Jak wykorzystać technologię w nauce funkcji i rachunku prawdopodobieństwa?
|
|
- Halina Baranowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Zestaw 7 Zeszyt 3 Jacek Stańdo Jak wykorzystać technologię w nauce funkcji i rachunku prawdopodobieństwa? Etapy wprowadzania pojęcia funkcji i włączania technologii informacyjno-komunikacyjnej Uczenie się przez odkrywanie Rachunek prawdopodobieństwa jako przykład funkcji
2 Analiza merytoryczna Elżbieta Miterka Recenzja Jolanta Lazar Redakcja językowa i korekta Agata Jabłonowska-Turkiewicz Projekt graficzny, projekt okładki Wojciech Romerowicz, ORE Skład i redakcja techniczna Grzegorz Dębiński Projekt motywu graficznego Szkoły ćwiczeń Aneta Witecka ISBN (Zestawy materiałów dla nauczycieli szkół ćwiczeń matematyka) ISBN (Zestaw 7. Wykorzystanie technologii informacyjnokomunikacyjnych w edukacji matematycznej w klasach IV VIII szkoły podstawowej i szkole ponadpodstawowej) ISBN (Zeszyt 3. Jak wykorzystać technologię w nauce funkcji i rachunku prawdopodobieństwa?) Warszawa 2017 Ośrodek Rozwoju Edukacji Aleje Ujazdowskie Warszawa Publikacja jest rozpowszechniana na zasadach wolnej licencji Creative Commons Użycie niekomercyjne 3.0 Polska (CC-BY-NC).
3 Spis treści Wstęp 3 Etapy wprowadzania pojęcia funkcji i włączania technologii informacyjno-komunikacyjnej 3 Uczenie się przez odkrywanie 8 Funkcja liniowa 10 Rozwiązywanie układów równań 13 Rachunek prawdopodobieństwa jako przykład funkcji 16 Ocena efektów kształcenia 21 Bibliografia 23
4 Zeszyt 3 Wstęp Już czasach starożytnych można odnaleźć początki rozwijania się pojęcia funkcji. Po raz pierwszy tego pojęcia użył w 1692 r. niemiecki matematyk Gottfried Wilhelm Leibniz. Formalna definicja pojawiła się w 1718 r. i stworzył ją szwajcarski matematyk Johann Bernoulli. Nowoczesne pojęcie funkcji w 1837 r. zdefiniował Peter Gustav Lejeune Dirichlet. Funkcja to jedno z najważniejszych pojęć w matematyce. Nie zdajemy sobie sprawy z tego, że wprowadzenie pojęcia funkcji i jej własności jest długotrwałym procesem. Formalna definicja i podstawowe własności funkcji pojawiają się obecnie w klasie VIII. Nauczyciele już na etapie wczesnoszkolnym powinni rozpocząć proces wprowadzenia tej ważnej definicji. Etapy wprowadzania pojęcia funkcji i włączania technologii informacyjno-komunikacyjnej Etap 1 Budowanie zbiorów. Na etapie wczesnoszkolnym uczniowie uczą się budowania zbiorów. Otaczanie pętlą różnych obiektów to dla ucznia rozdzielanie ich i łączenie w pewną całość ze względu na ustaloną cechę. Etap 2 Przyporządkowania podstawowe. Ćwiczenie Włóż odpowiednie elementy do zbioru i przyporządkuj figurom właściwy kolor. 3
5 Zestaw 7 Rozwiązanie Przykłady, na których uczniowie dokonują przyporządkowania, muszą być naturalne, wzięte z życia (figura kolor, warzywa cena). 4
6 Zeszyt 3 5
7 Zestaw 7 a) W przyporządkowaniu dwie figury mają przypisany ten sam kolor, brak figury o kolorze żółtym. b) W przyporządkowaniu wszystkie figury mają przypisany jeden kolor i ze względu na brak figur nie wszystkie kolory występują. c) W zbiorze kolorów brak koloru zielonego, figura nie ma przyporządkowania. d) Możemy rozważać przyporządkowania odwrotne. e) Kolor żółty ma przyporządkowane dwie figury. f) Kolor żółty ma przyporządkowane dwie figury. Celem rozważania powyższych przypadków jest to, aby uczniowie, kiedy zostanie im wprowadzone pojęcie funkcji, potrafili dokonać zróżnicowania: Etap 4 funkcji i przyporządkowania, które nie jest funkcją; funkcji stałej; funkcji różnowartościowej; funkcji na ; funkcji odwrotnej. Przyporządkowanie złożone. Krok 1. Konstrukcja pierwszego przyporządkowania. 6
8 Zeszyt 3 Krok 2. Konstrukcja drugiego przyporządkowania. Krok 3. Złożenia pierwszego i drugiego przyporządkowania Krok 4. Konstrukcja złożonego przyporządkowania. 7
9 Zestaw 7 Etap 5 Wprowadzenie definicji funkcji. Etap 6 Własności funkcji, interpretacja funkcji, budowanie różnych funkcji. Uczenie się przez odkrywanie Wincenty Okoń definiuje metodę kształcenia jako wypróbowany i systematycznie stosowany układ czynności nauczycieli i uczniów, realizowanych świadomie w celu spowodowania założonych zmian w osobowości uczniów (1999). Typologia metod kształcenia (W. Okoń, 1999): metody asymilacji wiedzy oparte na aktywności poznawczej; metody samodzielnego dochodzenia do wiedzy oparte na twórczej aktywności poznawczej; metody waloryzacyjne o dominacji aktywności emocjonalnej; metody praktyczne aktywności praktycznej. J.S. Bruner twierdzi, że proces poznawania świata polega na dostrzeganiu różnic między obiektami oraz łączeniu obiektów w pewne klasy. Zachęca on do uczenia się przez eksperymentowanie, stawianie hipotez, ale przestrzega przed wczesnym formalizmem, wprowadzaniem pojęć naukowych. J.S. Bruner twierdzi także, że prawdziwe uczenie się zachodzi w procesie samodzielnego dokonywania odkryć (por. Filipiak, 2011). Uczenie się przez odkrywanie odgrywa najważniejszą rolę w nauczaniu matematyki. Należy stwarzać takie warunki, aby uczniowie mieli satysfakcję z uczenia się tego przedmiotu. Technologie informacyjno-komunikacyjne dają nieskończone możliwości wdrażania tej metody. Na przykładach pokażemy, jak można włączyć narzędzia technologiczne w proces nauczania. 8
10 Zeszyt 3 9
11 Zestaw 7 Funkcja liniowa Efekty kształcenia Uczeń: tworzy wykres funkcji; wyznacza wartości funkcji; operuje własnościami funkcji. Efekt kształcenia: Uczeń interpretuje współczynnik b przy równaniu funkcji liniowej y = ax + b, gdzie a jest ustalone. Ćwiczenia wprowadzające Praca w grupach Grupa 1 Zadanie 1. Narysuj wykres funkcji f(x) = 2x + 1. Zadanie 2. Narysuj wykresy funkcji f(x) = 2x + 1, g(x) = 2x + 3. Grupa 2 Zadanie 1. Narysuj wykres funkcji f(x) = -x + 1. Zadanie 2. Narysuj wykresy funkcji f(x) = -x +2, g(x) = -x + 5. Postawienie hipotezy Uczeń stawia hipotezę: Jeśli współczynniki a przy x są równe, to zmieniając współczynnik b, otrzymujemy proste równoległe. Jakie technologie możemy użyć, aby nasza hipoteza stała się bardziej wiarygodna? Wybór narzędzia technologicznego, opracowanie technologiczne, przeprowadzenie eksperymentów 10
12 Zeszyt 3 Wyszukiwarka Google Wyszukiwarka Wolfram Alpha 11
13 Zestaw 7 GeoGebra Które narzędzie jest najlepsze do rozwiązania naszego problemu? Wyszukiwarki Google i Wolfram Alpha dają możliwość narysowania kilku wykresów. W programie GeoGebra definiujemy suwak (zmienna b) i mamy możliwość symulowania prostych dla bardzo dużej ilości prostych. Potwierdzenie hipotezy i sformułowanie własności Jeśli współczynniki a przy x są równe, to zmieniając współczynnik b, otrzymujemy proste równoległe. Uczeń zdolny: Potrafi przygotować i zaprezentować dowód tego twierdzenia. Przykłady efektów kształcenia, które można w podobny sposób realizować. Uczeń: interpretuje współczynnik a przy równaniu funkcji liniowej y = ax + b, gdzie b jest ustalone; określa monotoniczność funkcji liniowej; interpretuje współczynnik a przy równaniu funkcji y = ax^2 + bx + c+ b, gdzie b, c jest ustalone; interpretuje współczynnik c przy równaniu funkcji y = ax^2 + bx + c + b, gdzie a, b jest ustalone; 12
14 Zeszyt 3 interpretuje współczynnik b przy równaniu funkcji y = ax^2 + bx + c + b, gdzie a, c jest ustalone; Rozwiązywanie układów równań Jedną z metod rozwiązywania układów równań liniowych jest metoda graficzna. Metoda ta polega na narysowaniu wykresów funkcji liniowych wyznaczonych z równań. Ważne jest, aby uczniom uświadomić różnicę między równaniem y = 2x + 4 a funkcją y = 2x + 4 Warto, wprowadzając ten temat, przypomnieć i przeanalizować definicję funkcji, równania i rozwiązania równania. Graficzna metoda polega na doprowadzeniu równania ax + by = c do postaci y = cx + d, a następnie narysowania go w układzie współrzędnych w tej prostej. W miejscu przecięcia się prostych znajduje się rozwiązanie układu równań. Jakich narzędzi możemy użyć? Wyszukiwarka Google 13
15 Zestaw 7 Program GeoGebra 14
16 Zeszyt 3 Wolfram Alpha W metodzie graficznej należy uwzględnić wszystkie przypadki: rozwiązaniem jest punkt; rozwiązaniem jest zbiór pusty (proste równoległe); rozwiązaniem jest zbiór punktów leżących na prostej (proste pokrywają się). Jakie oczekujemy efekty kształcenia? Uczeń: stosuje technologię do rysowania wykresów funkcji liniowych; rozwiązuje układ równań metodą graficzną; interpretuje rozwiązania metodą graficzną; wymienia wady i zalety metody graficznej. 15
17 Zestaw 7 Rachunek prawdopodobieństwa jako przykład funkcji Wyznaczenie liczby podzbiorów k-elementowych w zbiorze n-elementowym jest obszarem działu matematyki nazywanym kombinatoryką. Są trzy najważniejsze zasady zliczania elementów: reguła dodawania; zasada włączeń i wyłączeń; reguła mnożenia. W podstawie programowej w szkole ponadpodstawowej omawia się z uczniami w szczególności: permutacje; wariacje; kombinacje. W procesie nauczania rachunku prawdopodobieństwa technologie odgrywają ważną rolę. Najważniejsze ich zastosowanie to wykonywanie obliczeń na dużych liczbach. Obliczenie np. permutacji w zbiorze stuelementowym bez technologii jest praktycznie niemożliwe. A wystarczy użyć Wolfram Alpha i dostajemy rząd wielkości stuelementowej permutacji. 16
18 Zeszyt 3 Z jednej strony chcemy, aby uczniowie posługiwali się swobodnie rachunkiem prawdopodobieństwa, a drugiej strony rozwiązywali praktyczne problemy na dużych liczbach. Poniżej przedstawimy pary zadań, które powinny wystąpić w procesie nauczania matematyki. Dzięki temu będziemy mieli zagwarantowane, że uczniowie posługują się rachunkiem prawdopodobieństwa, a poza tym radzą sobie z rozwiązywaniem praktycznych problemów, wykorzystując technologie informacyjno-komunikacyjne. Przykład 1. Zliczanie Zadanie 1 W piłkę nożną gra 17 uczniów, w siatkówkę 12 uczniów. W piłkę nożną i siatkówkę gra 10 uczniów. Ilu uczniów jest w tej klasie, jeśli każdy uczeń gra w co najmniej jedną grę? Rozwiązanie PN = 17, PS = 12, PNiPS = 10, Klasa = PN + PS - PNiPS = 19. Zadanie 2 W piłkę nożną gra 1784 zawodników, w siatkówkę 868 zawodników. W piłkę nożną i siatkówkę gra 237 zawodników. Ilu jest zawodników, jeśli każdy zawodnik gra w co najmniej jedną grę? Rozwiązanie W tym zadaniu możemy użyć wyszukiwarki Google. 17
19 Zestaw 7 W szkole ponadpodstawowej nie wprowadza się wzorów na kombinatorykę. Wymagamy od uczniów wypisania wszystkich elementów. Takie podejście może mocno ograniczyć wykonywanie zadań praktycznych. W tym przypadku warto używać narzędzi technologicznych do obliczeń. Zadanie 1 Wypisz wszystkie permutacje zbioru {a, b, c}. Rozwiązanie Uczniowie wypisują wszystkie możliwości. Jest ich 6. Zadanie 2 Wypisz wszystkie permutacje zbioru {a, b, c, d}. Rozwiązanie Możemy wykorzystać technologie. W wyszukiwarce Wolfram Alpha wpisujemy zapytanie: permutation of {a, b, c, d}. 18
20 Zeszyt 3 Jeśli chcemy otrzymać tylko liczbę permutacji, wpisujemy: number of permutations of 8 elements. Wiadomo, że nie jesteśmy w stanie wypisać wszystkich możliwości. Trzeba to wyraźnie uczniom uświadomić. Kombinacje Zadanie 1 Z 4-osobowej grupy wybieramy delegacje dwuosobowe. Ile jest wszystkich możliwych delegacji? Rozwiązanie Uczniowie mogą wypisać wszystkie delegacje. Jest ich 6. Zadanie 2. Z 25-osobowej klasy wybieramy delegacje trzyosobowe. Ile jest wszystkich możliwych delegacji? Rozwiązanie Możemy wykorzystać technologie. W wyszukiwarce Wolfram Alpha wpisujemy zapytanie: 25 choose 3. 19
21 Zestaw 7 Prawdopodobieństwo Zanim powstały komputery, tworzono tzw. tablice liczb losowych. Najprostszy sposób tworzenia takich tablic jest następujący: wyciągamy losowo z urny kule ponumerowane od 0 do 9. Obecnie wykorzystuje się do tego generatory liczb losowych, czyli programy komputerowe generujące losowo liczby. Wyszukiwarka Wolfram Alpha jest wyposażona w generator liczb losowych. Wpisując komendę random number (1,100), dostajemy losowo wybraną liczbę z zakresu od 1 do 100. Na stronie Definicja funkcji. Sposoby przedstawiania funkcji w e-podręczniku znajduje się symulator do rzutu kostką. Ważne jest, aby wprowadzając rachunek prawdopodobieństwa, uczniowie dostrzegli, że technologie wspomagają rozwiązywanie zadań. Zadanie 1 Rzucamy co najmniej 100 razy kostką do gry. Jakie jest prawdopodobieństwo wylosowania 1? Zadanie 2 Rzucamy kostką do gry. Możemy wykorzystać symulator. 20
22 Zeszyt 3 Ocena efektów kształcenia Przedstawmy schemat oceny efektów kształcenia z rachunku prawdopodobieństwa. Przykładowy pomiar z użyciem technologii Zadanie 1 Z 40-osobowej klasy wybieramy delegacje 5-osobowe. Ile jest wszystkich możliwych delegacji? Zadanie 2 W urnie znajduje się 1235 kul czerwonych, 234 kule zielone i 345 białych. Jakie jest prawdopodobieństwo wylosowania kuli białej? 21
23 Zestaw 7 Przykładowy pomiar bez użycia technologii Zadanie 1 Z 5-osobowej klasy wybieramy delegacje 4-osobowe. Ile jest wszystkich możliwych delegacji? Zadanie 2 W urnie znajduje sie 21 kul czerwonych, 23 zielone i 4 białe. Jakie jest prawdopodobieństwo wylosowania kuli białej? 22
24 Zeszyt 3 Bibliografia Filipiak E., (2011), Z Wygotskim i Brunerem w tle: Słownik pojęć kluczowych, Bydgoszcz: Wydawnictwo Uniwersytetu Kazimierza Wielkiego. Okoń W., (1999), Wprowadzenie do dydaktyki ogólnej, Warszawa: PWN. 23
25
Problemy matematyczne ułatwiające tworzenie zaawansowanych algorytmów w klasach IV VIII szkoły podstawowej
Zestaw 7 Zeszyt 4 Jacek Stańdo Monika Spławska-Murmyło Problemy matematyczne ułatwiające tworzenie zaawansowanych algorytmów w klasach IV VIII szkoły podstawowej Działania na zbiorach Zasada wielokrotności
SCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka)
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Moduł interdyscyplinarny:
WARSZTATY METODYCZNE (dla nauczycieli matematyki szkół ponadgimnazjalnych)
WARSZTATY METODYCZNE (dla nauczycieli matematyki szkół ponadgimnazjalnych) Aktywizujące metody nauczania na przykładzie tematu: Dyskusja nad liczbą rozwiązań równania liniowego z wartością bezwzględną
WYKRESY FUNKCJI LINIOWEJ
GIMNAZJUM NR 2 W KAMIENNEJ GÓRZE WYKRESY FUNKCJI LINIOWEJ Oprcowała Wiesława Kurnyta Kamienna Góra, 2006 Oto wypisy z Podstawy programowej o nauczaniu matematyki w gimnazjum Cele edukacyjne 1. E Przyswajanie
Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska
Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w
Temat (rozumiany jako lekcja) Propozycje środków dydaktycznych. Liczba godzin. Uwagi
Roczny plan dydaktyczny z matematyki dla pierwszej klasy szkoły branżowej I stopnia dla uczniów będących absolwentami ośmioletniej szkoły podstawowej, uwzględniający kształcone umiejętności i treści podstawy
KONSPEKT LEKCJI MATEMATYKI (2 LEKCJE) W III KLASIE GIMNAZJUM OPRACOWAŁA RENATA WOŁCZYŃSKA
KONSPEKT LEKCJI MATEMATYKI (2 LEKCJE) W III KLASIE GIMNAZJUM OPRACOWAŁA RENATA WOŁCZYŃSKA Temat: Powtórzenie i utrwalenie wiadomości o funkcji liniowej Cel ogólny Przykłady funkcji; odczytywanie własności
Egzamin gimnazjalny z matematyki 2016 analiza
Egzamin gimnazjalny z matematyki 2016 analiza Arkusz zawierał 23 zadania: 20 zamkniętych i 3 otwarte. Dominowały zadania wyboru wielokrotnego, w których uczeń wybierał jedną z podanych odpowiedzi. W pięciu
Dział I FUNKCJE I ICH WŁASNOŚCI
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Warszawa 2019 LICZBY RZECZYWISTE stosować prawidłowo pojęcie zbioru, podzbioru, zbioru pustego; zapisywać zbiory w różnej postaci
SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa
Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH
SCENARIUSZ LEKCJI: TEMAT LEKCJI: Postać kanoniczna funkcji kwadratowej. Interpretacja danych w arkuszu kalkulacyjnym
Autorzy scenariusza: SCENARIUSZ LEKCJI: OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH
KONSPEKT ZAJĘĆ EDUKACYJNYCH
KONSPEKT ZAJĘĆ EDUKACYJNYCH Część organizacyjna: Opracowała: grupa 4 ds. korelacji matematyczno-fizycznej Przedmiot: matematyka Klasa: I technikum poziom podstawowy Czas trwania: 45 min. Data: Część merytoryczna
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
ROZKŁAD MATERIAŁU DO III KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO III KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Wyrażenia wymierne (19 h) Przekształcanie wielomianów Wyrażenia wymierne 4 Równania
25. NIE TYLKO WORECZKI CZYLI O ROZUMIENIU SYSTEMU DZIESIĘTNEGO, CZ. I
124 25. NIE TYLKO WORECZKI CZYLI O ROZUMIENIU SYSTEMU DZIESIĘTNEGO, CZ. I Mirosław Dąbrowski 25. NIE TYLKO WORECZKI CZYLI O ROZUMIENIU SYSTEMU DZIESIĘTNEGO, CZ. I Cele ogólne w szkole podstawowej: zdobycie
SCENARIUSZ LEKCJI. Miejsca zerowe funkcji kwadratowej i ich graficzna prezentacja
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016
Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy IIIa i IIIb Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ 1. FUNKCJE (11h) Uczeń: poda definicję funkcji (2)
RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA
RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA Doświadczenia losowe Rachunek prawdopodobieństwa zajmuje się zdarzeniami jakie zachodzą, gdy przeprowadzamy doświadczenia losowe. Mówimy, że doświadczenie jest
Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów
Wymagania edukacyjne PRZEDMIOT: Matematyka KLASA: III Th ZAKRES: zakres podstawowy Poziom wymagań Lp. Dział programu Konieczny-K Podstawowy-P Rozszerzający-R Dopełniający-D Uczeń: 1. Ciągi liczbowe. -zna
SCENARIUSZ LEKCJI Przesuwanie paraboli - wykorzystanie arkusza kalkulacyjnego na lekcjach matematyki
SCENARIUSZ LEKCJI Przesuwanie paraboli - wykorzystanie arkusza kalkulacyjnego na lekcjach matematyki OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA
Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym
Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Copyright by Nowa Era Sp. z o.o. Warszawa 019 Liczba godzin TEMAT ZAJĘĆ EDUKACYJNYCH Język matematyki 1 Wzory skróconego mnożenia 3 Liczby pierwsze,
XXII Krajowa Konferencja SNM
1 XXII Krajowa Konferencja SNM STATYSTYKA Carel van de Giessen, Piet van Blokland; www.vusoft.eu Anna Rybak; aniar@klub.chip.pl, aniar1@onet.eu Uniwersytet w Białymstoku, Wydział Matematyki i Informatyki
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia
MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza
MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe
Standardy wymagań maturalnych z matematyki - matura
Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY I ROZSZERZONY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY I ROZSZERZONY Copyright by Nowa Era Sp. z o.o. Warszawa 2019 LICZBY RZECZYWISTE Na poziomie wymagań koniecznych lub podstawowych
Kształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Zdający posiada umiejętności w zakresie: 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny i formułuje uzyskane wyniki
Standardy wymagań na egzaminie maturalnym z matematyki mają dwie części. Pierwsza część opisuje pięć podstawowych obszarów umiejętności matematycznych. Druga część podaje listę szczegółowych umiejętności.
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest
Pojęcie funkcji i jej podstawowe własności.
Konspekt lekcji matematyki w klasie II gimnazjum Pojęcie funkcji i jej podstawowe własności. Opracowała mgr Iwona Żuk Gimnazjum nr 2 w Świętoniowej I. Umiejscowienie lekcji w jednostce metodycznej: Pojęcie
MATEMATYKA Podstawa programowa SZKOŁA BENEDYKTA
2018-09-01 MATEMATYKA klasa VIII Podstawa programowa SZKOŁA BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. 1. Wykonywanie nieskomplikowanych obliczeń w pamięci lub w działaniach trudniejszych
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Matematyka licea ogólnokształcące, technika
Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem
PROGRAM AUTORSKI KOŁA INFORMATYCZNEGO UCZNIÓW SZKOŁY PODSTAWOWEJ
PROGRAM AUTORSKI KOŁA INFORMATYCZNEGO UCZNIÓW SZKOŁY PODSTAWOWEJ opracowała: mgr Celina Czerwonka nauczyciel informatyki - Szkoły Podstawowej w Tarnawatce SPIS TREŚCI WSTĘP...3 CELE OGÓLNE...4 UWAGI O
Program edukacyjny wspierający nauczanie matematyki w klasach III - VII
Program edukacyjny wspierający nauczanie matematyki w klasach III - VII Teresa Świrska Aleksandra Jakubowska Małgorzata Niedziela Wrocław 2019 I. W S T Ę P Intencją autorów programu Z kalkulatorem, kartami
MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA
MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Funkcje i ich własności. odróżnić przyporządkowanie,
Geogebra jak pomóc uczniowi pokonywać trudności pojęciowe przy pomocy technologii
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Geogebra jak pomóc uczniowi pokonywać trudności pojęciowe przy pomocy technologii Przemysław Kajetanowicz Projekt
Wersja testu A 18 czerwca 2012 r. x 2 +x dx
1. Funkcja f : R R jest różniczkowalna na całej prostej, a ponadto dla każdej liczby rzeczywistej x zachodzi nierówność f x
V. WYMAGANIA EGZAMINACYJNE
V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny
Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08
Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 1. Oprocentowanie lokat i kredytów - zna pojęcie procentu prostego i składanego; - oblicza
Wymagania kl. 3. Zakres podstawowy i rozszerzony
Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za
FUNKCJA LINIOWA. Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b.
FUNKCJA LINIOWA Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b. Jakie znaki mają współczynniki a i b? R: Przedstawiona prosta, jest wykresem funkcji
Wymagania edukacyjne z matematyki klasa IV technikum
Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje
Standardy wymagań maturalnych z matematyki - matura 2010
Standardy wymagań maturalnych z matematyki - matura 2010 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Standardy można pobrać (plik pdf) wybierając ten link: STANDARDY 2010 lub
1.Funkcja logarytmiczna
Kryteria oceniania z matematyki dla klasy IV TI poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 1.Funkcja logarytmiczna -potrafi obliczyć logarytm liczby dodatniej; -zna i potrafi stosować
Podstawa programowa matematyki dla liceum i technikum (zakres podstawowy) podpisana przez Ministra Edukacji Narodowej 23 sierpnia 2007 roku
Podstawa programowa matematyki dla liceum i technikum (zakres podstawowy) podpisana przez Ministra Edukacji Narodowej 23 sierpnia 2007 roku C e l e e d u k a c y j n e 1. Przygotowanie do świadomego i
SCENARIUSZ LEKCJI. TEMAT LEKCJI: O czym mówią współczynniki funkcji liniowej? - wykorzystanie arkusza kalkulacyjnego na lekcjach matematyki
SCENARIUSZ LEKCJI OPRACOWANY w RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE i OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
FUNKCJA LINIOWA - WYKRES
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości
Wymagania edukacyjne, sposoby i formy sprawdzania osiągnięć i postępów edukacyjnych z matematyki.
Propozycja szczegółowego rozkładu materiału Program zakłada powtórzenie i utrwalenie wiadomości i umiejętności z wcześniejszych etapów edukacyjnych, niezbędnych w dalszym toku kształcenia (np. działania
POZIOMY WYMAGAŃ EDUKACYJNYCH: K ocena dopuszczająca (2) P ocena dostateczna (3) R ocena dobra (4) D ocena bardzo dobra (5) W ocena celująca (6)
YMAGANIA EDUACYJNE MATEMATYA LASA 3LO ZARES ROZSZERZONY OZIOMY YMAGAŃ EDUACYJNYCH: ocena dopuszczająca (2) ocena dostateczna (3) R ocena dobra (4) D ocena bardzo dobra (5) ocena celująca (6) Temat lekcji
Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy:
Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy: a) sumę oczek równą 6, b) iloczyn oczek równy 6, c) sumę oczek mniejszą niż 11, d) iloczyn oczek będący liczbą parzystą,
Autorski program nauczania
Grzegorz Kaczorowski Innowacja pedagogiczna: Algorytmika i programowanie Typ innowacji: programowa Autorski program nauczania poziom edukacyjny: PONADGIMNAZJALNY Realizatorzy innowacji: uczniowie klas
Wymagania edukacyjne z matematyki Klasa III zakres rozszerzony
Wymagania edukacyjne z matematyki Klasa III zakres rozszerzony Program nauczania zgodnie z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres Rozszerzony., Oficyna Edukacyjna
WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013
Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Temat: Konstrukcja prostej przechodzącej przez punkt A i prostopadłej do danej prostej k.
Temat: Konstrukcja prostej przechodzącej przez punkt A i prostopadłej do danej prostej k. Cel: Uczeń, przy użyciu programu GeoGebra, stworzy model konstrukcji prostej prostopadłej i wykorzysta go w zadaniach
Matematyka podstawowa X. Rachunek prawdopodobieństwa
Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę
MATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony
MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 2, ZAKRES PODSTAWOWY
1 Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań na oceny 2 Trygonometria Funkcje trygonometryczne kąta ostrego w trójkącie prostokątnym 3-4 Trygonometria Funkcje trygonometryczne
Funkcja rosnąca, malejąca, stała współczynnik kierunkowy
Funkcja rosnąca, malejąca, stała współczynnik kierunkowy 1. Cele lekcji Cel ogólny: Uczeń podaje przykłady funkcji i odczytuje jej własności z wykresów. Cele szczegółowe: Uczeń potrafi: określić monotoniczność
Ad maiora natus sum III nr projektu RPO /15
Projekt współfinansowany przez Unię Europejską w ramach SCENARIUSZ ZAJĘĆ Z MATEMATYKI W KLASIE II LICEUM PROWADZONYCH W CELU UZUPEŁNIENIA WIADOMOŚCI Temat: Wyznaczanie równania prostej prostopadłej i prostej
KLASA III LO Poziom podstawowy (wrzesień/październik)
KLASA III LO (wrzesień/październik) ZAKRES PODSTAWOWY. Funkcje. Uczeń: ) określa funkcje za pomocą wzoru, tabeli, wykresu, opisu słownego; ) oblicza ze wzoru wartość funkcji dla danego argumentu. Posługuje
Wymagania z matematyki dla klasy VIII na poszczególne oceny
Wymagania z matematyki dla klasy VIII na poszczególne oceny Treści nauczania w klasie VIII na podstawie podstawy programowej I Obliczenia procentowe. 1) stosuje obliczenia procentowe do w kontekście praktycznym,
Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań
TABELA ODNIESIEŃ EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA PROGRAMU KSZTAŁCENIA DO EFEKTÓW KSZTAŁCENIA OKREŚLONYCH DLA OBSZARU KSZTAŁCENIA I PROFILU STUDIÓW PROGRAM KSZTAŁCENIA: POZIOM KSZTAŁCENIA: PROFIL KSZTAŁCENIA:
Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132
Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów
Plan wynikowy. Klasa III Technikum ekonomiczne. Kształcenie ogólne w zakresie rozszerzonym
Plan wynikowy lasa III Technikum ekonomiczne. ształcenie ogólne w zakresie rozszerzonym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania
Scenariusz lekcji 1. Informacje wst pne: 2. Program nauczania: 3. Temat zaj 4. Integracja: 5. Cele lekcji: Ucze potrafi:
Scenariusz lekcji 1. Informacje wstępne: Data: 25 września 2012r. Klasa: II a 2 liceum (profil bezpieczeństwo wewnętrzne); Czas trwania zajęć: 45 minut; Nauczany przedmiot: matematyka. 2. Program nauczania:
Temat: Konstrukcja prostej przechodzącej przez punkt A i prostopadłej do danej prostej k.
Temat: Konstrukcja prostej przechodzącej przez punkt A i prostopadłej do danej prostej k. Cel: Uczeń, przy użyciu programu GeoGebra, stworzy model przestrzenny graniastosłupa i wykorzysta go w zadaniach
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA rozwiązań zadań z przykładowego arkusza egzaminacyjnego (EO_Q) GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (2 pkt) II.
Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum
Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE
Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji)
Projekty standardów wymagań egzaminacyjnych z matematyki (materiał do konsultacji) Od roku 2010 matematyka będzie obowiązkowo zdawana przez wszystkich maturzystów. W ślad za tą decyzją podjęto prace nad
Wymagania egzaminacyjne z matematyki. Klasa 3C. MATeMATyka. Nowa Era. Klasa 3
Wymagania egzaminacyjne z matematyki. lasa 3C. MATeMATyka. Nowa Era. y są ze sobą ściśle powiązane ( + P + R + D + W), stanowiąc ocenę szkolną, i tak: ocenę dopuszczającą (2) otrzymuje uczeń, który spełnił
Renata Krzemińska. nauczyciel matematyki i informatyki
Program zajęć wyrównawczych w Gimnazjum Matematyka J1 w ramach projektu pn. Czym skorupka za młodu nasiąknie - rozwój kompetencji kluczowych uczniów Zespołu Szkół w Nowej Wsi Lęborskiej Renata Krzemińska
AKTYWNA TABICA 2017/2017 Szkoła Podstawowa Nr 2 im. Mikołaja Kopernika w Nowym Targu
AKTYWNA TABICA 2017/2017 Szkoła Podstawowa Nr 2 im. Mikołaja Kopernika w Nowym Targu Autor: Paulina Drobny Temat lekcji: Cele lekcji: Przedmiot: Matematyka Klasa: V Trapez i jego własności Ogólne: utrwalenie
Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum
Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: czytać teksty w stylu matematycznym wykorzystywać słownictwo
R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo.
R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. Zadanie 1. Wyznacz średnią arytmetyczną, dominantę i medianę zestawu danych: 1, 5, 3, 2, 2, 4, 4, 6, 7, 1, 1, 4, 5, 5, 3. Zadanie 2. W zestawie danych
Osiągnięcia ponadprzedmiotowe
Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo
Zasady Oceniania Przedmiot: Matematyka
I. Kontrakt między nauczycielem i uczniem Zasady Oceniania Przedmiot: Matematyka 1. Każdy uczeń jest oceniany zgodnie z zasadami sprawiedliwości. 2. Prace klasowe, sprawdziany i odpowiedzi ustne są obowiązkowe.
Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)
Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP Liczby. TEMAT Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. Mnożenie i dzielenie
Kryteria oceniania z matematyki Klasa III poziom rozszerzony
Kryteria oceniania z matematyki Klasa III poziom rozszerzony Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja potęgowa - zna i stosuje tw. o potęgach - zna wykresy funkcji potęgowej o dowolnym
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLASY 1LO i 1TI ROK SZKOLNY 2018/2019 Przedmiotowy system oceniania jest zgodny z Rozporządzeniem Ministra Edukacji Narodowej z dnia 10 czerwca 2015 r. w
SCENARIUSZ LEKCJI. 4.Integracja: Międzyprzedmiotowa.
1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:12.06.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program
Wymagania edukacyjne z matematyki Klasa III zakres podstawowy
Wymagania edukacyjne z matematyki Klasa III zakres podstawowy Program nauczania zgodny z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres podstawowy., Oficyna Edukacyjna
MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony
Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania
Cel: Uczeń, przy użyciu programu GeoGebra, stworzy model symetrii osiowej i pozna jej własności
Temat: Symetria osiowa z GeoGebra Cel: Uczeń, przy użyciu programu GeoGebra, stworzy model symetrii osiowej i pozna jej własności Podstawa programowa Informatyka IV. Wykorzystanie komputera oraz programów
FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str
FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci
FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI ROK SZKOLNY 2018/2019 POZIOM PODSTAWOWY I ROZSZERZONY KLASA 3 UWAGI: 1. Zakłada się,
Skrypt 30. Prawdopodobieństwo
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 30 Prawdopodobieństwo 5.
SCENARIUSZ LEKCJI. kategoria B zrozumienie. Uczeń :
SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka z plusem.
PLAN KIERUNKOWY. Klasa III Gimnazjum Matematyka. Liczba godzin: 144. Wstępne osiągnięcia ucznia
Klasa III Gimnazjum Matematyka Liczba godzin: 144 PLAN KIERUNKOWY Wstępne osiągnięcia ucznia Posługuje się prostokątnym układem współrzędnych. Rozwiązuje równania i nierówności I stopnia z jedną niewiadomą
Od autorów... 7 Zamiast wstępu zrozumieć symbolikę... 9 Zdania Liczby rzeczywiste i ich zbiory... 15
Spis treści Od autorów........................................... 7 Zamiast wstępu zrozumieć symbolikę................... 9 Zdania............................................... 10 1. Liczby rzeczywiste
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;
Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)
Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje