Adam Meissner SZTUCZNA INTELIGENCJA. Architektury systemów eksperckich
|
|
- Łukasz Sobczak
- 7 lat temu
- Przeglądów:
Transkrypt
1 Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl SZTUCZNA INTELIGENCJA Architektury systemów eksperckich Literatura [1] Cichosz P., Systemy uczące się, WNT, Warszawa, [2] Flasiński M., Wstęp do sztucznej inteligencji, PWN, [3] Giarratano J.C., Riley G.D., Expert Systems: Principles and Programming, Fourth Edition, Course Technology, [4] Hopgood A.A., Intelligent Systems for Engineers and Scientists, Third Edition, CRC Press, [5] Lebowitz J., The Handbook of Applied Expert Systems, CRC Press, [6] Puppe F., Systematic Introduction to Expert Systems, Springer-Verlag, [7] Russell S.J., Norvig P., Artificial Intelligence: A Modern Approach, Prentice Hall, New Jersey, [8] Schreiber G. et al., Knowledge Engineering and Management: The CommonKADS Methodology, The MIT Press,
2 1. Wprowadzenie Adam Meissner Plan wykładu 2. Metody pozyskiwania (akwizycji) wiedzy od ekspertów. 3. Metody reprezentowania i przetwarzania wiedzy. 4. Zagadnienia komunikacji z użytkownikiem i udzielania objaśnień. 5. Konstruowanie systemów eksperckich. 6. Podsumowanie. Wprowadzenie (1) Znaczenie terminu system ekspercki System ekspercki to program komputerowy wyposażony w wiedzę i umiejętności wnioskowania właściwe dla specjalistów z pewnej dziedziny [6] Typowa architektura systemu eksperckiego (wg. [6]) użytkownik ekspert przypadki specyficzne, dotyczące analizowanego problemu interfejs z użytkownikiem moduł udzielania objaśnień mechanizm wnioskujący moduł akwizycji wiedzy wiedza dziedzinowa eksperta wyniki pośrednie oraz rozwiązanie problemu 2
3 Wprowadzenie (2) Rys historyczny lata 50-te: rozwój teorii gier, zdefiniowanie podstawowych strategii prowadzenia gier dwuosobowych, badania nad algorytmami przeszukiwania heurystycznego lata 60-te: skonstruowanie pierwszych systemów rozwiązujących proste problemy, np. GPS (Newell A, Simon H.) oraz SHRDLU (Winograd T.), badania nad automatycznym wnioskowaniem zdefiniowanie reguły rezolucji (Robinson J.R.) lata 70-te: ukształtowanie się koncepcji systemu eksperckiego, powstanie pierwszych systemów eksperckich, takich jak: MYCIN (Feigenbaum E., 1976) diagnozowanie bakteryjnych zakażeń krwi, regułowa reprezentacja wiedzy, wnioskowanie na podstawie współczynników pewności CADUCEUS (Uniw. Pittsburgh, ok. 1985) diagnozowanie chorób wewnętrznych, zaimplementowany w języku INTERLISP, rozpoznaje ok tj. 75% wszystkich znanych jednostek chorobowych, problem współwystępowania chorób PUFF (1979) system diagnozowania chorób płuc, zaimplementowany z wykorzystaniem powłoki EMY- CIN, duża trafność postawionych diagnoz (ok. 85%) MACSYMA (MIT, początek lat 70-tych) wykonywanie obliczeń symbolicznych, zaimplementowany w języku LISP, popularny wśród matematyków i inżynierów 3
4 Wprowadzenie (3) Rys historyczny (cd.) DENDRAL (Feigenbaum E., Buchanan B., Lederberg J.) określanie struktury związku chemicznego na podstawie analizy spektralnej, zaimplementowany w INTERLISPie, generowanie i testowanie hipotez PROSPECTOR (SRI Int., przełom lat 70/80) interpretowanie map geologicznych, odkrycie bogatych złóż rudy molibdenu w stanie Washington (wartych ok. 1 mld USD) HERSAY I i II (Uniw. Carnegie-Mellon) rozpozna- -wanie mowy, pionierskie rozwiązania z zakresu architektur tablicowych. Kryteria klasyfikowania systemów eksperckich dziedzina zastosowań (np. medycyna, inżynieria, matematyka, chemia, fizyka, geologia, meteorologia, rolnictwo, prawo, zarządzanie, doradztwo finansowe, wojskowość, transport, kosmonautyka, sterowanie produkcją) przeznaczenie: s. kontrolne sterowanie złożonymi procesami (np. produkcją) s. diagnostyczne rozpoznawanie i klasyfikowanie przypadków, systemy te są szeroko stosowane w technice, medycynie, analizie chemicznej i wielu innych dziedzinach 4
5 Wprowadzenie (4) Kryteria klasyfikowania systemów eksperckich (cd.) testujące wykrywanie wad w badanych wyrobach, ich rozszerzeniem są systemy naprawcze, proponujące metody usuwania usterek projektujące (np. CAD, CAM) wspomaganie procesów projektowania, stosowane np. w elektronice, mechanice, inżynierii budowlanej, itp. edukacyjne (ang. Intelligent Computer Aided Teaching) wspomaganie nauczania interpretujące interpretowanie danych, np. system PROSPECTOR planistyczne wspomaganie konstruowania planów działań, systemy te są wykorzystywane m. in. przez strategów wojskowych prognostyczne przewidywanie zachowań układów dynamicznych na podstawie stanów wcześniejszych, systemy te wykorzystuje się np. do prognozowania pogody. sposób reprezentowania wiedzy i metody jej przetwarzania logika pierwszego rzędu i jej podzbiory (np. rachunek klauzul Horna, logiki deskrypcyjne) reguły JEŻELI-TO, wnioskowanie progresywne (ang. forward chaining), wnioskowanie regresywne (ang. backward chaining) ramy i obiekty logiki nieklasyczne np. modalne, temporalne (wnioskowanie niemonotoniczne, utrzymywania wiarygodności). 5
6 Pozyskiwanie wiedzy od ekspertów (1) metody pozyskiwania (akwizycji) wiedzy rola inżyniera wiedzy metody aktywne przeprowadzanie rozmów z ekspertem ewentualnie wspomagane użyciem ankiet, kwestionariuszy, diagramów, itp. metody pasywne obserwowanie pracy eksperta i wyników tej pracy, np. analiza raportów sporządzanych przez eksperta porównywanie działań różnych ekspertów automatyzacja pozyskiwania wiedzy niektóre elementy procesu pozyskiwania wiedzy, mające charakter dobrze zdefiniowanych procedur, mogą być realizowane przez środowiska narzędziowe środowiska do pasywnej akwizycji wiedzy wykorzystują np. techniki analizy NLP, algorytmy uczenia maszynowego i inne korzyści z automatyzacji pozyskiwania wiedzy polegają m.in. na zwiększeniu efektywności tego procesu (przez dyscyplinowanie eksperta) oraz na unikaniu przekłamań wynikających z udziału inżyniera wiedzy wiedza pozyskana w sposób automatyczny może jednak pomijać specyficzne elementy rozpatrywanej rzeczywistości, które mogłyby być uwzględnione podczas bezpośredniej współpracy eksperta z inżynierem wiedzy 6
7 Pozyskiwanie wiedzy od ekspertów (2) Drzewa decyzyjne założenia: dany jest zbiór D decyzji eksperta, klasyfikujących podany zbiór przykładów S na podstawie wartości wyróżnionych cech zadanie: skonstruować drzewo, którego wierzchołki wiszące reprezentują elementy zbioru D, a wierzchołki wewnętrzne odpowiadają cechom; każda krawędź wychodząca z wierzchołka wewnętrznego reprezentuje jedną z możliwych wartości cechy przypisanej temu wierzchołkowi ww. zadanie jest przykładem problemu indukowania pojęć, który wchodzi w zakres uczenia maszynowego [1] do najpopularniejszych metod konstruowania drzew decyzyjnych należy algorytm ID3 Rossa Quinlanna (1979) oraz jego warianty i udoskonalenia (C4.5, 1993). Algorytm ID3 Dane: zbiór przykładów S. Wynik: korzeń w drzewa decyzyjnego dla S. Metoda: 1. Utworzyć wierzchołek w. 2. Jeżeli zbiór S zawiera wyłącznie przykłady pozytywne, to w jest liściem o etykiecie 1; stop. 3. Jeżeli zbiór S zawiera wyłącznie przykłady negatywne, to w jest liściem o etykiecie 0; stop. 4. Wśród wszystkich cech występujących w zbiorze S znaleźć cechę c o maksymalnym zysku informacyjnym. 5. Podzielić zbiór S na podzbiory S 1,..., S n w których cecha c ma odpowiednio tę samą wartość; n jest liczbą wartości cechy c. 6. Nadać wierzchołkowi w etykietę c. 7. Dla każdego zbioru S i (i = 1,..., n) skonstruować drzewo decyzyjne ID3(S i ) i połączyć jego korzeń z wierzchołkiem w krawędzią o etykiecie reprezentującej wartość cechy c w zbiorze S i. 7
8 Pozyskiwanie wiedzy od ekspertów (3) Drzewa decyzyjne (cd.) przykład 1 (wg. [1]) Dany jest zbiór przykładowych decyzji eksperta w kwestii, czy przy danym stanie pogody można (d(x) = 1) albo nie można (d(x) = 0) grać w tenisa. x aura temperatura wilgotność wiatr d(x) 1 słoneczna wysoka duża słaby 0 2 słoneczna wysoka duża silny 0 3 pochmurna wysoka duża słaby 1 4 deszczowa umiarkowana duża słaby 1 5 deszczowa niska normalna słaby 1 6 deszczowa niska normalna silny 0 7 pochmurna niska normalna silny 1 8 słoneczna umiarkowana duża słaby 0 9 słoneczna niska normalna słaby 1 10 deszczowa umiarkowana normalna słaby 1 11 słoneczna umiarkowana normalna silny 1 12 pochmurna umiarkowana duża silny 1 13 pochmurna wysoka normalna słaby 1 14 deszczowa umiarkowana duża silny 0 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} aura słoneczna pochmurna deszczowa {1, 2, 8, 9, 11} {3, 7, 12, 13} {4, 5, 6, 10, 14} wilgotność 1 wiatr normalna duża słaby silny {9, 11} {1, 2, 8} {4, 5, 10} {6, 14}
9 Regułowa reprezentacja wiedzy (1) Wprowadzenie wiedza dziedzinowa na temat rozpatrywanej rzeczywistości (tzw. świata) jest skończonym zbiorem reguł, każda reguła ma ogólną postać JEŻELI Warunek TO Akcja wyrażenie Warunek jest zazwyczaj koniunkcją literałów, np. pacjent_skarży_się_na(ból_gardła) Temperatura > 37,5, wyrażenie Akcja jest skończonym, niepustym ciągiem, w którym wyróżnia się wnioski (ang. implications), czyli implikowane formuły np. stwierdzona_dolegliwość(angina), instrukcje, czyli działania zmieniające stan świata, np. zaaplikować_pacejntowi(aspiryna) Przykład 2 (wg. [1]) Drzewo decyzyjne z przykładu 1 można reprezentować w postaci następującego zbioru reguł. JEŻELI aura(słoneczna) wilgotność(duża) TO 0 JEŻELI aura(słoneczna) wilgotność(normalna) TO 1 JEŻELI aura(pochmurna) TO 1 JEŻELI aura(deszczowa) wiatr(silny) TO 0 JEŻELI aura(deszczowa) wiatr(słaby) TO 1 9
10 Regułowa reprezentacja wiedzy (2) Przetwarzanie wiedzy regułowej istnieją dwie, podstawowe metody przetwarzania wiedzy regułowej wnioskowanie progresywne (ang. forward chaining), wnioskowanie regresywne (ang. backward chaining), jednym z elementarnych działań, wykonywanych w ramach obu ww. metod jest porównywanie wyrażeń; wykorzystuje się do tego celu algorytm unifikacji, dopasowania wyrażenia do wzorca (ang. pattern matching) Wnioskowanie progresywne Algorytm FC Dane: baza wiedzy KB obejmująca zbiór reguł R i zbiór faktów F oraz hipoteza H. Wynik: sygnał tak, jeżeli KB H albo sygnał nie w przeciwnym wypadku; nowy zbiór F. Metoda: 1. Jeżeli H F to stop(tak). 2. Skonstruować zbiór C złożony ze wszystkich reguł ze zbioru R, których warunki są spełnione, tj. dla dowolnej reguły postaci L 1... L n A ze zbioru C, L i F gdzie i = 1, n. 3. Jeżeli C = to stop(nie), w przeciwnym wypadku uszeregować zbiór C zgodnie z przyjętymi kryteriami. 4. Wykonać akcję A pierwszej reguły ze zbioru C; jeżeli akcja A jest wnioskiem to dołączyć A do zbioru F. 5. Przejść do kroku 1. 10
11 Regułowa reprezentacja wiedzy (3) Wnioskowanie progresywne (cd.) Popularne strategie szeregowania zbioru C: przyjąć naturalny porządek w zbiorze uszeregować zbiór począwszy od reguł, których warunki odnoszą się do przypadków wprowadzonych do bazy wiedzy jako ostatnie (tj. najpóźniej) uszeregować zbiór począwszy od reguł o najbardziej złożonych warunkach uszeregować zbiór z wykorzystaniem wiedzy dodatkowej, np. przypisującej regułom priorytety. Udoskonalenia algorytmu ogólnego przyrostowe konstruowanie zbioru C grafowa reprezentacja zbioru reguł klasyfikowanie reguł ze względu na podobieństwo warunków indeksowanie reguł ze względu na zmienne występujące w warunkach. Powyższe udoskonalenia zrealizowano w algorytmie RETE (C.L. Forgy, 1974) wykorzystywanym w wielu popularnych systemach eksperckich (np. CLIPS) i w środowiskach do ich konstruowania (np. OPS5). 11
12 Regułowa reprezentacja wiedzy (4) Wnioskowanie regresywne Algorytm BC Dane: baza wiedzy KB obejmująca zbiór reguł R i zbiór faktów F oraz hipoteza H. Wynik: sygnał tak, jeżeli KB H albo sygnał nie w przeciwnym wypadku. Metoda: 1. Jeżeli H F to stop(tak). 2. Skonstruować zbiór C złożony ze wszystkich reguł ze zbioru R postaci W A, takich że A = H (W jest dowolną koniunkcją literałów). 3. Jeżeli C = to stop(nie), w przeciwnym wypadku ze zbioru C wybrać dowolną regułę L 1... L n A. 4. Wykonać algorytm BC dla każdego L i, gdzie i = 1, n. Jeżeli każdą z uzyskanych odpowiedzi jest tak to stop(tak), w przeciwnym wypadku usunąć wybraną regułę ze zbioru C. 5. Przejść do kroku 3. 12
13 Reprezentowanie wiedzy za pomocą ram koncepcja reprezentowania wiedzy za pomocą ram (ang. frames) pochodzi od Marvina Minskyego (1975) baza wiedzy jest zbiorem ram definicja ramy obejmuje atrybuty, ich wartości domyślne oraz metody, wśród których można wyróżnić tzw. demony w zbiorze ram określa się relację dziedziczenia atrybuty obiektu mają wartości określone ("konkretne") lub domyślne do reprezentowania klas, jak również obiektów, służą ramy elementami ramy są klatki (ang. slots), które wypełnia się fasetami (ang. facets) faseta jest parą nazwa:wartość; za pomocą faset określa się m. in. wartości przechowywane w klatce i ich typy. Przykład 3 (wg. [6]) Reprezentacja klasy i obiektów za pomocą ram w języku FRL Frame: expert system Slots: AKO: $value: program Programming environment: $require: (LISP, PROLOG, OPS5, C) $default: LISP $if-needed: "look up references". Frame: MYCIN Slots: AKO: $value: expert system. 13
14 Komunikacja z użytkownikiem ogólne metody komunikowania się systemu z użytkownikiem język stylizowany na naturalny (wykorzystywany w tzw. systemach dialogowych), język symboli graficznych (piktogramy, ikony), metody udzielania objaśnień objaśnianie przez retrospekcję (ang. retrospective explanation), objaśnianie kontrfaktyczne (ang. counterfactual explanation), udzielanie odpowiedzi intensjonalnych (ang. intensional answers). Konstruowanie systemów eksperckich (1) języki programowania języki prototypowania: np. PROLOG, LISP języki docelowe: np. CLIPS, JESS, DROOLS, C++, JAVA wykorzystanie gotowych powłok EMYCIN (powłoka systemu MYCIN) KAS (powłoka systemu PROSPECTOR) AGE (powłoka systemu HERSAY) środowiska narzędziowe RULEMASTER, system opracowany przez Radian Corporation, przeznaczony do wspomagania tworzenia systemów eksperckich z regułową reprezentacją wiedzy, zawiera m.in. interpreter języka RADIAL służącego do wyrażania reguł (wnioskowanie progresywne i regresywne) oraz kompilator RADIAL C, moduł indukowania reguł na podstawie przykładów moduł udzielania objaśnień w języku stylizowanym na angielski. 14
15 Konstruowanie systemów eksperckich (2) FLEX, produkt firmy LPA, zaprogramowany w języku Prolog, reprezentowanie wiedzy w postaci ram oraz reguł, możliwość wnioskowania progresywnego i regresywnego, możliwość reprezentowania wiedzy w języku KSL stylizowanym na j. angielski; popularne środowisko edukacyjne, wytworzono w nim system AllerGenius Personal Consultant Plus, produkt firmy Texas Instruments, zaprogramowany w języku IQLISP, reprezentowanie wiedzy w postaci reguł lub ram, możliwość wnioskowania progresywnego i regresywnego, przetwarzanie informacji niepewnej, edytor bazy wiedzy, moduł udzielania objaśnień (język stylizowany na angielski) OPS5, system opracowany i zaprogramowany na Uniwersytecie Carnegie Mellon (początkowo) w języku LISP, reprezentowanie wiedzy w postaci reguł, wnioskowanie progresywne, edytor bazy wiedzy wyposażony w mechanizm usuwania błędów KES, produkt firmy Software Architecture & Engineering Inc., zaprogramowany w języki FRANZ LISP, konstruowanie systemu na podstawie wymagań sformułowanych w języku stylizowanym na naturalny, reprezentowanie wiedzy za pomocą reguł i ram, wnioskowanie regresywne, przetwarzanie informacji niepewnej KEE, system opracowany przez firmę IntelliCorp, zaprogramowany w języku INTERLISP, przeznaczony do wspomagania tworzenia baz wiedzy z wykorzystaniem ram SRL, opracowany przez Instytut Robotyki Uniwersytetu Carnegie Mellon, zaprogramowany w języku FRANZ LISP, przeznaczony do wspomagania tworzenia baz wiedzy z wykorzystaniem ram, umożliwia posługiwanie się metawiedzą, 15
16 Podsumowanie weryfikowanie i testowanie systemów eksperckich kryteria formalne: niesprzeczność i pełność zgromadzonej wiedzy kryteria nieformalne: np. konsekwencja, użyteczność zagadnienia istotne przy budowaniu systemów eksperckich skuteczne pozyskiwanie wiedzy od ekspertów konieczność udzielania zrozumiałych i wyczerpujących odpowiedzi użytkownikowi trudności z realizacją wnioskowania na podstawie wiedzy zdroworozsądkowej (ang. commonsense knowledge) kierunki rozwoju systemów eksperckich nowe rozwiązania w zakresie komunikowanie się systemu z użytkownikiem (system przyjazny użytkownikowi ) poszukiwanie metod przetwarzania dużych baz wiedzy badania nad metodami reprezentowania wiedzy niepełnej, niepewnej i zmieniającej się w czasie. 16
17 Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl SZTUCZNA INTELIGENCJA Reprezentowanie i przetwarzanie wiedzy o czasie literatura [1] Allen J.F., Maintaining Knowledge about Temporal Intervals; Comm. ACM 26 (1983) [2] Kamiński J., Przegląd algorytmów utrzymywania wiarygodności, raport IPI PAN nr 639, sierpień 1988, Warszawa. [3] McDermott D.V., A Temporal Logic for Reasoning about processes and plans, Cognitive Sci. 6 (1982) [4] Puppe F., Systematic Introduction to Expert Systems, Springer-Verlag, 1993.
18 Plan wykładu 2017 Adam Meissner 1. Zagadnienia dotyczące czasu w systemach z wiedzą zależno ci czasowe miedzy zdarzeniami zmienno ć wiedzy w czasie 2. Reprezentowanie zależno ci czasowych mi dzy zdarzeniami [4] reprezentacja bezwzgl dna reprezentacje wzgl dne 3. Przetwarzanie wiedzy zmiennej w czasie wnioskowanie niemonotoniczne systemy utrzymywania wiarygodno ci (ang. Truth Maintenance Systems). 2
19 Zale no ci czasowe mi dzy zdarzeniami reprezentacja bezwzgl dna (czas jako o liczbowa) zalety: prostota technik reprezentowania i przetwarzania wiedzy wady: wymóg precyzyjnego okre lania czasu zachodzenia zdarzeń reprezentacje wzgl dneś rachunek punktów [McDermott D.V. 1982] rachunek interwałów [Allen J.F. 1983]. Reprezentacja bezwzgl dna zastosowania: nauki techniczne, medycyna system VM [Fagan L. 1984]: sterowanie pracą respiratora na podstawie pomiarów ci nienia krwi pacjenta, t tna i tempa oddychania reprezentacja wiedzy wzorowana na syst. MYCIN dokonywanie pomiarów 30 razy na dob o ci le okre lonych porach system MED2 [Puppe F. 1987]: udoskonalenie systemu VM rejestrowanie wyników pomiarów w różnych odst pach, możliwo ć odnoszenia momentu pomiaru do wskazanego punktu czasowego funkcje mechanizmu wnioskującegoś (1) wyznaczanie czasu, jaki upłynął mi dzy dwoma pomiarami, (2) wyznaczanie zmian warto ci oraz dynamiki zmian danego parametru w okresie mi dzy pomiarami. 3
20 Rachunek punktów [McDermott D.V. 1982] REPREZENTACJA WIEDZY O ZALE NO CIACH CZASOWYCH do reprezentowania wiedzy wykorzystuje si punkty czasowe; w przestrzeni punktów czasowych definiuje si funkcj odległo ci przyporządkowującą parze punktów liczb całkowitą Dist baz wiedzy o zależno ciach czasowych przedstawia si w postaci grafuś wierzchołki grafu odpowiadają punktom czasowym kraw dzie oznaczają zależno ci mi dzy punktamiś zależno ci te mają postać ograniczeń Elt, reprezentowanych przez wyrażenia (MinDist, MaxDist) z dowolną parą punktów połączonych cieżkami związane jest ograniczenie b dące złożeniem ograniczeń przypisanych poszczególnym kraw dziom podstawowym warunkiem niesprzeczno ci bazy wiedzy jest wymóg, aby dla każdego ograniczenia MinDist MaxDist. Przykład 1 (baza wiedzy o zal. czasowych) p1 c1 (6, 9) p2 c2 (2, 5) c3 (3, 7) c4 (5, 8) p3 Elt(p 3, p 2 ) = (5, 7) Elt(p 1, p 2 ) = (7, 9) 4
21 REPREZENTACJA WIEDZY PRZEDMIOTOWEJ poj cia podstawoweś interwał czasowy (p 1, p 2 ) token, zachodzenie tokenu P podczas interwału (p 1, p 2 ) struktura bazy wiedzy: fakty i domniemania (ang. beliefs) reguły metody wnioskowania: wnioskowanie progresywne P 1... Pn => Q (t 1,1, t 1,2 ) (t n,1, t n,2 ) (t 1,1, t 1,2 ) (t n,1, t n,2 ) wada: generowanie wielu bezużytecznych wniosków automatyczna projekcja Z P 1... Pn => Q (z 1, z 2 ) (q 1, q 2 ) zalety: możliwo ć posługiwania si demonami systemowymi, ustalanie priorytetów zdarzeń wnioskowanie o domniemaniach: posługiwanie si domy lnymi założeniami o zdarzeniach, np. że każde zdarzenie trwa począwszy do pojawienia si informacji o jego zaj ciu, aż do nadej cia wiadomo ci o jego zakończeniu wykorzystanie systemu TMS, działającemu na zabezpieczeniach (ang. protection). 5
22 Przykład 2 (weryfikacja domniemań) Dana jest baza wiedzy 14:00 - Malinowski otrzymuje wiadomo ć dla Kowalskiego, 18:00 - Kowalski przychodzi do Iksiń kich, 21:00 - Malinowski przychodzi do Iksińskich. Na podstawie ww. bazy wiedzy można domniemywać, że Malinowski przekazał wiadomo ć Kowalskiemu. Jednakże po wprowadzeniu nowego faktu 20:00 Kowalski wrócił do domu powyższe domniemanie przestaje obowiązywać. Podsumowanie: rachunek punktów dobrze nadaje si do reprezentowania zdarzeń z zależno ciami opisanymi za pomocą wielko ci liczbowych trudno ci sprawia wyrażanie relacji typowo wzgl dnych, jak np. przed czy po. 6
23 rachunek interwałów [Allen J.F. 1983] poj cia podstawowe interwał czasowy relacja wzgl dna mi dzy parą interwałów,typy relacji wzgl dnych mi dzy interwałami relacja symbol relacji symbol relacji ilustracja graficzna odwrotnej X before Y < > X meets Y m mi X overlaps Y o oi X during Y d di X starts Y s si X finishes Y f fi X equals Y = = REPREZENTACJA WIEDZY PRZEDMIOTOWEJ baza wiedzy o zależno ciach czasowych ma postać grafu: wierzchołki grafu reprezentują interwały kraw dzie są etykietowane przez zbiory relacji, jakie mogą zachodzić mi dzy interwałami podstawową operacją wykonywaną na bazie wiedzy jest wprowadzenie nowej relacji mi dzy wskazanymi interwałamiś w procesie tym uaktualnia si całą baz wiedzy poprzez propagowanie ograniczeń i usuwanie relacji sprzecznych 7
24 Algorytm wprowadzania nowej relacji do bazy wiedzy Dane: baza wiedzy B w postaci grafu, nowa relacja mi dzy parą wierzchołków R(i, j). Wynik: baza wiedzy B rozszerzona o relacj R(i, j). Metoda: Constraints(R1, R2) { C = ; for_each r1 in R1 do for_each r2 in R2 do C = C T(r1, r2); return(c) } Fragment tablicy T B r2 C A r1 B o d o s d 8
25 Add( R(i, j) ) { Put((i,j), ToDo); while NotEmpty(ToDo) { Get((i,j), ToDo); N(i, j) = R(i, j); for_each k do { R(i, k) = N(i, k) Constraints(R(i, j), N(j, k)); if R(i, k) N(i, k) then Put((i, k), ToDo); } for_each k do { R(k, j) = N(k, j) Constraints(N(k, i), R(i, j)); if R(k, j) N(k, j) then Put((k, j), ToDo); } } zastosowanie interwałów referencyjnych Przykład 3 ycie d d d < przedszkole m nauka m praca ( ycie) ( ycie) ( ycie) s d f szkoła podstawowa m szkoła rednia < studia (nauka) (nauka) (nauka) < 9
26 Przetwarzanie wiedzy zmiennej w czasie zmienno ć wiedzy w czasie jest zjawiskiem dotyczącym wi kszo ci praktycznie wykorzystywanych systemów przetwarzających wiedz przyjmuje si, że wprowadzenie nowej wiedzy do systemu może pociągać za sobą dwojakie skutki (1) rozszerzenie zbioru konsekwencji, jakie można wywnioskować na podstawie wcze- niej zgromadzonej wiedzy (2) zaw żenie tego zbioru w wypadku (2) mówi si o wnioskowaniu niemonotonicznym, tzn. A A Cn(A) Cn(A ) przykładem niemonotonicznej reguły wnioskowania jest negacja przez porażkę (ang. negation as failure) stosowana w Prologu. Przykład 4 P = {}, not(q) Cn(P), P' = { q. }, not(q) Cn(P'). Do opisu wnioskowania niemonotonicznego można wykorzystać operator unless F 1 F m unless(d 1 ) unless(d n ) W wyrażenie unless(d) jest prawdziwe o ile formuła D jest fałszywa albo jej warto ć logiczna nie jest znana. 10
27 Systemy utrzymywania wiarygodno ci system utrzymywania wiarygodno ci (ang. Truth Maintenance Systems) służy do wyznaczania konsekwencji modyfikowania bazy wiedzy w pewnym systemie przetwarzającym wiedz system utrzymywania wiarygodno ci oraz mechanizm wnioskujący stanowią odr bne lecz współpracujące ze sobą moduły systemu przetwarzania wiedzy posługiwanie si systemem TMS z reguły wymaga reprezentowania wiedzy w postaci sieci zależności niektóre rodzaje systemów TMSŚ JTMS oparty na uzasadnieniach (ang. Justificationbased TMS) ATMS oparty na założeniach (ang. Assumptionbased TMS) LTMS logiczny TMS (ang. Logic-based TMS). 11
28 System JTMS [John Doyle, 1979] POJ CIA PODSTAWOWE sieć zależno ci w systemie składa si z w złów (ang. nodes) i uzasadnień (ang. justifications) w zeł ma postać pary (F, E), gdzie F jest formułą z bazy wiedzy a E jest etykietą, E {IN, OUT} uzasadnienie ma postać pary (R, L), gdzie R jest regułą a L = (L-IN, L-OUT) jest parą list złożonych z w złów w zeł bezpośrednio wspiera uzasadnienie, o ile jest elementem listy L-IN lub listy L-OUT tego uzasadnienia uzasadnienie bezpośrednio wspiera w zeł jeżeli formuła zawarta w w źle należy do wniosków płynących z reguły reprezentowanej przez to uzasadnienie uzasadnienie jest słuszne, jeżeli każdy element listy L-IN tego uzasadnienia ma etykiet IN a każdy element listy L-OUT ma etykiet OUT w zeł nazywany jest założeniem o ile jest bezpo rednio wspierany przez co najmniej jedno uzasadnienie słuszne, a każde ze słusznych uzasadnień wspierających ma niepustą list L-OUT sieć zależno ci jest poprawnie etykietowana o ile każdy w zeł wspierany przez co najmniej jedno słuszne uzasadnienie ma etykiet IN - w przeciwnym wypadku w zeł ten ma etykiet OUT każdy w zeł oznaczający sprzeczno ć ma etykiet OUT. 12
29 ZADANIE SYSTEMU JTMS 2017 Adam Meissner Dla danej sieci zależno ci skonstruować jej poprawne etykietowanie. DZIAŁANIA WYKONYWANE PRZEZ SYSTEM JTMS dodawanie w złowi nowego uzasadnienia dodawanie nowego w zła do sieci zależności usuwanie sprzeczno ci. Przykład 5 (sieć zale no ci) ZARYS METODY DODAWANIA W ZŁOWI NOWEGO UZASADNIENIA 1. Jeżeli nowe uzasadnienie jest słuszne a rozpatrywany w zeł ma etykiet OUT, to wykonać krok 2, w przeciwnym wypadku zakończyć działanie. 2. Zmienić w złowi etykiet na IN a nast pnie wyznaczyć konsekwencje tej zmiany w całej sieci zależno ci. 13
30 ZARYS METODY USUWANIA SPRZECZNO CI (WG [2]) Wejście: węzeł N oznaczający sprzeczność z etykietą IN Wyjście: węzeł N z etykietą OUT albo sygnał fail 1. Dla każdego słusznego uzasadnienia U w zła N wykonać kroki Skonstruować zbiór S = {A 1,, A i,, A n } zawierający wszystkie bezpo rednie założenia wspierające uzasadnienie U. Jeżeli zbiór S jest pusty to zakończyć z sygnałem fail (sprzeczno ci nie można usunąć na poziomie TMS-u). 3. Ze zbioru S wybrać dowolne założenie A i i dla każdego uzasadnienia słusznego w zła A i wybrać pewien element D j z listy L-OUT tego uzasadnienia, postaci D 1,, D j,, D k. Nast pnie, dodać w złowi D j nowe, słuszne uzasadnienie, którego lista L-IN ma postać A 1,, A i-1, A i+1,, A n a lista L-OUT jest postaci D 1,, D j-1, D j+1,, D k. Metod usuwania sprzeczno ci ilustruje poniższy rysunekś nowo dodane uzasadnienie ma kolor czerwony, etykiety wierzchołków dotyczą stanu sprzed dodania tego uzasadnienia. 14
31 System ATMS [Johan de Kleer, 1986] system ATMS nie posiada takich wad systemu JTMS jak: wyznaczanie pojedynczego rozwiązania, migotanie etykiet, nadrestrykcyjne traktowanie sprzeczno ci, wiedz w systemie ATMS reprezentuje zbiór w złów postaci (F, E, U) gdzie F jest formułą z bazy wiedzy, U jest zbiorem uzasadnień, tj. formuł (implikacji) opisujących zależno ć formuły F od formuł zawartych w innych w złach, za E jest etykietą, tj. zbiorem kontekstów, czyli zbiorów K formuł, takich że ( K E) (K U F). ZADANIE SYSTEMU ATMS Dla każdego w zła w sieci zależno ci skonstruować etykiet, która jest niesprzeczna, trafna, pełna i minimalna DZIAŁANIA WYKONYWANE PRZEZ SYSTEM ATMS dodawanie uzasadnienia w złowi i wyznaczenie etykiety oznaczanie kontekstu K jako sprzecznego (nogood(k)) generowanie nowego w zła konstruowanie nowego uzasadnienia. Przykład 6 Dany jest zbiór nast pujących w złówś (a, {{A, G}}, ), (b, {{B}, {C, D}, {A, C}}, ), (c, {{}}, ) oraz wyrażenie nogood({g, C }). Po dodaniu uzasadnienia a b c system wylicza etykiet w zła z formułą cś (c, {{A, G, B}, {A, G, C, D}, {A, G, C}}, ) (e. trafna i pełna) (c, {{A, G, B}, {A, G, C}}, ) (e. trafna, pełna i minimalna) (c, {{A, G, B}}, { a b c }) (e. trafna, pełna, minimalna i niesprzeczna) 15
Adam Meissner SZTUCZNA INTELIGENCJA. Reprezentowanie i przetwarzanie wiedzy o czasie
2015 Adam Meissner Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Reprezentowanie
Adam Meissner SZTUCZNA INTELIGENCJA. Architektury systemów eksperckich
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Architektury systemów eksperckich
Adam Meissner SZTUCZNA INTELIGENCJA. Architektury systemów eksperckich
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Architektury systemów eksperckich
Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski
Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do
Adam Meissner.
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Systemy ekspertowe w zarządzaniu firmą Expert systems in enterprise management Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: Rodzaj zajęć: Wyk. Ćwicz. Lab. Sem. Proj.
Uczenie się maszyn. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki
Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Machine Learning (uczenie maszynowe, uczenie się maszyn, systemy uczące się) interdyscyplinarna nauka, której celem jest stworzenie
Wprowadzenie do teorii systemów ekspertowych
Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis Elementy uczenia maszynowego Literatura [1] Bolc L., Zaremba
Systemy eksperckie. Plan wykładu Wprowadzenie do sztucznej inteligencji. Wnioski z prób automatycznego wnioskowania w rachunku predykatów
Plan wykładu Systemy eksperckie Dr hab. inż. Joanna Józefowska, prof. pp 1/1 Wnioski z badań nad systemami mi w rachunku predykatów Reguły produkcji jako system reprezentacji Algorytm rozpoznaj-wykonaj
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Systemy ekspertowe Expert systems Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: Rodzaj zajęć: Wyk. Ćwicz. Lab. Sem. Proj. Poziom studiów: studia I stopnia forma studiów:
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis Elementy uczenia maszynowego Literatura [1] Bolc L., Zaremba
WYKŁAD 11 Uczenie maszynowe drzewa decyzyjne
WYKŁAD 11 Uczenie maszynowe drzewa decyzyjne Reprezentacja wiedzy w postaci drzew decyzyjnych entropia, przyrost informacji algorytmy ID3, C4.5 problem przeuczenia wyznaczanie reguł rzykładowe drzewo decyzyjne
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY.
Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY. 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przykładowym systemem ekspertowym napisanym w JESS. Studenci poznają strukturę systemu ekspertowego,
Systemy ekspertowe. Krzysztof Patan
Systemy ekspertowe Krzysztof Patan Wprowadzenie System ekspertowy Program komputerowy, który wykonuje złożone zadania o dużych wymaganiach intelektualnych i robi to tak dobrze jak człowiek będący ekspertem
PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
Systemy eksperowe. Agnieszka Nowak Brzezińska Wykład I
Systemy eksperowe Agnieszka Nowak Brzezińska Wykład I Zakres materiału: Metody wnioskowania w regułowych bazach wiedzy PC-Shell jako narzędzie do budowy szkieletowych systemów ekspertowych (Sprawozdanie
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Rozwiązywanie problemów-i Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Rozwiązywanie problemów Podstawowe fazy: Sformułowanie celu -
Systemy ekspertowe : program PCShell
Instytut Informatyki Uniwersytetu Śląskiego lab 1 Opis sytemu ekspertowego Metody wnioskowania System PcShell Projekt System ekspertowy - system ekspertowy to system komputerowy zawierający w sobie wyspecjalizowaną
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ SZTUCZNA INTELIGENCJA dwa podstawowe znaczenia Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące się), pewną dyscyplinę badawczą (dział
Systemy ekspertowe Część siódma Realizacja dziedzinowego systemu ekspertowego Roman Simiński
Część siódma Autor Roman Simiński Kontakt roman.siminski@us.edu.pl www.us.edu.pl/~siminski Realizacja dziedzinowego systemu ekspertowego Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych
Adam Meissner SZTUCZNA INTELIGANCJA
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGANCJA Podstawy programowania z ograniczeniami
Indukowane Reguły Decyzyjne I. Wykład 3
Indukowane Reguły Decyzyjne I Wykład 3 IRD Wykład 3 Plan Powtórka Grafy Drzewa klasyfikacyjne Testy wstęp Klasyfikacja obiektów z wykorzystaniem drzewa Reguły decyzyjne generowane przez drzewo 2 Powtórzenie
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Wnioskowanie logiczne i systemy eksperckie Systemy posługujące się logiką predykatów: część 3/3 Dzisiaj Uogólnienie Poprawność i pełność wnioskowania
Wniosek 2: należy ograniczyć ilość wiedzy, np. ograniczając działanie systemu do pewnej dziedziny wiedzy!
Plan wykładu Systemy eksperckie Wnioski z badań nad systemami mi w rachunku predykatów Reguły produkcji jako system reprezentacji Algorytm rozpoznaj-wykonaj Sterowanie wnioskowaniem w systemach regułowych
Metoda Tablic Semantycznych
Procedura Plan Reguły Algorytm Logika obliczeniowa Instytut Informatyki Plan Procedura Reguły 1 Procedura decyzyjna Logiczna równoważność formuł Logiczna konsekwencja Procedura decyzyjna 2 Reguły α, β,
Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32
Analiza i projektowanie oprogramowania Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania 2/32 Cel analizy Celem fazy określania wymagań jest udzielenie odpowiedzi na pytanie:
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność
Sztuczna Inteligencja Projekt
Sztuczna Inteligencja Projekt Temat: Algorytm F-LEM1 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm F LEM 1. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu F LEM1
Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.
Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna
Adam Meissner. SZTUCZNA INTELIGENCJA Gry dwuosobowe
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Gry dwuosobowe Literatura [1] Sterling
[1] [2] [3] [4] [5] [6] Wiedza
3) Efekty dla studiów drugiego stopnia - profil ogólnoakademicki na kierunku Informatyka w języku angielskim (Computer Science) na specjalności Sztuczna inteligencja (Artificial Intelligence) na Wydziale
Elementy kognitywistyki II: Sztuczna inteligencja
Elementy kognitywistyki II: Sztuczna inteligencja Piotr Konderak Zakład Logiki i Filozofii Nauki p.203b, Collegium Humanicum konsultacje: wtorki, 16:00-17:00 kondorp@bacon.umcs.lublin.pl http://konderak.eu
Systemy ekspertowe Część siódma Realizacja dziedzinowego systemu ekspertowego Roman Simiński
Część siódma Autor Roman Simiński Kontakt roman.siminski@us.edu.pl www.us.edu.pl/~siminski Realizacja dziedzinowego systemu ekspertowego Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych
ID1SII4. Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu ID1SII4 Nazwa modułu Systemy inteligentne 1 Nazwa modułu w języku angielskim Intelligent
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
Systemy ekspertowe i sztuczna inteligencja. dr Agnieszka Nowak Brzezioska
Systemy ekspertowe i sztuczna inteligencja dr Agnieszka Nowak Brzezioska Email: agnieszka.nowak@us.edu.pl Architektura SE Pojęcia z dziedziny systemów ekspertowych Inżynieria wiedzy - dziedzina sztucznej
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania
SYSTEMY EKSPERTOWE. Anna Matysek IBiIN UŚ 2008
SYSTEMY EKSPERTOWE Anna Matysek IBiIN UŚ 2008 DEFINICJE SE System ekspertowy to program komputerowy, który wykonuje złożone zadania o dużych wymaganiach intelektualnych i robi to tak dobrze jak człowiek
METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ
METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ KONWERSATORIUM 6: REZOLUCJA V rok kognitywistyki UAM 1 Kilka uwag terminologicznych Słuchacze zapewne pamiętają z zajęć dotyczących PROLOGu poniższą
PROLOG WSTĘP DO INFORMATYKI. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI Adrian Horzyk PROLOG www.agh.edu.pl Pewnego dnia przyszedł na świat komputer Komputery
KATEDRA INFORMATYKI TECHNICZNEJ. Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych. ćwiczenie 204
Opracował: prof. dr hab. inż. Jan Kazimierczak KATEDA INFOMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 204 Temat: Hardware'owa implementacja automatu skończonego pełniącego
Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język
Wprowadzenie do metodologii modelowania systemów informacyjnych. Strategia (1) Strategia (2) Etapy Ŝycia systemu informacyjnego
Etapy Ŝycia systemu informacyjnego Wprowadzenie do metodologii modelowania systemów informacyjnych 1. Strategia 2. Analiza 3. Projektowanie 4. Implementowanie, testowanie i dokumentowanie 5. WdroŜenie
Wykład 4 Ramy, wektory wiedzy, drzewa decyzyjne
Systemy ekspertowe Wykład 4 Ramy, wektory wiedzy, drzewa decyzyjne 1 RAMY 2 Ramy (ang. frames) geneza i założenia Geneza: 1. chęć wyjaśnienia efektywności rozumowania naturalnego w odniesieniu do problemów
Adam Meissner SZTUCZNA INTELIGENCJA
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Problematyka sztucznej inteligencji
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 14c 2 Definicje indukcyjne Twierdzenia dowodzone przez indukcje Definicje indukcyjne Definicja drzewa
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
O-MaSE Organization-based Multiagent System Engineering. MiASI2, TWO2,
O-MaSE Organization-based Multiagent System Engineering MiASI2, TWO2, 2017-2018 Materiały Strona poświęcona metodzie O-MaSE http://macr.cis.ksu.edu/projects/omase.html (Multiagent & Cooperative Reasoning
SZTUCZNA INTELIGENCJA
Instytut Automatyki, Robotyki i Informatyki Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis Literatura SZTUCZNA INTELIGENCJA Modelowanie problemów za
Przykład eksploracji danych o naturze statystycznej Próba 1 wartości zmiennej losowej odległość
Dwie metody Klasyczna metoda histogramu jako narzędzie do postawienia hipotezy, jaki rozkład prawdopodobieństwa pasuje do danych Indukcja drzewa decyzyjnego jako metoda wykrycia klasyfikatora ukrytego
Co to jest jest oprogramowanie? 8. Co to jest inżynieria oprogramowania? 9. Jaka jest różnica pomiędzy inżynierią oprogramowania a informatyką?
ROZDZIAŁ1 Podstawy inżynierii oprogramowania: - Cele 2 - Zawartość 3 - Inżynieria oprogramowania 4 - Koszty oprogramowania 5 - FAQ o inżynierii oprogramowania: Co to jest jest oprogramowanie? 8 Co to jest
Uchwała obowiązuje od dnia podjęcia przez Senat. Traci moc Uchwała nr 144/06/2013 Senatu Uniwersytetu Rzeszowskiego z 27 czerwca 2013 r.
Rektor Uniwersytetu Rzeszowskiego al. Rejtana 16c; 35-959 Rzeszów tel.: + 48 17 872 10 00 (centrala) + 48 17 872 10 10 fax: + 48 17 872 12 65 e-mail: rektorur@ur.edu.pl Uchwała nr 282/03/2014 Senatu Uniwersytetu
Adam Meissner SZTUCZNA INTELIGENCJA Problem spełnialności (SAT)
Instytut Automatyki, Robotyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Problem spełnialności
Metody Programowania
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie
Programowanie deklaratywne
Programowanie deklaratywne Artur Michalski Informatyka II rok Plan wykładu Wprowadzenie do języka Prolog Budowa składniowa i interpretacja programów prologowych Listy, operatory i operacje arytmetyczne
Nowe narzędzia zarządzania jakością
Nowe narzędzia zarządzania jakością Agnieszka Michalak 106947 Piotr Michalak 106928 Filip Najdek 106946 Co to jest? Nowe narzędzia jakości - grupa siedmiu nowych narzędzi zarządzania jakością, które mają
Metody wnioskowania. Wnioskowanie w przód (ang. forward chaining) Wnioskowanie w tył (ang. Backward chaining) Od przesłanki do konkluzji Np..
Systemy regułowe Metody wnioskowania Wnioskowanie w przód (ang. forward chaining) Od przesłanki do konkluzji Np.. CLIPS Wnioskowanie w tył (ang. Backward chaining) Czyli od konkluzji do przesłanki Np..
Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu
Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu
Algorytm. Krótka historia algorytmów
Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne
Efekt kształcenia. Ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną w zakresie algorytmów i ich złożoności obliczeniowej.
Efekty dla studiów pierwszego stopnia profil ogólnoakademicki na kierunku Informatyka w języku polskim i w języku angielskim (Computer Science) na Wydziale Matematyki i Nauk Informacyjnych, gdzie: * Odniesienie-
Elementy kognitywistyki III: Modele i architektury poznawcze
Elementy kognitywistyki III: Modele i architektury poznawcze Wykład I: Pomieszanie z modelem w środku Czym jest kognitywistyka? Dziedzina zainteresowana zrozumieniem procesów, dzięki którym mózg (zwł.
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
Adam Meissner STUCZNA INTELIGENCJA
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis STUCZNA INTELIGENCJA Elementy programowania w logice Literatura
Paradygmaty dowodzenia
Paradygmaty dowodzenia Sprawdzenie, czy dana formuła rachunku zdań jest tautologią polega zwykle na obliczeniu jej wartości dla 2 n różnych wartościowań, gdzie n jest liczbą zmiennych zdaniowych tej formuły.
Systemy ekspertowe. Wnioskowanie w systemach regułowych. Część piąta. Autor Roman Simiński.
Część piąta Autor Roman Simiński Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi uważnego w nim uczestnictwa.
Komputerowe Systemy Przemysłowe: Modelowanie - UML. Arkadiusz Banasik arkadiusz.banasik@polsl.pl
Komputerowe Systemy Przemysłowe: Modelowanie - UML Arkadiusz Banasik arkadiusz.banasik@polsl.pl Plan prezentacji Wprowadzenie UML Diagram przypadków użycia Diagram klas Podsumowanie Wprowadzenie Języki
Adam Meissner SZTUCZNA INTELIGANCJA
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGANCJA Podstawy programowania z ograniczeniami
zna metody matematyczne w zakresie niezbędnym do formalnego i ilościowego opisu, zrozumienia i modelowania problemów z różnych
Grupa efektów kierunkowych: Matematyka stosowana I stopnia - profil praktyczny (od 17 października 2014) Matematyka Stosowana I stopień spec. Matematyka nowoczesnych technologii stacjonarne 2015/2016Z
CLP Programowanie logiczne z ograniczeniami.
CLP Programowanie logiczne z ograniczeniami. Wstęp Programowanie z ograniczeniami (Constraint Programming CP) stało się w ostatnich latach popularnym sposobem modelowania i rozwiązywania wielu problemów
Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne)
Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski Klasyfikacja i predykcja. Odkrywaniem reguł klasyfikacji nazywamy proces znajdowania
Adam Meissner SZTUCZNA INTELIGENCJA
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Elementy wnioskowania automatycznego
< K (2) = ( Adams, John ), P (2) = adres bloku 2 > < K (1) = ( Aaron, Ed ), P (1) = adres bloku 1 >
Typy indeksów Indeks jest zakładany na atrybucie relacji atrybucie indeksowym (ang. indexing field). Indeks zawiera wartości atrybutu indeksowego wraz ze wskaźnikami do wszystkich bloków dyskowych zawierających
Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle
Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z
4 Klasyczny rachunek zdań
4 Klasyczny rachunek zdań Elementy Logiki i Teorii Mnogości 2015/2016 Spis najważniejszych tautologii: (a) p p prawo wyłączonego środka (b) ( p) p prawo podwójnej negacji (c) p q q p (d) p q q p prawo
Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń
Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest
Programowanie komputerów
Programowanie komputerów Wykład 1-2. Podstawowe pojęcia Plan wykładu Omówienie programu wykładów, laboratoriów oraz egzaminu Etapy rozwiązywania problemów dr Helena Dudycz Katedra Technologii Informacyjnych
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych Rodzaj zajęć: wykład, laboratorium BAZY DANYCH I SYSTEMY EKSPERTOWE Database and expert systems Forma
Projekt 4: Programowanie w logice
Języki Programowania Projekt 4: Programowanie w logice Środowisko ECL i PS e W projekcie wykorzystane będzie środowisko ECL i PS e. Dostępne jest ono pod adresem http://eclipseclp.org/. Po zainstalowaniu
Analiza semantyczna. Gramatyka atrybutywna
Analiza semantyczna Do przeprowadzenia poprawnego tłumaczenia, oprócz informacji na temat składni języka podlegającego tłumaczeniu, translator musi posiadać możliwość korzystania z wielu innych informacji
Efekty kształcenia dla kierunku studiów INFORMATYKA, Absolwent studiów I stopnia kierunku Informatyka WIEDZA
Symbol Efekty kształcenia dla kierunku studiów INFORMATYKA, specjalność: 1) Sieciowe systemy informatyczne. 2) Bazy danych Absolwent studiów I stopnia kierunku Informatyka WIEDZA Ma wiedzę z matematyki
Programowanie obiektowe
Laboratorium z przedmiotu Programowanie obiektowe - zestaw 02 Cel zajęć. Celem zajęć jest zapoznanie z praktycznymi aspektami projektowania oraz implementacji klas i obiektów z wykorzystaniem dziedziczenia.
WYKŁAD 6. Reguły decyzyjne
Wrocław University of Technology WYKŁAD 6 Reguły decyzyjne autor: Maciej Zięba Politechnika Wrocławska Reprezentacje wiedzy Wiedza w postaci reguł decyzyjnych Wiedza reprezentowania jest w postaci reguł
Tworzenie gier na urządzenia mobilne
Katedra Inżynierii Wiedzy Teoria podejmowania decyzji w grze Gry w postaci ekstensywnej Inaczej gry w postaci drzewiastej, gry w postaci rozwiniętej; formalny opis wszystkich możliwych przebiegów gry z
Wykład 8. Testowanie w JEE 5.0 (1) Autor: Zofia Kruczkiewicz. Zofia Kruczkiewicz
Wykład 8 Testowanie w JEE 5.0 (1) Autor: 1. Rola testowania w tworzeniu oprogramowania Kluczową rolę w powstawaniu oprogramowania stanowi proces usuwania błędów w kolejnych fazach rozwoju oprogramowania
Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa
Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników
ECDL Podstawy programowania Sylabus - wersja 1.0
ECDL Podstawy programowania Sylabus - wersja 1.0 Przeznaczenie Sylabusa Dokument ten zawiera szczegółowy Sylabus dla modułu Podstawy programowania. Sylabus opisuje, poprzez efekty uczenia się, zakres wiedzy
Technologie informacyjne - wykład 12 -
Zakład Fizyki Budowli i Komputerowych Metod Projektowania Instytut Budownictwa Wydział Budownictwa Lądowego i Wodnego Politechnika Wrocławska Technologie informacyjne - wykład 12 - Prowadzący: Dmochowski
Analiza leksykalna 1. Teoria kompilacji. Dr inż. Janusz Majewski Katedra Informatyki
Analiza leksykalna 1 Teoria kompilacji Dr inż. Janusz Majewski Katedra Informatyki Zadanie analizy leksykalnej Kod źródłowy (ciąg znaków) Analizator leksykalny SKANER Ciąg symboli leksykalnych (tokenów)
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 4. UCZENIE SIĘ INDUKCYJNE Częstochowa 24 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WSTĘP Wiedza pozyskana przez ucznia ma charakter odwzorowania
mgr inż. Magdalena Deckert Poznań, r. Metody przyrostowego uczenia się ze strumieni danych.
mgr inż. Magdalena Deckert Poznań, 30.11.2010r. Metody przyrostowego uczenia się ze strumieni danych. Plan prezentacji Wstęp Concept drift i typy zmian Algorytmy przyrostowego uczenia się ze strumieni
FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego)
2019-09-01 FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) Treści z podstawy programowej przedmiotu POZIOM ROZSZERZONY (PR) SZKOŁY BENEDYKTA Podstawa programowa FIZYKA KLASA 1 LO (4-letnie po szkole
SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska BUDOWA DRZEW DECYZYJNYCH Drzewa decyzyjne są metodą indukcyjnego
Metody Kompilacji Wykład 1 Wstęp
Metody Kompilacji Wykład 1 Wstęp Literatura: Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman: Compilers: Princiles, Techniques, and Tools. Addison-Wesley 1986, ISBN 0-201-10088-6 Literatura: Alfred V. Aho,
Metodyki i techniki programowania
Metodyki i techniki programowania dr inż. Maciej Kusy Katedra Podstaw Elektroniki Wydział Elektrotechniki i Informatyki Politechnika Rzeszowska Elektronika i Telekomunikacja, sem. 2 Plan wykładu Sprawy