklane, których własności mierzymy II. Cel ćwiczenia
ĆWICZENIE 44 BADANIE DYSPERSJI. I. Wprowadzenie teoretyczne.
ĆWICZENIE 44 BADANIE DYSPERSJI I. Wprowadzenie teoretyczne. Światło białe przechodząc przez ośrodek o współczynniku załamania n> na granicy ośrodka optycznie rzadszego i gęstszego ulega załamaniu. Jeżeli
Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
interferencja, dyspersja, dyfrakcja, okna transmisyjne Interferencja
interferencja, dyspersja, dyfrakcja, okna transmisyjne PiOS Interferencja Interferencja to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 7 Dystorsja Zależy od wielkości pola widzenia. Dystorsja nie wpływa na ostrość obrazu lecz dokonuje
- 1 - OPTYKA - ĆWICZENIA
- 1 - OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C.
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji
Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 19 V 2009 Nr. ćwiczenia: 413 Temat ćwiczenia: Wyznaczanie długości fali świetlnej za pomocą spektrometru