Adam Meissner SZTUCZNA INTELIGENCJA. Reprezentowanie i przetwarzanie wiedzy o czasie

Wielkość: px
Rozpocząć pokaz od strony:

Download "Adam Meissner SZTUCZNA INTELIGENCJA. Reprezentowanie i przetwarzanie wiedzy o czasie"

Transkrypt

1 2015 Adam Meissner Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner SZTUCZNA INTELIGENCJA Reprezentowanie i przetwarzanie wiedzy o czasie literatura [1] Allen J.F., Maintaining Knowledge about Temporal Intervals; Comm. ACM 26 (1983) [2] Kamiński J., Przegląd algorytmów utrzymywania wiarygodności, raport IPI PAN nr 639, sierpień 1988, Warszawa. [3] McDermott D.V., A Temporal Logic for Reasoning about processes and plans, Cognitive Sci. 6 (1982) [4] Puppe F., Systematic Introduction to Expert Systems, Springer-Verlag, 1993.

2 Plan wykładu 2015 Adam Meissner 1. Zagadnienia dotyczące czasu w systemach z wiedzą zależności czasowe miedzy zdarzeniami zmienność wiedzy w czasie 2. Reprezentowanie zależności czasowych między zdarzeniami [4] reprezentacja bezwzględna reprezentacje względne 3. Przetwarzanie wiedzy zmiennej w czasie wnioskowanie niemonotoniczne systemy utrzymywania wiarygodności (ang. Truth Maintenance Systems). 2

3 Zależności czasowe między zdarzeniami reprezentacja bezwzględna (czas jako oś liczbowa) zalety: prostota technik reprezentowania i przetwarzania wiedzy wady: wymóg precyzyjnego określania czasu zachodzenia zdarzeń reprezentacje względne rachunek punktów [McDermott D.V. 1982] rachunek interwałów [Allen J.F. 1983]. Reprezentacja bezwzględna zastosowania: nauki techniczne, medycyna system VM [Fagan L. 1984] sterowanie pracą respiratora na podstawie pomiarów ciśnienia krwi pacjenta, tętna i tempa oddychania reprezentacja wiedzy wzorowana na syst. MYCIN dokonywanie pomiarów 30 razy na dobę o ściśle określonych porach system MED2 [Puppe F. 1987] udoskonalenie systemu VM rejestrowanie wyników pomiarów w różnych odstępach, możliwość odnoszenia momentu pomiaru do wskazanego punktu czasowego funkcje mechanizmu wnioskującego: (1) wyznaczanie czasu, jaki upłynął między dwoma pomiarami, (2) wyznaczanie zmian wartości oraz dynamiki zmian danego parametru w okresie między pomiarami. 3

4 Rachunek punktów [McDermott D.V. 1982] REPREZENTACJA WIEDZY O ZALEŻNOŚCIACH CZASOWYCH zdarzenia są reprezentowane za pomocą punktów czasowych w przestrzeni punktów czasowych definiuje się funkcję odległości przyporządkowującą parze punktów liczbę całkowitą Dist baza wiedzy o zależnościach czasowych jest grafem: wierzchołkami grafu są punkty krawędzie oznaczają zależności między punktami; zależności te mają postać ograniczeń Elt, reprezentowanych przez wyrażenia (MinDist, MaxDist) z dowolną parą punktów połączonych ścieżką związane jest ograniczenie będące złożeniem ograniczeń przypisanych poszczególnym krawędziom ścieżki podstawowym warunkiem niesprzeczności bazy wiedzy jest wymóg, aby dla każdego ograniczenia MinDist MaxDist. Przykład 1 (baza wiedzy o zal. czasowych) p1 c1 (6, 9) p2 c2 (2, 5) c3 (3, 7) c4 (5, 8) p3 Elt(p 3, p 2 ) = (5, 7) Elt(p 1, p 2 ) = (7, 9) 4

5 REPREZENTACJA WIEDZY PRZEDMIOTOWEJ pojęcia podstawowe interwał czasowy (p 1, p 2 ) token, zachodzenie tokenu P podczas interwału (p 1, p 2 ) struktura bazy wiedzy fakty i domniemania (ang. beliefs) reguły metody wnioskowania wnioskowanie progresywne P 1... Pn => Q (t 1,1, t 1,2 ) (t n,1, t n,2 ) (t 1,1, t 1,2 )... (t n,1, t n,2 ) wada: generowanie wielu bezużytecznych wniosków automatyczna projekcja Z P 1... Pn => Q (z 1, z 2 ) (q 1, q 2 ) zalety: możliwość posługiwania się demonami systemowymi, ustalanie priorytetów zdarzeń wnioskowanie o domniemaniach posługiwanie się domyślnymi założeniami o zdarzeniach, np. że każde zdarzenie trwa począwszy do pojawienia się informacji o jego zajściu, aż do nadejścia wiadomości o jego zakończeniu wykorzystanie systemu TMS, działającemu na zabezpieczeniach (ang. protection). 5

6 Przykład 2 (weryfikacja domniemań) Dana jest baza wiedzy 14:00 - Malinowski otrzymuje wiadomość dla Kowalskiego, 18:00 - Kowalski przychodzi do Iksińśkich, 21:00 - Malinowski przychodzi do Iksińskich. Na podstawie ww. bazy wiedzy można domniemywać, że Malinowski przekazał wiadomość Kowalskiemu. Jednakże po wprowadzeniu nowego faktu 20:00 Kowalski wrócił do domu powyższe domniemanie przestaje obowiązywać. Podsumowanie: rachunek punktów dobrze nadaje się do reprezentowania zdarzeń z zależnościami opisanymi za pomocą wielkości liczbowych trudności sprawia wyrażanie relacji typowo względnych, jak np. przed czy po. 6

7 rachunek interwałów [Allen J.F. 1983] pojęcia podstawowe interwał czasowy relacja względna między parą interwałów,typy relacji względnych między interwałami relacja symbol relacji symbol relacji ilustracja graficzna odwrotnej X before Y < > X meets Y m mi X overlaps Y o oi X during Y d di X starts Y s si X finishes Y f fi X equals Y = = REPREZENTACJA WIEDZY PRZEDMIOTOWEJ baza wiedzy o zależnościach czasowych ma postać grafu: wierzchołki grafu reprezentują interwały krawędzie są etykietowane przez zbiory relacji, jakie mogą zachodzić między interwałami podstawową operacją wykonywaną na bazie wiedzy jest wprowadzenie nowej relacji między wskazanymi interwałami; w procesie tym uaktualnia się całą bazę wiedzy poprzez propagowanie ograniczeń i usuwanie relacji o charakterze przypuszczeń sprzecznych 7

8 Algorytm wprowadzania nowej relacji do bazy wiedzy Dane: baza wiedzy B w postaci grafu, nowa relacja między parą wierzchołków R(i, j). Wynik: baza wiedzy B rozszerzona o relację R(i, j). Metoda: Constraints(R1, R2) { C = ; for_each r1 in R1 do for_each r2 in R2 do C = C T(r1, r2); return(c) } Fragment tablicy T B r2 C A r1 B o d o d s 8

9 Add( R(i, j) ) { Put((i,j), ToDo); while NotEmpty(ToDo) { Get((i,j), ToDo); N(i, j) = R(i, j); for_each k do { R(k, j) = N(k, j) Constraints(N(k, i), R(i, j)); if R(k, j) N(k, j) then Put((k, j), ToDo); } for_each k do { R(i, k) = N(i, k) Constraints(R(i, j), N(j, k)); if R(i, k) N(i, k) then Put((i, k), ToDo); } } zastosowanie interwałów referencyjnych Przykład 3 życie d d d < przedszkole m nauka m praca (życie) (życie) (życie) s d f szkoła podstawowa m szkoła średnia < studia (nauka) (nauka) (nauka) < 9

10 Przetwarzanie wiedzy zmiennej w czasie zmienność wiedzy w czasie jest zjawiskiem dotyczącym większości praktycznie wykorzystywanych systemów przetwarzających wiedzę przyjmuje się, że wprowadzenie nowej wiedzy do systemu może pociągać za sobą dwojakie skutki (1) rozszerzenie zbioru konsekwencji, jakie można wywnioskować na podstawie wcześniej zgromadzonej wiedzy (2) zawężenie tego zbioru w wypadku (2) mówi się o wnioskowaniu niemonotonicznym, tzn. A A Cn(A) Cn(A ) przykładem niemonotonicznej reguły wnioskowania jest negacja przez porażkę (ang. negation as failure) stosowana w Prologu. Przykład 4 P = {}, not(q) Cn(P), P' = { q. }, not(q) Cn(P'). Do opisu wnioskowania niemonotonicznego można wykorzystać operator unless F 1 F m unless(d 1 ) unless(d n ) W wyrażenie unless(d) jest prawdziwe o ile formuła D jest fałszywa albo jej wartość logiczna nie jest znana. 10

11 Systemy utrzymywania wiarygodności system utrzymywania wiarygodności (ang. Truth Maintenance Systems) służy do wyznaczania konsekwencji rozszerzania bazy wiedzy w pewnym systemie przetwarzającym wiedzę system utrzymywania wiarygodności oraz mechanizm wnioskujący stanowią odrębne lecz współpracujące ze sobą moduły systemu przetwarzania wiedzy posługiwanie się systemem TMS z reguły wymaga reprezentowania wiedzy w postaci sieci zależności niektóre rodzaje systemów TMS: JTMS oparty na uzasadnieniach (ang. Justificationbased TMS) ATMS oparty na założeniach (ang. Assumptionbased TMS) LTMS logiczny TMS (ang. Logic-based TMS). 11

12 System JTMS [John Doyle, 1979] POJĘCIA PODSTAWOWE sieć zależności w systemie składa się z węzłów (ang. nodes) i uzasadnień (ang. justifications) węzeł ma postać pary (F, E), gdzie F jest formułą z bazy wiedzy a E jest etykietą, E {IN, OUT} uzasadnienie ma postać pary (R, L), gdzie R jest regułą a L = (L-IN, L-OUT) jest parą list złożonych z węzłów węzeł bezpośrednio wspiera uzasadnienie, o ile jest elementem listy L-IN lub listy L-OUT tego uzasadnienia uzasadnienie bezpośrednio wspiera węzeł jeżeli formuła zawarta w węźle należy do wniosków płynących z reguły reprezentowanej przez to uzasadnienie uzasadnienie jest słuszne, jeżeli każdy element listy L-IN tego uzasadnienia ma etykietę IN a każdy element listy L-OUT ma etykietę OUT węzeł nazywany jest założeniem o ile jest bezpośrednio wspierany przez co najmniej jedno uzasadnienie słuszne, a każde ze słusznych uzasadnień wspierających ma niepustą listę L-OUT sieć zależności jest poprawnie etykietowana o ile każdy węzeł wspierany przez co najmniej jedno słuszne uzasadnienie ma etykietę IN - w przeciwnym wypadku węzeł ten ma etykietę OUT każdy węzeł oznaczający sprzeczność ma etykietę OUT. 12

13 ZADANIE SYSTEMU JTMS 2015 Adam Meissner Dla danej sieci zależności skonstruować jej poprawne etykietowanie. DZIAŁANIA WYKONYWANE PRZEZ SYSTEM JTMS dodawanie węzłowi nowego uzasadnienia dodawanie nowego węzła do sieci zależności usuwanie sprzeczności. Przykład 5 (sieć zależności) ZARYS METODY DODAWANIA WĘZŁOWI NOWEGO UZASADNIENIA 1. Jeżeli nowe uzasadnienie jest słuszne a rozpatrywany węzeł ma etykietę OUT, to wykonać krok 2, w przeciwnym wypadku zakończyć działanie. 2. Zmienić węzłowi etykietę na IN a następnie wyznaczyć konsekwencje tej zmiany w całej sieci zależności. 13

14 ZARYS METODY USUWANIA SPRZECZNOŚCI (WG [2]) Wejście: węzeł N oznaczający sprzeczność z etykietą IN Wyjście: węzeł N z etykietą OUT albo sygnał fail 1. Dla każdego słusznego uzasadnienia U węzła N wykonać kroki Skonstruować zbiór S = {A 1,, A i,, A n } zawierający wszystkie bezpośrednie założenia wspierające uzasadnienie U. Jeżeli zbiór S jest pusty to zakończyć z sygnałem fail (sprzeczności nie można usunąć na poziomie TMS-u). 3. Ze zbioru S wybrać dowolne założenie A i i dla każdego uzasadnienia słusznego węzła A i wybrać pewien element D j z listy L-OUT tego uzasadnienia, postaci D 1,, D j,, D k. Następnie, dodać węzłowi D j nowe, słuszne uzasadnienie, którego lista L-IN ma postać A 1,, A i-1, A i+1,, A n a lista L-OUT jest postaci D 1,, D j-1, D j+1,, D k. Metodę usuwania sprzeczności ilustruje poniższy rysunek; nowo dodane uzasadnienie ma kolor czerwony, etykiety wierzchołków dotyczą stanu sprzed dodania tego uzasadnienia. 14

15 System ATMS [Johan de Kleer, 1986] system ATMS nie posiada takich wad systemu JTMS jak: wyznaczanie pojedynczego rozwiązania, migotanie etykiet, nadrestrykcyjne traktowanie sprzeczności, wiedzę w systemie ATMS reprezentuje zbiór węzłów postaci (F, E, U) gdzie F jest formułą z bazy wiedzy, U jest zbiorem uzasadnień, tj. formuł (implikacji) opisujących zależność formuły F od formuł zawartych w innych węzłach, zaś E jest etykietą, tj. zbiorem kontekstów, czyli zbiorów K formuł, takich że ( K E) (K U F). ZADANIE SYSTEMU ATMS Dla każdego węzła w sieci zależności skonstruować etykietę, która jest niesprzeczna, trafna, pełna i minimalna, DZIAŁANIA WYKONYWANE PRZEZ SYSTEM ATMS dodawanie uzasadnienia węzłowi i wyznaczenie etykiety oznaczanie kontekstu K jako sprzecznego (nogood(k)) generowanie nowego węzła konstruowanie nowego uzasadnienia. Przykład 6 Dany jest zbiór następujących węzłów: (a, {{A, G}}, ), (b, {{B}, {C, D}, {A, C}}, ), (c, {{}}, ) oraz wyrażenie nogood({g, C }). Po dodaniu uzasadnienia a b c system wylicza etykietę węzła z formułą c: (c, {{A, G, B}, {A, G, C, D}, {A, G, C}}, ) (e. trafna i pełna) (c, {{A, G, B}, {A, G, C}}, ) (e. trafna, pełna i minimalna) (c, {{A, G, B}}, { a b c }) (e. trafna, pełna, minimalna i niesprzeczna) 15

Adam Meissner.

Adam Meissner. Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu

Bardziej szczegółowo

Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37

Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37 Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 15 stycznia 2011 Michał Lipnicki () Logika 15 stycznia 2011 1 / 37 Wstęp Materiały na dzisiejsze zajęcia zostały opracowane na podstawie pomocy naukowych

Bardziej szczegółowo

Sztuczna Inteligencja Projekt

Sztuczna Inteligencja Projekt Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować

Bardziej szczegółowo

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ;

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ; Algorytm LEM1 Oznaczenia i definicje: U - uniwersum, tj. zbiór obiektów; A - zbiór atrybutów warunkowych; d - atrybut decyzyjny; IND(B) = {(x, y) U U : a B a(x) = a(y)} - relacja nierozróżnialności, tj.

Bardziej szczegółowo

Inżynieria oprogramowania

Inżynieria oprogramowania Inżynieria oprogramowania Wykład 8 Inżynieria wymagań: analiza przypadków użycia a diagram czynności Patrz: Stanisław Wrycza, Bartosz Marcinkowski, Krzysztof Wyrzykowski, Język UML 2.0 w modelowaniu systemów

Bardziej szczegółowo

Systemy ekspertowe - wiedza niepewna

Systemy ekspertowe - wiedza niepewna Instytut Informatyki Uniwersytetu Śląskiego lab 8 Rozpatrzmy następujący przykład: Miażdżyca powoduje często zwężenie tętnic wieńcowych. Prowadzi to zazwyczaj do zmniejszenia przepływu krwi w tych naczyniach,

Bardziej szczegółowo

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi: 1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość

Bardziej szczegółowo

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp

Bardziej szczegółowo

Adam Meissner. SZTUCZNA INTELIGENCJA Gry dwuosobowe

Adam Meissner. SZTUCZNA INTELIGENCJA Gry dwuosobowe Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Gry dwuosobowe Literatura [1] Sterling

Bardziej szczegółowo

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do

Bardziej szczegółowo

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,

Bardziej szczegółowo

Programowanie deklaratywne

Programowanie deklaratywne Programowanie deklaratywne Artur Michalski Informatyka II rok Plan wykładu Wprowadzenie do języka Prolog Budowa składniowa i interpretacja programów prologowych Listy, operatory i operacje arytmetyczne

Bardziej szczegółowo

INTERNETOWE BAZY DANYCH materiały pomocnicze - wykład X

INTERNETOWE BAZY DANYCH materiały pomocnicze - wykład X Wrocław 2006 INTERNETOWE BAZY DANYCH materiały pomocnicze - wykład X Paweł Skrobanek C-3, pok. 323 e-mail: pawel.skrobanek@pwr.wroc.pl INTERNETOWE BAZY DANYCH PLAN NA DZIŚ zajęcia 1: 2. Procedury składowane

Bardziej szczegółowo

Metody Programowania

Metody Programowania POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie

Bardziej szczegółowo

Jak wnioskują maszyny?

Jak wnioskują maszyny? Jak wnioskują maszyny? Andrzej Szałas informatyka + 1 Plan wykładu Plan wykładu Modelowanie wnioskowania Wyszukiwanie, a wnioskowanie Klasyczny rachunek zdań Diagramy Venna Wprowadzenie do automatycznego

Bardziej szczegółowo

Sterowniki Programowalne (SP)

Sterowniki Programowalne (SP) Sterowniki Programowalne (SP) Wybrane aspekty procesu tworzenia oprogramowania dla sterownika PLC Podstawy języka funkcjonalnych schematów blokowych (FBD) Politechnika Gdańska Wydział Elektrotechniki i

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Algebra Boole a

Wstęp do Techniki Cyfrowej... Algebra Boole a Wstęp do Techniki Cyfrowej... Algebra Boole a Po co AB? Świetne narzędzie do analitycznego opisu układów logicznych. 1854r. George Boole opisuje swój system dedukcyjny. Ukoronowanie zapoczątkowanych w

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Systemy ekspertowe w zarządzaniu firmą Expert systems in enterprise management Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: Rodzaj zajęć: Wyk. Ćwicz. Lab. Sem. Proj.

Bardziej szczegółowo

Modelowanie hierarchicznych struktur w relacyjnych bazach danych

Modelowanie hierarchicznych struktur w relacyjnych bazach danych Modelowanie hierarchicznych struktur w relacyjnych bazach danych Wiktor Warmus (wiktorwarmus@gmail.com) Kamil Witecki (kamil@witecki.net.pl) 5 maja 2010 Motywacje Teoria relacyjnych baz danych Do czego

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Teoria automatów

Wstęp do Techniki Cyfrowej... Teoria automatów Wstęp do Techniki Cyfrowej... Teoria automatów Alfabety i litery Układ logiczny opisywany jest przez wektory, których wartości reprezentowane są przez ciągi kombinacji zerojedynkowych. Zwiększenie stopnia

Bardziej szczegółowo

Podstawowe własności grafów. Wykład 3. Własności grafów

Podstawowe własności grafów. Wykład 3. Własności grafów Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).

Bardziej szczegółowo

Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II

Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1

Bardziej szczegółowo

Wykład 2: Arkusz danych w programie STATISTICA

Wykład 2: Arkusz danych w programie STATISTICA Wykład 2: Arkusz danych w programie STATISTICA Nazwy przypadków Numer i nazwa zmiennej Elementy arkusza danych Cechy statystyczne Zmienne (kolumny) Jednostki statystyczne Przypadki (wiersze) Tworzenie

Bardziej szczegółowo

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Laboratorium z przedmiotu Programowanie obiektowe - zestaw 02 Cel zajęć. Celem zajęć jest zapoznanie z praktycznymi aspektami projektowania oraz implementacji klas i obiektów z wykorzystaniem dziedziczenia.

Bardziej szczegółowo

INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE

INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Temat: Podstawowe pojęcia z logiki rozmytej Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH

ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE 4 ZASTOSOWANIE METOD I NARZĘDZI LOGIKI ROZMYTEJ DO KLASYFIKACJI DANYCH I APROKSYMACJI ODWZOROWAŃ STATYCZNYCH Pracownia

Bardziej szczegółowo

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl Metoda tabel syntetycznych (MTS) MTS

Bardziej szczegółowo

Spis treści. spis treści wygenerowany automatycznie

Spis treści. spis treści wygenerowany automatycznie Spis treści Rozdział 2.Wymagania edytorskie 2 2.1. Wymagania ogólne 2 2.2. Tytuły rozdziałów i podrozdziałów 2 2.3. Rysunki, tabele i wzory 3 2.3.1. Rysunki 3 2.3.2. Tabele 4 2.3.3. Wzory 4 2.4. Odsyłacze

Bardziej szczegółowo

Jeśli X jest przestrzenią o nieskończonej liczbie elementów:

Jeśli X jest przestrzenią o nieskończonej liczbie elementów: Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów

Bardziej szczegółowo

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne

Bardziej szczegółowo

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? Semina Nr 3 Scientiarum 2004 Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność? W tym krótkim opracowaniu chciałbym przedstawić dowody obu twierdzeń Gödla wykorzystujące

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Systemy ekspertowe Expert systems Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: Rodzaj zajęć: Wyk. Ćwicz. Lab. Sem. Proj. Poziom studiów: studia I stopnia forma studiów:

Bardziej szczegółowo

1. Cel ćwiczenia. 2. Podłączenia urządzeń zewnętrznych w sterowniku VersaMax Micro

1. Cel ćwiczenia. 2. Podłączenia urządzeń zewnętrznych w sterowniku VersaMax Micro 1. Cel ćwiczenia Celem ćwiczenia jest zaprojektowanie sterowania układem pozycjonowania z wykorzystaniem sterownika VersaMax Micro oraz silnika krokowego. Do algorytmu pozycjonowania wykorzystać licznik

Bardziej szczegółowo

Logiczna reprezentacja wiedzy i metoda logiczno-algebraiczna

Logiczna reprezentacja wiedzy i metoda logiczno-algebraiczna Logiczna reprezentacja wiedzy i metoda logiczno-algebraiczna dr inż. Grzegorz ilcek & dr inż. Maciej Hojda Zakład Inteligentnych Systemów Wspomagania Decyzji, Instytut Informatyki, Politechnika Wrocławska

Bardziej szczegółowo

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy) Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013

Bardziej szczegółowo

Paradygmaty programowania

Paradygmaty programowania Paradygmaty programowania Jacek Michałowski, Piotr Latanowicz 15 kwietnia 2014 Jacek Michałowski, Piotr Latanowicz () Paradygmaty programowania 15 kwietnia 2014 1 / 12 Zadanie 1 Zadanie 1 Rachunek predykatów

Bardziej szczegółowo

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI

Bardziej szczegółowo

Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego

Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis Elementy uczenia maszynowego Literatura [1] Bolc L., Zaremba

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

Planowanie przedsięwzięć

Planowanie przedsięwzięć K.Pieńkosz Badania Operacyjne Planowanie przedsięwzięć 1 Planowanie przedsięwzięć Model przedsięwzięcia lista operacji relacje poprzedzania operacji modele operacji funkcja celu planowania K.Pieńkosz Badania

Bardziej szczegółowo

Problematyka budowy skanera 3D doświadczenia własne

Problematyka budowy skanera 3D doświadczenia własne Problematyka budowy skanera 3D doświadczenia własne dr inż. Ireneusz Wróbel ATH Bielsko-Biała, Evatronix S.A. iwrobel@ath.bielsko.pl mgr inż. Paweł Harężlak mgr inż. Michał Bogusz Evatronix S.A. Plan wykładu

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki Fizyki i Chemii Instytut Matematyki

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki Fizyki i Chemii Instytut Matematyki Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Moduł specjalistyczny Kod modułu: 03-MO2S-12-MSpe Nazwa wariantu modułu (opcjonalnie):

Bardziej szczegółowo

Systemy ekspertowe : program PCShell

Systemy ekspertowe : program PCShell Instytut Informatyki Uniwersytetu Śląskiego lab 1 Opis sytemu ekspertowego Metody wnioskowania System PcShell Projekt System ekspertowy - system ekspertowy to system komputerowy zawierający w sobie wyspecjalizowaną

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

13. DOWODZENIE IV REGUŁY WPR, ELIM, ~WPR, ~ELIM

13. DOWODZENIE IV REGUŁY WPR, ELIM, ~WPR, ~ELIM 13. DOWODZENIE IV REGUŁY WPR, ELIM, ~WPR, ~ELIM Cele Umiejętność stosowania reguł pierwotnych Wpr, Elim, ~Wpr, ~Elim. Umiejętność przeprowadzania prostych dowodów z użyciem tych reguł. 13.1. Reguła Wpr

Bardziej szczegółowo

Zarządzanie projektami

Zarządzanie projektami Dr Adam Kucharski Spis treści Podstawowe pojęcia Metoda CPM 3 3 Przykład analizy metodą CPM 5 Podstawowe pojęcia Przedsięwzięcia złożone z wielu czynności spotykane są na każdym kroku. Jako przykład może

Bardziej szczegółowo

Currenda EPO Instrukcja Konfiguracji. Wersja dokumentu: 1.3

Currenda EPO Instrukcja Konfiguracji. Wersja dokumentu: 1.3 Currenda EPO Instrukcja Konfiguracji Wersja dokumentu: 1.3 Currenda EPO Instrukcja Konfiguracji - wersja dokumentu 1.3-19.08.2014 Spis treści 1 Wstęp... 4 1.1 Cel dokumentu... 4 1.2 Powiązane dokumenty...

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

Monitoring procesów z wykorzystaniem systemu ADONIS. Krok po kroku

Monitoring procesów z wykorzystaniem systemu ADONIS. Krok po kroku z wykorzystaniem systemu ADONIS Krok po kroku BOC Information Technologies Consulting Sp. z o.o. e-mail: boc@boc-pl.com Tel.: (+48 22) 628 00 15, 696 69 26 Fax: (+48 22) 621 66 88 BOC Management Office

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 14. Wprowadzenie do logiki intuicjonistycznej 1 Przedstawione na poprzednich wykładach logiki modalne możemy uznać

Bardziej szczegółowo

ECDL/ICDL Zaawansowane arkusze kalkulacyjne Moduł A2 Sylabus, wersja 2.0

ECDL/ICDL Zaawansowane arkusze kalkulacyjne Moduł A2 Sylabus, wersja 2.0 ECDL/ICDL Zaawansowane arkusze kalkulacyjne Moduł A2 Sylabus, wersja 2.0 Przeznaczenie sylabusa Dokument ten zawiera szczegółowy sylabus dla modułu ECDL/ICDL Zaawansowane arkusze kalkulacyjne. Sylabus

Bardziej szczegółowo

Kolumna Zeszyt Komórka Wiersz Tabela arkusza Zakładki arkuszy

Kolumna Zeszyt Komórka Wiersz Tabela arkusza Zakładki arkuszy 1 Podstawowym przeznaczeniem arkusza kalkulacyjnego jest najczęściej opracowanie danych liczbowych i prezentowanie ich formie graficznej. Ale formuła arkusza kalkulacyjnego jest na tyle elastyczna, że

Bardziej szczegółowo

Spis treści. Konwencje zastosowane w książce...5. Dodawanie stylów do dokumentów HTML oraz XHTML...6. Struktura reguł...9. Pierwszeństwo stylów...

Spis treści. Konwencje zastosowane w książce...5. Dodawanie stylów do dokumentów HTML oraz XHTML...6. Struktura reguł...9. Pierwszeństwo stylów... Spis treści Konwencje zastosowane w książce...5 Dodawanie stylów do dokumentów HTML oraz XHTML...6 Struktura reguł...9 Pierwszeństwo stylów... 10 Klasyfikacja elementów... 13 Sposoby wyświetlania elementów...

Bardziej szczegółowo

Miary jakości w Call Center

Miary jakości w Call Center OFERTA SZKOLENIOWA Miary jakości w Call Center TELEAKADEMIA to profesjonalne centrum szkoleniowe mające swoją siedzibę w Pomorskim Parku Naukowo-Technologicznym w Gdyni. TELEAKADEMIA realizuje szkolenia

Bardziej szczegółowo

Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych.

Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych. Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych. 1. Rodzaje pamięci używanej w programach Pamięć komputera, dostępna dla programu,

Bardziej szczegółowo

POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH

POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH Barbara Popowska bpopowsk@math.put.poznan.pl Politechnika Poznańska http://www.put.poznan.pl/ PROGRAM REFERATU 1. WPROWADZENIE 2. GRAF JAKO MODEL

Bardziej szczegółowo

dr inż. Ryszard Rębowski 1 WPROWADZENIE

dr inż. Ryszard Rębowski 1 WPROWADZENIE dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie

Bardziej szczegółowo

Instrukcja. Laboratorium Metod i Systemów Sterowania Produkcją.

Instrukcja. Laboratorium Metod i Systemów Sterowania Produkcją. Instrukcja do Laboratorium Metod i Systemów Sterowania Produkcją. 2010 1 Cel laboratorium Celem laboratorium jest poznanie metod umożliwiających rozdział zadań na linii produkcyjnej oraz sposobu balansowania

Bardziej szczegółowo

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów

Bardziej szczegółowo

Wykład 5. Metoda tabel analitycznych dla Klasycznego Rachunku Zdań

Wykład 5. Metoda tabel analitycznych dla Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 5. Metoda tabel analitycznych dla Klasycznego Rachunku Zdań 1 Wprowadzenie Na tym wykładzie przyjmuję terminologię i

Bardziej szczegółowo

Stan/zdarzenie Nexo. Zmienne wirtualne. Zdarzenia wirtualne

Stan/zdarzenie Nexo. Zmienne wirtualne. Zdarzenia wirtualne WARUNKI WARUNKI I I ZDARZENIA ZDARZENIA Określają czy pewna zależność logiczna związana ze stanem systemu jest w danej chwili spełniona lub czy zaszło w systemie określone zdarzenie. STAN SYSTEMU: stan

Bardziej szczegółowo

Praktyczne aspekty statycznej estymacji stanu pracy elektroenergetycznych sieci dystrybucyjnych w warunkach krajowych

Praktyczne aspekty statycznej estymacji stanu pracy elektroenergetycznych sieci dystrybucyjnych w warunkach krajowych ZARZĄDZANIE ENERGIĄ I TELEINFORMATYKA, ZET 03 Praktyczne aspekty statycznej estymacji stanu pracy elektroenergetycznych sieci dystrybucyjnych w warunkach krajowych Jacek Wasilewski Politechnika Warszawska

Bardziej szczegółowo

SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ. Ewa Madalińska. na podstawie prac:

SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ. Ewa Madalińska. na podstawie prac: SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ Ewa Madalińska na podstawie prac: [1] Lukaszewicz,W. (1988) Considerations on Default Logic: An Alternative Approach. Computational Intelligence, 44[1],

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Metody wnioskowania. Wnioskowanie w przód (ang. forward chaining) Wnioskowanie w tył (ang. Backward chaining) Od przesłanki do konkluzji Np..

Metody wnioskowania. Wnioskowanie w przód (ang. forward chaining) Wnioskowanie w tył (ang. Backward chaining) Od przesłanki do konkluzji Np.. Systemy regułowe Metody wnioskowania Wnioskowanie w przód (ang. forward chaining) Od przesłanki do konkluzji Np.. CLIPS Wnioskowanie w tył (ang. Backward chaining) Czyli od konkluzji do przesłanki Np..

Bardziej szczegółowo

Cele. Definiowanie wyzwalaczy

Cele. Definiowanie wyzwalaczy WYZWALACZE Definiowanie wyzwalaczy Cele Wyjaśnić cel istnienia wyzwalaczy Przedyskutować zalety wyzwalaczy Wymienić i opisać cztery typy wyzwalaczy wspieranych przez Adaptive Server Anywhere Opisać dwa

Bardziej szczegółowo

PODSTAWY INFORMATYKI 1 PRACOWNIA NR 6

PODSTAWY INFORMATYKI 1 PRACOWNIA NR 6 PODSTAWY INFORMATYKI 1 PRACOWNIA NR 6 TEMAT: Programowanie w języku C/C++: instrukcje iteracyjne for, while, do while Ogólna postać instrukcji for for (wyr1; wyr2; wyr3) Instrukcja for twory pętlę działającą

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki Fizyki i Chemii, Instytut Matematyki

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki Fizyki i Chemii, Instytut Matematyki Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Moduł specjalistyczny Kod modułu: 03-MO2N-12-MSpe Nazwa wariantu modułu (opcjonalnie):

Bardziej szczegółowo

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład I: Kodowanie liczb w systemach binarnych 1 Część 1 Dlaczego system binarny? 2 I. Dlaczego system binarny? Pojęcie bitu Bit jednostka informacji

Bardziej szczegółowo

PRZYKŁADOWY TEST EGZAMINACYJNY

PRZYKŁADOWY TEST EGZAMINACYJNY European Computer Competence Certificate PRZYKŁADOWY TEST EGZAMINACYJNY Europejskiego Certyfikatu Kompetencji Informatycznych ECCC Moduł: IT M3 Arkusze kalkulacyjne Poziom: B Średniozaawansowany FUNDACJA

Bardziej szczegółowo

Bazy danych. Plan wykładu. Zależności funkcyjne. Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL.

Bazy danych. Plan wykładu. Zależności funkcyjne. Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL. Plan wykładu Bazy danych Wykład 2: Relacyjny model danych - zależności funkcyjne. Podstawy SQL. Deficja zależności funkcyjnych Klucze relacji Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów

Bardziej szczegółowo

*Grafomania z. Neo4j. Praktyczne wprowadzenie do grafowej bazy danych.

*Grafomania z. Neo4j. Praktyczne wprowadzenie do grafowej bazy danych. *Grafomania z Neo4j Praktyczne wprowadzenie do grafowej bazy danych. Jak zamodelować relacyjną bazę danych reprezentującą następujący fragment rzeczywistości: Serwis WWW opisuje pracowników różnych firm

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska BUDOWA DRZEW DECYZYJNYCH Drzewa decyzyjne są metodą indukcyjnego

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo

Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych

Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych Zapoznaj z poniŝszym tekstem reprezentującym wiedzę logiczną o wartościach logicznych będących interpretacjami formuł złoŝonych

Bardziej szczegółowo

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem

Bardziej szczegółowo

Dr hab. inż. Jan Duda. Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji

Dr hab. inż. Jan Duda. Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji Automatyzacja i Robotyzacja Procesów Produkcyjnych Dr hab. inż. Jan Duda Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji Podstawowe pojęcia Automatyka Nauka o metodach i układach sterowania

Bardziej szczegółowo

Spis treści. 1 Moduł RFID (APA) 3

Spis treści. 1 Moduł RFID (APA) 3 Spis treści 1 Moduł RFID (APA) 3 1.1 Konfigurowanie Modułu RFID..................... 3 1.1.1 Lista elementów Modułu RFID................. 3 1.1.2 Konfiguracja Modułu RFID (APA)............... 4 1.1.2.1

Bardziej szczegółowo

16MB - 2GB 2MB - 128MB

16MB - 2GB 2MB - 128MB FAT Wprowadzenie Historia FAT jest jednym z najstarszych spośród obecnie jeszcze używanych systemów plików. Pierwsza wersja (FAT12) powstała w 1980 roku. Wraz z wzrostem rozmiaru dysków i nowymi wymaganiami

Bardziej szczegółowo

ARKUSZ KALKULACYJNY MICROSOFT EXCEL cz.1 Formuły, funkcje, typy adresowania komórek, proste obliczenia.

ARKUSZ KALKULACYJNY MICROSOFT EXCEL cz.1 Formuły, funkcje, typy adresowania komórek, proste obliczenia. Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni z przedmiotu Podstawy Informatyki Kod przedmiotu: ENS1C 100 003 oraz ENZ1C 100 003 Ćwiczenie pt. ARKUSZ KALKULACYJNY

Bardziej szczegółowo

Opis podstawowych funkcji PC- SHELLa

Opis podstawowych funkcji PC- SHELLa Opis podstawowych funkcji PC- SHELLa addfact - instrukcja addfact umożliwia utworzenie i dodanie faktu do bazy wiedzy - w sposób dynamiczny - podczas wykonywania programu z bloku control. neditbox - Instrukcja

Bardziej szczegółowo

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa.

Semantyka rachunku predykatów pierwszego rzędu. Dziedzina interpretacji. Stałe, zmienne, funkcje. Logika obliczeniowa. Logika obliczeniowa Instytut Informatyki 1 Interpretacja i wartościowanie Dziedzina interpretacji Interpretacja Wartościowanie 2 Wartość formuły Wartość termu Wartość logiczna formuły Własności 3 Logiczna

Bardziej szczegółowo

PageRank i HITS. Mikołajczyk Grzegorz

PageRank i HITS. Mikołajczyk Grzegorz PageRank i HITS Mikołajczyk Grzegorz PageRank Metoda nadawania indeksowanym stronom internetowym określonej wartości liczbowej, oznaczającej jej jakość. Algorytm PageRank jest wykorzystywany przez popularną

Bardziej szczegółowo

Logika funkcji. Modelowanie SI - GHJ 1

Logika funkcji. Modelowanie SI - GHJ 1 Logika funkcji precyzyjne i niedwuznaczne definiowanie szczegółów funkcji stosowana w tych przypadkach, w których funkcja jest złożona lub wymaga arbitralnego algorytmu Celem - zrozumienie przez projektanta

Bardziej szczegółowo

Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym

Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym POLITECHNIKA WARSZAWSKA Instytut Technik Wytwarzania Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym Marcin Perzyk Dlaczego eksploracja danych?

Bardziej szczegółowo

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz?

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? DROGI i CYKLE EULERA w grafach Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? Czy można narysować podaną figurę nie odrywając ołówka od papieru

Bardziej szczegółowo

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325 PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj

Bardziej szczegółowo

1 Podstawy c++ w pigułce.

1 Podstawy c++ w pigułce. 1 Podstawy c++ w pigułce. 1.1 Struktura dokumentu. Kod programu c++ jest zwykłym tekstem napisanym w dowolnym edytorze. Plikowi takiemu nadaje się zwykle rozszerzenie.cpp i kompiluje za pomocą kompilatora,

Bardziej szczegółowo

Rysunek 1: Przykłady graficznej prezentacji klas.

Rysunek 1: Przykłady graficznej prezentacji klas. 4 DIAGRAMY KLAS. 4 Diagramy klas. 4.1 Wprowadzenie. Diagram klas - w ujednoliconym języku modelowania jest to statyczny diagram strukturalny, przedstawiający strukturę systemu w modelach obiektowych przez

Bardziej szczegółowo

Detekcja zakleszczenia (1)

Detekcja zakleszczenia (1) Detekcja zakleszczenia (1) Wykład prowadzą: Jerzy Brzeziński Jacek Kobusiński Plan wykładu Procesy aktywne i pasywne Definicja zakleszczenia Problem detekcji wystąpienia zakleszczenia Detekcja zakleszczenia

Bardziej szczegółowo

Struktury danych: stos, kolejka, lista, drzewo

Struktury danych: stos, kolejka, lista, drzewo Struktury danych: stos, kolejka, lista, drzewo Wykład: dane w strukturze, funkcje i rodzaje struktur, LIFO, last in first out, kolejka FIFO, first in first out, push, pop, size, empty, głowa, ogon, implementacja

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

Uruchomienie nowego kontekstu aplikacji

Uruchomienie nowego kontekstu aplikacji Uruchomienie nowego kontekstu aplikacji Niniejsza instrukcja (przygotowana dla systemów Debian) dotyczy uruchomienia nowej aplikacji w sytuacji, gdy mamy już jedną działającą. Działanie takie trzeba wykonać

Bardziej szczegółowo

Zmienność. Co z niej wynika?

Zmienność. Co z niej wynika? Zmienność. Co z niej wynika? Dla inwestora bardzo ważnym aspektem systemu inwestycyjnego jest moment wejścia na rynek (moment dokonania transakcji) oraz moment wyjścia z rynku (moment zamknięcia pozycji).

Bardziej szczegółowo

TEMAT: SPOSOBY ADRESOWANIA W

TEMAT: SPOSOBY ADRESOWANIA W CENTRUM EDUKACJI AKADEMIA SUKCESU Praca Semestralna TEMAT: SPOSOBY ADRESOWANIA W ARKUSZU KALKULACYJNYM EXCEL. Kierunek: Technik Informatyk Semestr: II Wykładowca: Jan Nosal Słuchacz: Łukasz Stocki CO TO

Bardziej szczegółowo

epuap Zakładanie konta organizacji

epuap Zakładanie konta organizacji epuap Zakładanie konta organizacji Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka Jak założyć konto? Proces zakładania

Bardziej szczegółowo