Po co informatykom logika?

Wielkość: px
Rozpocząć pokaz od strony:

Download "Po co informatykom logika?"

Transkrypt

1 Piotr Chrząstowski-Wachtel Uniwersytet Warszawski Po co informatykom logika? informatyka + 1

2 Wszystko co da się powiedzieć......da się powiedzieć w prosty sposób. Ludwig Wittgenstein

3 Arystoteles Arystoteles Pierwszy, który zajął się logiką, jako dziedziną nauki Podał zbiór sylogizmów praw wnioskowania Była to pierwsza próba metodologicznego podejścia do badań naukowych

4 Czy logika jest typową nauką? Jako jedyna musi też opisywać samą siebie! Konieczne staje się rozdzielenie metajęzyka od języka, a przynajmniej świadomość tego. Nie sposób uniknąć zapętlenia pojęciowego: mówiąc o logice używamy logicznego myślenia. Tłumacząc np. co to jest koniunkcja, mówimy, że (p & q) jest zdaniem prawdziwym, jeśli zarówno p, jak i q są prawdziwe. Masło maślane?

5 Średniowieczny podział nauki Trivium gramatyka logika - dialektyka, sztuka wnioskowania retoryka Trivium - biegłość w łacinie - sztuka układania mów, przekonywania. było na ogół wstępem do kolejnego etapu nauki.

6 Średniowieczny podział nauki Quadrivium geometria, arytmetyka astronomia muzyka Quadrivium było na ogół wstępem do nauki teologii i filozofii.

7 Zdania obiekty w logice Logika zajmuje się zdaniami pod kątem ich prawdziwości. Zdanie z punktu widzenia logiki klasycznej, to wypowiedź, której można przypisać znaczenie: prawda lub fałsz. Nie interesują nas wszelkie inne poprawne z punktu widzenia lingwistyki zdania: rozkazujące, pytające, czy nawet oznajmujące, ale o niemożliwej do ustalenia prawdziwości.

8 Problemy z językiem naturalnym Język naturalny jest często niejednoznaczny i znaczenie zależy od kontekstu wypowiedzi, albo od niepisanych zwyczajów Często zdanie, które z pozoru daje się jednoznacznie wartościować może się okazać różnie rozumiane przez odbiorców (komputer!)

9 Niejednoznaczność Kupię sobie pizzę lub pójdę do kina Osoby wrażliwe i młode nie powinny tego filmu oglądać. Lekarstwa nie powinny stosować matki karmiące oraz kobiety w ciąży, u których występują zawroty głowy. Jeśli zdam egzamin, to jeśli przyjdzie Paweł to pójdziemy do kina, a jeśli nie, to najwyżej wrócę do domu.

10 Zdania atomowe i złożone Zdania atomowe zazwyczaj dotyczą jakiejś dziedziny i są w niej interpretowane to się dzieje poza rachunkiem logicznym. Logika zaczyna się wtedy, gdy zaczynamy składać zdania atomowe w złożone i prowadzić wnioskowanie, polegające na ustalaniu prawdziwości pewnych zdań na podstawie zależności wyrażonych w języku logiki.

11

12 Brak przecinka ocalił ośrodek dla niewidomych : Gazeta Wyborcza donosi Brak przecinka ocalił ośrodek dla niewidomych Chodziło o to, że ośrodek rehabilitacji niewidomych według przepisów powinien zatrudniać specjalistów psychologów z odpowiednim doświadczeniem, szczególnie gdy chodziło o pracę z dziećmi. Zatem sformułowanie przepisu było następujące:

13 Brak przecinka ocalił ośrodek dla niewidomych... w placówce powinien być zatrudniony psycholog lub psycholog w dziedzinie psychologii klinicznej z pięcioletnim stażem pracy z dziećmi z upośledzeniem widzenia. Przy Karmelickiej - ośrodku dla dorosłych - pracowali psycholodzy (niekliniczni), ale bez doświadczenia pracy z dziećmi. A urzędnicy NFZ i Ministerstwa Zdrowia uważali, że zarówno psycholog, jak i psycholog kliniczny powinni mieć takie doświadczenie. W rezultacie ośrodek miał być zamknięty - NFZ cofnął dotację!

14 Kłopoty ze spójnikami Kłopot Dla lub/albo. wielu ludzi te spójniki są nierozróżnialne Część ludzi odrzuca przypisanie spójnikowi "lub" prawdy, gdy oba jego składniki są prawdziwe Często w różnych instrukcjach spotyka się dziwaczną konstrukcję "lub/i".

15 Kłopoty ze spójnikami Kłopot lub/i. Dla wielu ludzi te spójniki też są nierozróżnialne (sic!) Oba te spójniki bywają zastępowane przecinkami w wyliczeniach Przykłady: Stosujemy ten lek w stanach grypowych, zaziębieniu i zapaleniu górnych dróg oddechowych. Nie stosujemy leku w przypadkach niewydolności nerek, wątroby i trzustki.

16 Kłopoty ze spójnikami Kłopot To, z implikacją że implikacja jest fałszywa tylko w przypadku gdy przesłanka jest prawdziwa, a wniosek fałszywy budzi u niektórych (uzasadniony) niepokój. O ile spokojnie akceptujemy, jako sensowne, zdanie "Jeśli pada deszcz, to jezdnia jest mokra", o tyle trudniej nam przychodzi zaakceptować zdanie "Jeśli świeci słońce, to dzisiaj odbywa się nagranie naszego wykładu".

17 Kłopoty ze spójnikami Kłopot z implikacją został przez logików zauważony na początku XX wieku i był impulsem do odróżnienia implikacji klasycznej, która może być fałszywa, od tzw. mocnej implikacji (entailment), która wskazuje na związek przyczynowoskutkowy i która zawsze jest prawdziwa. Zdanie "Jeśli świeci słońce, to dzisiaj odbywa się nagranie naszego wykładu" nie byłoby uznane za prawdziwe w mocniejszym sensie.

18 Komunikacja z komputerem Człowiek komunikując się z komputerem musi się nauczyć precyzji! Komputer jest za głupi, żeby domyślać się kontekstu.

19 Spójniki logiczne (negacja) NIE (koniunkcja) I (alternatywa) LUB (implikacja) JEŚLI... TO (równoważność) WTEDY I TYLKO WTEDY (alternatywa wyłączająca) ALBO-ALBO

20 Spójniki metalogiczne nie i / oraz lub (silna implikacja zawsze prawdziwa) (silna równoważność zawsze prawdziwa) albo-albo

21 Semantyka (znaczenie) spójników logicznych Aby określić znaczenie każdego ze spójników, musimy określić wartość zdania złożonego na podstawie wszystkich możliwych kombinacji wartości zdań składowych dla danego spójnika.

22 Semantyka negacji

23 Semantyka alternatywy (lub)

24 Semantyka koniunkcji (i)

25 Semantyka implikacji (jeślito)

26 Semantyka równoważności (wtedy i tylko wtedy)

27 Semantyka alternatywy wyłączającej (xor, albo-albo)

28 Podstawowe bramki logiczne

29 Składanie układów logicznych Alternatywa i koniunkcja złożona z samych bramek NOR

30 Kłopoty ze spójnikami Kłopot Dla lub/albo. wielu ludzi te spójniki są nierozróżnialne Część ludzi odrzuca przypisanie spójnikowi "lub" prawdy, gdy oba jego składniki są prawdziwe Często w różnych instrukcjach spotyka się dziwaczną konstrukcję "lub/i".

31 Kłopoty ze spójnikami Kłopot lub/i. Dla wielu ludzi te spójniki też są nierozróżnialne (sic!) Oba te spójniki bywają zastępowane przecinkami w wyliczeniach Przykłady: Stosujemy ten lek w stanach grypowych, zaziębieniu i zapaleniu górnych dróg oddechowych. Nie stosujemy leku w przypadkach niewydolności nerek, wątroby i trzustki.

32 Kłopoty ze spójnikami Kłopot To, z implikacją że implikacja jest fałszywa tylko w przypadku gdy przesłanka jest prawdziwa, a wniosek fałszywy budzi u niektórych niepokój. O ile spokojnie akceptujemy, jako sensowne, zdanie "Jeśli pada deszcz, to jezdnia jest mokra", o tyle trudniej nam przychodzi zaakceptować zdanie "Jeśli świeci słońce, to wczoraj Tusk rozmawiał z Bushem"

33 Kłopoty ze spójnikami Kłopot z implikacją został przez logików zauważony na początku XX wieku i był impulsem do odróżnienia implikacji klasycznej od tzw. mocnej implikacji (entailment), która wskazuje na związek przyczynowo-skutkowy. Zdanie "Jeśli słońce zajdzie o 15:24, to wczoraj zdobyliśmy 2 złote medale w pływaniu nie byłoby uznane za prawdziwe w mocniejszym sensie.

34 Wzajemna wyrażalność spójników logicznych Nasz język mógłby się składać z tylko dwóch spójników: negacji i alternatywy. Zachodzą bowiem tożsamości q p q p q p q p ( p q) p q (p q) (q p) (p q)

35 Wzajemna wyrażalność spójników logicznych Dowód tożsamości p q ( p q) (prawo de Morgana) za pomocą matrycy logicznej:

36 Binegacja Okazuje się, że cały rachunek zdań można wyrazić za pomocą jednej tylko operacji logicznej: binegacji, zwanej też strzałką Scheffera lub NOR (negacja "or"), czytanej jako "ani ani:

37 Binegacja wystarcza! Wyrażalność negacji i alternatywy za pomocą binegacji: negacja: alternatywa:

38 Podstawowe bramki logiczne

39 Składanie układów logicznych Alternatywa i koniunkcja złożona z samych bramek NOR

40 NAND Operator NAND przyjmuje wartość fałsz wtedy i tylko wtedy gdy oba argumenty są fałszywe (strzałka lub kreska Sheffera)

41 Implikacja i fałsz też wystarczają Okazuje się, że bramka implikacji i fałszu (ta ostatnia wyjątkowo łatwa do zaimplementowania) też wystarczają.

42 Nieoczekiwany wniosek Komputer jest układem bramek logicznych Można go zbudować z jednego typu bramek: NAND lub NOR I tak się wiele razy działo!

43 Poprawność programów Logika jest nieoceniona przy dowodzeniu poprawności programów. Więcej: przy konstrukcji algorytmów. Projektowanie pętli w programach jest najłatwiej zrobić stosując niezmienniki - warunki logiczne prawdziwe po każdym obrocie pętli.

44 Logika Hoare a Formuły są typu {α}p{β}, gdzie α i β są formułami klasycznymi, opisującymi stan zmiennych przed wykonaniem i po wykonaniu programu P. Czytamy tę formułę następująco:

45 {α}p{β} Jeśli program P zacznie się wykonywać w momencie, w którym zmienne spełniają warunek α i jeśli zakończy swoje działanie, to w stanie końcowym jego zmienne będą spełniać warunek β.

46 Przykład {i>=0} i:=i+1 {i>0} jest formułą prawdziwą, bo dla każdych danych, jeśli tylko i jest nieujemne, to po dodaniu jedynki i będzie dodatnie. Ogólnie może się zdarzyć, że zmienna i po wykonaniu instrukcji i:=i+1 przyjmie wartość <=0, ale nie w przypadku, gdy bezpośrednio przed jej wykonaniem miała wartość nieujemną, co jest zagwarantowane przez α.

47 Przykład nieco ciekawszy {} x:=x0; y:=y0; z:=0; while x<>0 do begin if (x mod 2 = 0) then z:=z+y; x:=x div 2; y:=y*2; end {z=f(x0,y0)}

48 Algorytm mnożenia chłopów rosyjskich {} x:=x0; y:=y0; z:=0; {x=x0, y=y0, z=0} while x<>0 do begin {z+xy=x0*y0} if (x mod 2 = 0) then z:=z+y; x:=x div 2; y:=y+y; end {z=x0*y0}

49 Zmieniony algorytm mnożenia chłopów rosyjskich {} x:=x0; y:=y0; z:=1; {x=x0, y=y0, z=1} while x<>0 do begin {?} if (x mod 2 = 0) then z:=z*y; x:=x div 2; y:=y*y; end {z=g(x0,y0)}

50 Potęgowanie binarne (Binpower) {} x:=x0; y:=y0; z:=1; {x=x0 i y=y0 i z=1} x<>0 do begin {zyx=y0x0} if (x mod 2 = 0) then z:=z*y; x:=x div 2; y:=y*y; end {z=y0x0} while

51 Zdania służą m.in. do definiowania pojęć Często używamy formalizmu logicznego, aby zdefiniować pewne pojęcia, np. Jeżeli oznaczymy przez L(s) zdanie, że student s zdał egzamin z logiki, to za pomocą następującej notacji: { s: L(s) } oznaczamy zbiór wszystkich studentów, którzy zdali egzamin z logiki. Ogólnie przez {x: p(x)} rozumiemy zbiór obiektów x, które spełniają warunek p(x).

52 Formuły spełnialne Ważną rolę odgrywają formuły spełnialne: opisują one sytuacje, które mogą zaistnieć. Formuła jest spełnialna, jeśli istnieje takie wartościowanie zmiennych, że formuła staje się prawdziwa. (p q) ( p q r) (p r) jest spełnialna, np. dla wartościowania p=1, q=0, r=1. A co z (p q) ( p q r) (p r)?

53 Tautologie Tautologie, to takie formuły, które są zwsze prawdziwe Przykłady tautologii: Jak nie umrze, to żyć będzie Pójdę do kina albo nie pójdę Tautologie nie definiują niczego. Nie rozszerzają wiedzy o świecie, są pustosłowiem.

54

55 Co wyrażają formuły spełnialne? Modelując systemy często obawiamy się, że będą posiadały niepożądane własności. (np. dwie rezerwacje na jedno miejsce w systemie rezerwacji lotów). Jeśli uda się nam wyrazić taką sytuację za pomocą formuły rachunku zdań, to pytanie o jej spełnialność jest pytaniem o możliwość zaistnienia takiego zbiegu okoliczności, którego się obawiamy.

56 Jak badać spełnialność? Oczywiście można za pomocą matryc logicznych. Ale co zrobić, jeśli zmiennych jest np. 100? Powodzenia! :) W praktycznych zastosowaniach liczba zmiennych w formułach zdaniowych bywa znacznie większa (nawet rzędu miliona!)

57 Największy nierozwiązany problem logiczny To jest właśnie problem, czy da się stwierdzić spełnialność dowolnej formuły istotnie szybciej, niż za pomocą matrycy logicznej. Niektórzy uważają ten problem za w ogóle największy otwarty problem matematyczny. Została ufundowana nagroda za jego rozwiązanie: 1 milion dolarów. Serio! Jest to słynny problem P=NP?

58 Logiki nieklasyczne Okazuje się, że klasyczna logika w wielu wypadkach jest zbyt słaba. Brakuje: kwantyfikowania po zbiorach (logika drugiego rzędu) co najmniej jeszcze jednej wartości logicznej (np. oznaczającej niepewność) dynamiki uchwycenia efektów zmian zachodzących w czasie (logiki modalne).

59 Weryfikacja w modelu (model checking) Często badamy złożone systemy, które ewoluują w czasie. Liczba stanów rośnie bardzo szybko (zazwyczaj wykładniczo). Logika daje narzędzia analizy tych dynamicznie zmieniających się światów. Często aby wykluczyć jakąś chorą sytuację kodujemy ją w postaci formuły logicznej i pytamy o jej spełnialność. Mamy nadzieję usłyszeć odpowiedź NIE.

60 Logika w programach komputerowych W programach bardzo często manipulujemy wartościami logicznymi, które sterują wykonaniem programu Biegłość w przekształceniach bardzo się przydaje.

61 Podsumowanie Dbałość o precyzję wypowiedzi jest niezwykle istotna, szczególnie gdy używamy logiki do komunikowania się z komputerem (choćby języki zapytań w bazach danych).

62 Podsumowanie (2) Precyzja w logice polega w szczególności na jednoznaczności. Pamiętajmy, że niektóre wypowiedzi są niejednoznaczne w języku naturalnym. Stosując spójniki logiczne pamiętajmy o tym, że często wartość końcowa zależy od odpowiedniego narzucenia kolejności ich wykonania (nawiasy).

63 Podsumowanie (3) Trzeba pamiętać o typowych błędach rachunkowych w logice: przy negowaniu kwantyfikatorów przy negowaniu koniunkcji lub alternatywy (p q) ( p q) (p q) ( p q) przy zapominaniu o zależności wyniku od kolejności wykonywania działań na zdaniach w szczególności (p q) r p (q r)... a także (p q) r p (q r)

64 O czym nie można mówić o tym należy milczeć. Ludwig Wittgenstein

Piotr Chrząstowski-Wachtel Warsaw University, SWPS. Dlaczego informatycy tak lubią logikę?

Piotr Chrząstowski-Wachtel Warsaw University, SWPS. Dlaczego informatycy tak lubią logikę? Piotr Chrząstowski-Wachtel Warsaw University, SWPS Dlaczego informatycy tak lubią logikę? Logika Jedna z najstarszych dyscyplin naukowych Zajmuje się wnioskowaniem odkrywaniem nowych faktów na podstawie

Bardziej szczegółowo

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń Elementy logiki Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń 1 Klasyczny Rachunek Zdań 1.1 Spójniki logiczne Zdaniem w sensie logicznym nazywamy wyrażenie, które jest

Bardziej szczegółowo

Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do

Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do Reguły gry zaliczenie przedmiotu wymaga zdania dwóch testów, z logiki (za ok. 5 tygodni) i z filozofii (w sesji); warunkiem koniecznym podejścia do testu z filozofii jest zaliczenie testu z logiki i zaliczenie

Bardziej szczegółowo

Logika pragmatyczna dla inżynierów

Logika pragmatyczna dla inżynierów Logika pragmatyczna Logika pragmatyczna dla inżynierów Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.edu.pl materiały + literatura + informacje na stronie www. Zaliczenie: Test pisemny

Bardziej szczegółowo

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0 ĆWICZENIE 1 Klasyczny Rachunek Zdań (KRZ): zdania w sensie logicznym, wartości logiczne, spójniki logiczne, zmienne zdaniowe, tabele prawdziwościowe dla spójników logicznych, formuły, wartościowanie zbioru

Bardziej szczegółowo

Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie:

Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie: Logika pragmatyczna Logika pragmatyczna Kontakt: dr hab. inż. Adam Kasperski pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + literatura + informacje na stronie www. Zaliczenie: Kolokwium pisemne na

Bardziej szczegółowo

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI Program wykładów: dr inż. Barbara GŁUT Wstęp do logiki klasycznej: rachunek zdań, rachunek predykatów. Elementy semantyki. Podstawy teorii mnogości

Bardziej szczegółowo

Rachunek zdań i predykatów

Rachunek zdań i predykatów Rachunek zdań i predykatów Agnieszka Nowak 14 czerwca 2008 1 Rachunek zdań Do nauczenia :! 1. ((p q) p) q - reguła odrywania RO 2. reguła modus tollens MT: ((p q) q) p ((p q) q) p (( p q) q) p (( p q)

Bardziej szczegółowo

LOGIKA Klasyczny Rachunek Zdań

LOGIKA Klasyczny Rachunek Zdań LOGIKA Klasyczny Rachunek Zdań Robert Trypuz trypuz@kul.pl 5 listopada 2013 Robert Trypuz (trypuz@kul.pl) Klasyczny Rachunek Zdań 5 listopada 2013 1 / 24 PLAN WYKŁADU 1 Alfabet i formuła KRZ 2 Zrozumieć

Bardziej szczegółowo

Matematyka ETId Elementy logiki

Matematyka ETId Elementy logiki Matematyka ETId Izolda Gorgol pokój 131A e-mail: I.Gorgol@pollub.pl tel. 081 5384 563 http://antenor.pol.lublin.pl/users/gorgol Zdania w sensie logicznym DEFINICJA Zdanie w sensie logicznym - zdanie oznajmujace,

Bardziej szczegółowo

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi: 1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość

Bardziej szczegółowo

Wykład 1. Informatyka Stosowana. 3 października Informatyka Stosowana Wykład 1 3 października / 26

Wykład 1. Informatyka Stosowana. 3 października Informatyka Stosowana Wykład 1 3 października / 26 Wykład 1 Informatyka Stosowana 3 października 2016 Informatyka Stosowana Wykład 1 3 października 2016 1 / 26 Wykłady : 45h (w semestrze zimowym) ( Egzamin) 30h (w semetrze letnim ) ( Egzamin) Zajęcia praktyczne:

Bardziej szczegółowo

Wykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41

Wykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Wykład 2 Informatyka Stosowana 8 października 2018, M. A-B Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Elementy logiki matematycznej Informatyka Stosowana Wykład 2 8 października

Bardziej szczegółowo

Elementy logiki matematycznej

Elementy logiki matematycznej Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Adam Meissner.

Adam Meissner. Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Podstawy logiki pierwszego rzędu

Bardziej szczegółowo

Elementy logiki i teorii mnogości

Elementy logiki i teorii mnogości Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy

Bardziej szczegółowo

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język

Bardziej szczegółowo

Lekcja 3: Elementy logiki - Rachunek zdań

Lekcja 3: Elementy logiki - Rachunek zdań Lekcja 3: Elementy logiki - Rachunek zdań S. Hoa Nguyen 1 Materiał a) Zdanie proste, złożone b) Spójniki logiczne (funktory zdaniotwórcze):,,,,, (alternatywa wykluczająca - XOR). c) Tautologia, zdanie

Bardziej szczegółowo

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"

Bardziej szczegółowo

Myślenie w celu zdobycia wiedzy = poznawanie. Myślenie z udziałem rozumu = myślenie racjonalne. Myślenie racjonalne logiczne statystyczne

Myślenie w celu zdobycia wiedzy = poznawanie. Myślenie z udziałem rozumu = myślenie racjonalne. Myślenie racjonalne logiczne statystyczne Literatura: podstawowa: C. Radhakrishna Rao, Statystyka i prawda, 1994. G. Wieczorkowska-Wierzbińska, J. Wierzbiński, Statystyka. Od teorii do praktyki, 2013. A. Aczel, Statystyka w zarządzaniu, 2002.

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo

Wykład 1. Informatyka Stosowana. 2 października Informatyka Stosowana Wykład 1 2 października / 33

Wykład 1. Informatyka Stosowana. 2 października Informatyka Stosowana Wykład 1 2 października / 33 Wykład 1 Informatyka Stosowana 2 października 2017 Informatyka Stosowana Wykład 1 2 października 2017 1 / 33 Wykłady : 45h (w semestrze zimowym) (Egzamin) 30h (w semetrze letnim) (Egzamin) 3h lekcyjne

Bardziej szczegółowo

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań. Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek

Bardziej szczegółowo

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie.

Logika formalna wprowadzenie. Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. Logika formalna wprowadzenie Ponieważ punkty 10.i 12. nie były omawiane na zajęciach, dlatego można je przeczytać fakultatywnie. 1. Zdanie logicznie prawdziwe (Prawda logiczna) Zdanie, którego analityczność

Bardziej szczegółowo

Kultura logiczna Klasyczny rachunek zdań 2/2

Kultura logiczna Klasyczny rachunek zdań 2/2 Kultura logiczna Klasyczny rachunek zdań 2/2 Bartosz Gostkowski bgostkowski@gmail.com Kraków 29 III 2 Plan wykładu: Wartościowanie w KRZ Tautologie KRZ Wartościowanie v, to funkcja, która posyła zbiór

Bardziej szczegółowo

Rachunek zdao i logika matematyczna

Rachunek zdao i logika matematyczna Rachunek zdao i logika matematyczna Pojęcia Logika - Zajmuje się badaniem ogólnych praw, według których przebiegają wszelkie poprawne rozumowania, w szczególności wnioskowania. Rachunek zdao - dział logiki

Bardziej szczegółowo

Wstęp do logiki. Klasyczny Rachunek Zdań II

Wstęp do logiki. Klasyczny Rachunek Zdań II Wstęp do logiki Klasyczny Rachunek Zdań II DEF. 1 (Słownik). Następujące znaki tworzą słownik języka KRZ: p 1, p 2, p 3, (zmienne zdaniowe) ~,,,, (spójniki) ), ( (nawiasy). DEF. 2 (Wyrażenie). Wyrażeniem

Bardziej szczegółowo

Rachunek logiczny. 1. Język rachunku logicznego.

Rachunek logiczny. 1. Język rachunku logicznego. Rachunek logiczny. Podstawową własnością rozumowania poprawnego jest zachowanie prawdy: rozumowanie poprawne musi się kończyć prawdziwą konkluzją, o ile wszystkie przesłanki leżące u jego podstaw były

Bardziej szczegółowo

Drzewa Semantyczne w KRZ

Drzewa Semantyczne w KRZ Drzewa Semantyczne w KRZ Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 7 XII 2006, 13:30 15:00 Jerzy Pogonowski (MEG) Drzewa Semantyczne w KRZ 7 XII 2006, 13:30 15:00

Bardziej szczegółowo

4 Klasyczny rachunek zdań

4 Klasyczny rachunek zdań 4 Klasyczny rachunek zdań Elementy Logiki i Teorii Mnogości 2015/2016 Spis najważniejszych tautologii: (a) p p prawo wyłączonego środka (b) ( p) p prawo podwójnej negacji (c) p q q p (d) p q q p prawo

Bardziej szczegółowo

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne

Bardziej szczegółowo

Klasyczny rachunek zdań 1/2

Klasyczny rachunek zdań 1/2 Klasyczny rachunek zdań /2 Elementy logiki i metodologii nauk spotkanie VI Bartosz Gostkowski Poznań, 7 XI 9 Plan wykładu: Zdanie w sensie logicznym Klasyczny rachunek zdań reguły słownikowe reguły składniowe

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ 1 Inferencyjna równoważność formuł Definicja 9.1. Formuła A jest

Bardziej szczegółowo

Kultura logiczna Klasyczny rachunek zdań 1/2

Kultura logiczna Klasyczny rachunek zdań 1/2 Kultura logiczna Klasyczny rachunek zdań /2 Bartosz Gostkowski bgostkowski@gmail.com Kraków 22 III 2 Plan wykładu: Zdanie w sensie logicznym Klasyczny rachunek zdań reguły słownikowe reguły składniowe

Bardziej szczegółowo

Język rachunku predykatów Formuły rachunku predykatów Formuły spełnialne i prawdziwe Dowody założeniowe. 1 Zmienne x, y, z...

Język rachunku predykatów Formuły rachunku predykatów Formuły spełnialne i prawdziwe Dowody założeniowe. 1 Zmienne x, y, z... Język rachunku predykatów 1 Zmienne x, y, z... 2 Predykaty n-argumentowe P(x, y,...), Q(x, y...),... 3 Funktory zdaniowe,,,, 4 Kwantyfikatory: istnieje, dla każdego Język rachunku predykatów Ustalenie

Bardziej szczegółowo

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu.

Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 11a. Składnia języka Klasycznego Rachunku Predykatów. Języki pierwszego rzędu. 1 Logika Klasyczna obejmuje dwie teorie:

Bardziej szczegółowo

Logika binarna. Prawo łączności mówimy, że operator binarny * na zbiorze S jest łączny gdy (x * y) * z = x * (y * z) dla każdego x, y, z S.

Logika binarna. Prawo łączności mówimy, że operator binarny * na zbiorze S jest łączny gdy (x * y) * z = x * (y * z) dla każdego x, y, z S. Logika binarna Logika binarna zajmuje się zmiennymi mogącymi przyjmować dwie wartości dyskretne oraz operacjami mającymi znaczenie logiczne. Dwie wartości jakie mogą te zmienne przyjmować noszą przy tym

Bardziej szczegółowo

Rachunek zdań. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rachunek zdań. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rachunek zdań Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak RACHUNEK ZDAŃ Zdania Definicja Zdanie jest to stwierdzenie w języku naturalnym, któremu można przypisać wartość prawdy lub

Bardziej szczegółowo

Konsekwencja logiczna

Konsekwencja logiczna Konsekwencja logiczna Niech Φ 1, Φ 2,..., Φ n będa formułami logicznymi. Formuła Ψ wynika logicznie z Φ 1, Φ 2,..., Φ n jeżeli (Φ 1 Φ 2 Φ n ) Ψ jest tautologia. Formuły Φ 1, Φ 2,..., Φ n nazywamy założeniami

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 15. Trójwartościowa logika zdań Łukasiewicza 1 Wprowadzenie W logice trójwartościowej, obok tradycyjnych wartości logicznych,

Bardziej szczegółowo

Wstęp do Programowania potok funkcyjny

Wstęp do Programowania potok funkcyjny Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline 1 Kilka podstawowych pojęć Definition Programy imperatywne zmieniają stan, czyli wartości zmiennych. Asercja = warunek logiczny, który

Bardziej szczegółowo

Rachunek zdań 1 zastaw zadań

Rachunek zdań 1 zastaw zadań Rachunek zdań 1 zastaw zadań Zadanie 1 ([1]) Wyraź w języku KRZ następujące zdania języka naturalnego: (a) Jeśli Jan jest ateistą to Jan nie jest katolikiem. (b) Jeśli Jan jest ateistą to nieprawda, że

Bardziej szczegółowo

PODSTAWY LOGIKI I TEORII MNOGOŚCI

PODSTAWY LOGIKI I TEORII MNOGOŚCI Stefan Sokołowski PODSTAWY LOGIKI I TEORII MNOGOŚCI Inst Informatyki Stosowanej, PWSZ Elbląg, 2015/2016 Podstawy logiki i teorii mnogoci Wykład1,str1 Na http://studentpwszelblagpl/ stefan/dydaktyka/logteomno

Bardziej szczegółowo

Podstawowe Pojęcia. Semantyczne KRZ

Podstawowe Pojęcia. Semantyczne KRZ Logika Matematyczna: Podstawowe Pojęcia Semantyczne KRZ I rok Językoznawstwa i Informacji Naukowej UAM 2006-2007 Jerzy Pogonowski Zakład Logiki Stosowanej UAM http://www.logic.amu.edu.pl Dodatek: ściąga

Bardziej szczegółowo

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie), Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości

Bardziej szczegółowo

Logika intuicjonistyczna

Logika intuicjonistyczna Logika intuicjonistyczna Logika klasyczna oparta jest na pojęciu wartości logicznej zdania. Poprawnie zbudowane i jednoznaczne stwierdzenie jest w tej logice klasyfikowane jako prawdziwe lub fałszywe.

Bardziej szczegółowo

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 4. Semantyka Klasycznego Rachunku Zdań 1 Skróty: Język Klasycznego Rachunku Zdań zamiast Klasyczny Rachunek Zdań piszę

Bardziej szczegółowo

Lista 1 (elementy logiki)

Lista 1 (elementy logiki) Podstawy nauczania matematyki 1. Zdanie Lista 1 (elementy logiki) EE I rok W logice zdaniem logicznym nazywamy wyrażenie oznajmujące o którym można powiedzieć że jest prawdziwe lub fałszywe. Zdania z reguły

Bardziej szczegółowo

Podstawy Sztucznej Inteligencji (PSZT)

Podstawy Sztucznej Inteligencji (PSZT) Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Wnioskowanie logiczne i systemy eksperckie Systemy posługujące się logiką predykatów: część 3/3 Dzisiaj Uogólnienie Poprawność i pełność wnioskowania

Bardziej szczegółowo

Dalszy ciąg rachunku zdań

Dalszy ciąg rachunku zdań Dalszy ciąg rachunku zdań Wszystkie możliwe funktory jednoargumentowe p f 1 f 2 f 3 f 4 0 0 0 1 1 1 0 1 0 1 Wszystkie możliwe funktory dwuargumentowe p q f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 f 10 f 11 f

Bardziej szczegółowo

Zastosowanie logiki matematycznej w procesie weryfikacji wymagań oprogramowania

Zastosowanie logiki matematycznej w procesie weryfikacji wymagań oprogramowania Zastosowanie logiki matematycznej w procesie weryfikacji wymagań oprogramowania Testerzy oprogramowania lub osoby odpowiedzialne za zapewnienie jakości oprogramowania oprócz wykonywania testów mogą zostać

Bardziej szczegółowo

Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.

Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Elementy logiki. Klasyczny rachunek zdań. Elementy logiki Klasyczny rachunek zdań Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1 Spójniki

Bardziej szczegółowo

Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.

Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Elementy logiki. Klasyczny rachunek zdań. 1 Elementy logiki Klasyczny rachunek zdań Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza Elementy

Bardziej szczegółowo

Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu

Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu Witold Marciszewski: Wykład Logiki, 17 luty 2005, Collegium Civitas, Warszawa Uwagi wprowadzajace do reguł wnioskowania w systemie tabel analitycznych logiki pierwszego rzędu 1. Poniższe wyjaśnienie (akapit

Bardziej szczegółowo

Piotr Chrząstowski-Wachtel Uniwersytet Warszawski. Czy logika jest logiczna?

Piotr Chrząstowski-Wachtel Uniwersytet Warszawski. Czy logika jest logiczna? Piotr Chrząstowski-Wachtel Uniwersytet Warszawski Czy logika jest logiczna? Festiwal Nauki 2017 1 Jak zdefiniować logikę? Nie da się obejść bez logiki! Nawet podstawowe obserwacje podlegają rozumowaniu

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 14. Wprowadzenie do logiki intuicjonistycznej 1 Przedstawione na poprzednich wykładach logiki modalne możemy uznać

Bardziej szczegółowo

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka

Bardziej szczegółowo

Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I

Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl OSTRZEŻENIE Niniejszy plik nie zawiera wykładu z Metod dowodzenia...

Bardziej szczegółowo

Matematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 1

Matematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 1 Matematyka I BJiOR Semestr zimowy 2018/2019 Wykład 1 Zasady współpracy https://mat.ug.edu.pl/~matpz/ wykłady nie są obowiązkowe, ale nieobecności będą odnotowywane nieobecności nie należy usprawiedliwiać,

Bardziej szczegółowo

Logika Temporalna i Automaty Czasowe

Logika Temporalna i Automaty Czasowe Modelowanie i Analiza Systemów Informatycznych Logika Temporalna i Automaty Czasowe (1) Wprowadzenie do logiki temporalnej Paweł Głuchowski, Politechnika Wrocławska wersja 2.2 Program wykładów 1. Wprowadzenie

Bardziej szczegółowo

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne) Definicja 1: Tautologia jest to takie wyrażenie, którego wartość logiczna jest prawdą przy wszystkich możliwych wartościowaniach zmiennych

Bardziej szczegółowo

Wykład 1. Informatyka Stosowana. 1 października Informatyka Stosowana Wykład 1 1 października / 26

Wykład 1. Informatyka Stosowana. 1 października Informatyka Stosowana Wykład 1 1 października / 26 Wykład 1 Informatyka Stosowana 1 października 2018 Informatyka Stosowana Wykład 1 1 października 2018 1 / 26 Wykłady : 45h (w semestrze zimowym) (Egzamin) 30h (w semetrze letnim) (Egzamin) 3h lekcyjne

Bardziej szczegółowo

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH 5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH Temat, którym mamy się tu zająć, jest nudny i żmudny będziemy się uczyć techniki obliczania wartości logicznej zdań dowolnie złożonych. Po co? możecie zapytać.

Bardziej szczegółowo

Logika matematyczna i teoria mnogości (I) J. de Lucas

Logika matematyczna i teoria mnogości (I) J. de Lucas Logika matematyczna i teoria mnogości (I) J. de Lucas Ćwiczenie 1. (Zad. L. Newelskiego) Niech p oznacza zdanie Ala je, zaś q zdanie As wyje. Zapisz jako formu ly rachunku zdań nastȩpuj ace zdania: 1.1.

Bardziej szczegółowo

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań System aksjomatyczny logiki Budując logikę

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Algebra Boole a

Wstęp do Techniki Cyfrowej... Algebra Boole a Wstęp do Techniki Cyfrowej... Algebra Boole a Po co AB? Świetne narzędzie do analitycznego opisu układów logicznych. 1854r. George Boole opisuje swój system dedukcyjny. Ukoronowanie zapoczątkowanych w

Bardziej szczegółowo

Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych

Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych Przykładowe dowody formuł rachunku kwantyfikatorów w systemie tabel semantycznych Zapoznaj z poniŝszym tekstem reprezentującym wiedzę logiczną o wartościach logicznych będących interpretacjami formuł złoŝonych

Bardziej szczegółowo

Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie

Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie 3. Wykłady 5 i 6: Semantyka klasycznego rachunku zdań. Dotychczas rozwinęliśmy klasyczny rachunek na gruncie czysto syntaktycznym, a więc badaliśmy metodę sprawdzania, czy dana formuła B jest dowodliwa

Bardziej szczegółowo

Ćwiczenia do rozdziału 2, zestaw A: z książki Alfreda Tarskiego Wprowadzenie do logiki

Ćwiczenia do rozdziału 2, zestaw A: z książki Alfreda Tarskiego Wprowadzenie do logiki 0 1 Ćwiczenia do rozdziału 2, zestaw A: z książki Alfreda Tarskiego Wprowadzenie do logiki 2. W następujących dwóch prawach wyróżnić wyrażenia specyficznie matematyczne i wyrażenia z zakresu logiki (do

Bardziej szczegółowo

1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów

1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów 1. Elementy logiki matematycznej, rachunek zdań, funkcje zdaniowe, metody dowodzenia, rachunek predykatów Logika matematyczna, dział matematyki zajmujący się badaniem własności wnioskowania (dowodzenia)

Bardziej szczegółowo

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki Andrzej Wiśniewski Logika II Materiały do wykładu dla studentów kognitywistyki Wykład 5. Wprowadzenie do semantyki teoriomodelowej cz.5. Wynikanie logiczne 1 Na poprzednim wykładzie udowodniliśmy m.in.:

Bardziej szczegółowo

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 2 - Logika modalna Część 2 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 27 Plan wykładu

Bardziej szczegółowo

Jak wnioskują maszyny?

Jak wnioskują maszyny? Jak wnioskują maszyny? Andrzej Szałas informatyka + 1 Plan wykładu Plan wykładu Modelowanie wnioskowania Wyszukiwanie, a wnioskowanie Klasyczny rachunek zdań Diagramy Venna Wprowadzenie do automatycznego

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

Automatyka Treść wykładów: Literatura. Wstęp. Sygnał analogowy a cyfrowy. Bieżące wiadomości:

Automatyka Treść wykładów: Literatura. Wstęp. Sygnał analogowy a cyfrowy. Bieżące wiadomości: Treść wykładów: Automatyka dr inż. Szymon Surma szymon.surma@polsl.pl pok. 202, tel. +48 32 603 4136 1. Podstawy automatyki 1. Wstęp, 2. Różnice między sygnałem analogowym a cyfrowym, 3. Podstawowe elementy

Bardziej szczegółowo

Rachunek zdań. Zdanie w sensie logicznym jest to wyraŝenie jednoznacznie stwierdzające, na gruncie reguł danego języka, iŝ tak a

Rachunek zdań. Zdanie w sensie logicznym jest to wyraŝenie jednoznacznie stwierdzające, na gruncie reguł danego języka, iŝ tak a Zdanie w sensie logicznym jest to wyraŝenie jednoznacznie stwierdzające, na gruncie reguł danego języka, iŝ tak a tak jest alboŝe tak a tak nie jest. Wartość logiczna zdania jest czymś obiektywnym, to

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

Zestaw 1. Podaj zdanie odwrotne i przeciwstawne (kontrapozycję) dla każdego z następujących

Zestaw 1. Podaj zdanie odwrotne i przeciwstawne (kontrapozycję) dla każdego z następujących Zestaw 1 Zadanie 1. Podaj zdanie odwrotne i przeciwstawne (kontrapozycję) dla każdego z następujących zdań: a) p (q r). b) Jeśli x + y = 1, to x 2 + y 2 1. c) Jeśli 2 + 2 = 4, to 3 + 3 = 8. Zadanie 2.

Bardziej szczegółowo

Semantyka rachunku predykatów

Semantyka rachunku predykatów Relacje Interpretacja Wartość Spełnialność Logika obliczeniowa Instytut Informatyki Relacje Interpretacja Wartość Plan Plan Relacje O co chodzi? Znaczenie w logice Relacje 3 Interpretacja i wartościowanie

Bardziej szczegółowo

Definicja: alfabetem. słowem długością słowa

Definicja: alfabetem. słowem długością słowa Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa. Na

Bardziej szczegółowo

Operatory AND, OR, NOT, XOR Opracował: Andrzej Nowak Bibliografia:

Operatory AND, OR, NOT, XOR Opracował: Andrzej Nowak Bibliografia: Operatory logiczne Komputery i ich logika AND - && Podstawy programowania w C++ Operatory AND, OR, NOT, XOR Opracował: Andrzej Nowak Bibliografia: CPA: PROGRAMMING ESSENTIALS IN C++ https://www.netacad.com

Bardziej szczegółowo

Składnia rachunku predykatów pierwszego rzędu

Składnia rachunku predykatów pierwszego rzędu Początek Gramatyka Kwantyfikatory Poprawność Logika obliczeniowa Instytut Informatyki Początek Gramatyka Kwantyfikatory Poprawność Plan wykładu 1 Na (dobry) początek Zrozumieć słowa Oswoić znaki 2 Gramatyka

Bardziej szczegółowo

Architektura komputerów Wykład 2

Architektura komputerów Wykład 2 Architektura komputerów Wykład 2 Jan Kazimirski 1 Elementy techniki cyfrowej 2 Plan wykładu Algebra Boole'a Podstawowe układy cyfrowe bramki Układy kombinacyjne Układy sekwencyjne 3 Algebra Boole'a Stosowana

Bardziej szczegółowo

Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów

Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów Wprowadzenie do logiki Zdania, cz. III Język Klasycznego Rachunku Predykatów Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Plan na pytanie o odniesienie przedmiotowe zdań odpowiedź

Bardziej szczegółowo

dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia i ich zastosowań w przemyśle" POKL

dr inż. Rafał Klaus Zajęcia finansowane z projektu Rozwój i doskonalenie kształcenia i ich zastosowań w przemyśle POKL Technika cyfrowa w architekturze komputerów materiał do wykładu 2/3 dr inż. Rafał Klaus Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

Wprowadzenie do logiki Klasyczny Rachunek Zdań część 3

Wprowadzenie do logiki Klasyczny Rachunek Zdań część 3 Wprowadzenie do logiki Klasyczny Rachunek Zdań część 3 Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Plan gry: 1 Czym są zdania? 2 Język Klasycznego Rachunku Zdań syntaktyka 3 Język

Bardziej szczegółowo

1 Rachunek zdań. w(p) = 0 lub p 0 lub [p] = 0. a jeśli jest fałszywe to:

1 Rachunek zdań. w(p) = 0 lub p 0 lub [p] = 0. a jeśli jest fałszywe to: 1 Rachunek zdań Formuły zdaniowe (lub krócej: zdania) w klasycznym rachunku zdań składają się ze zmiennych zdaniowych nazywanych też zdaniami składowymi (oznaczane są zazwyczaj p, q, r,...) oraz operatorów

Bardziej szczegółowo

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl Metoda tabel syntetycznych (MTS) MTS

Bardziej szczegółowo

ĆWICZENIE 2. DEF. Mówimy, że formuła A wynika logicznie z formuł wartościowanie w, takie że w A. A,, A w KRZ, jeżeli nie istnieje

ĆWICZENIE 2. DEF. Mówimy, że formuła A wynika logicznie z formuł wartościowanie w, takie że w A. A,, A w KRZ, jeżeli nie istnieje ĆWICZENIE 2 Klasyczny Rachunek Zdań (KRZ): wynikanie logiczne, wnioskowanie, niezawodny schemat wnioskowania, wnioskowanie dedukcyjne, równoważność logiczna, iniowalność spójników za mocą formuły. DEF.

Bardziej szczegółowo

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się 1 Logika Zdanie w sensie logicznym, to zdanie oznajmujące, o którym da się jednoznacznie powiedzieć, czy jest fałszywe, czy prawdziwe. Zmienna zdaniowa- to symbol, którym zastępujemy dowolne zdanie. Zdania

Bardziej szczegółowo

Metoda Tablic Semantycznych

Metoda Tablic Semantycznych Procedura Plan Reguły Algorytm Logika obliczeniowa Instytut Informatyki Plan Procedura Reguły 1 Procedura decyzyjna Logiczna równoważność formuł Logiczna konsekwencja Procedura decyzyjna 2 Reguły α, β,

Bardziej szczegółowo

Rachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty

Rachunek predykatów. Formuły rachunku predykatów. Plan wykładu. Relacje i predykaty - przykłady. Relacje i predykaty Rachunek predykatów Wykład 4 Plan wykładu Relacje i predykaty Formuły rachunku predykatów Interpretacje Logiczna równoważność Metoda tabel Modele skończone i nieskończone Rozstrzygalność Relacje i predykaty

Bardziej szczegółowo

RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią.

RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią. Semantyczne twierdzenie o podstawianiu Jeżeli dana formuła rachunku zdań jest tautologią i wszystkie wystąpienia pewnej zmiennej zdaniowej w tej tautologii zastąpimy pewną ustaloną formułą, to otrzymana

Bardziej szczegółowo

Trzy razy o indukcji

Trzy razy o indukcji Trzy razy o indukcji Antoni Kościelski 18 października 01 1 Co to są liczby naturalne? Indukcja matematyczna wiąże się bardzo z pojęciem liczby naturalnej. W szkole zwykle najpierw uczymy się posługiwać

Bardziej szczegółowo

Michał Lipnicki (UAM) Logika 11 stycznia / 20

Michał Lipnicki (UAM) Logika 11 stycznia / 20 Logika Michał Lipnicki Zakład Logiki Stosowanej UAM 11 stycznia 2013 Michał Lipnicki (UAM) Logika 11 stycznia 2013 1 / 20 KRP wstęp Wstęp Rozważmy wnioskowanie: Każdy człowiek jest śmiertelny. Sokrates

Bardziej szczegółowo

8. SKRÓCONA METODA ZERO-JEDYNKOWA

8. SKRÓCONA METODA ZERO-JEDYNKOWA 8. SKRÓCONA METODA ZERO-JEDYNKOWA W rozdziale tym poznamy skróconą metodę zero-jedynkową. Zakłada ona umiejętność określania wartości logicznych «wstecz», a pozwoli nam dość sprawnie dowieść, że (a) pewien

Bardziej szczegółowo

Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych Instytut Automatyki i Robotyki Warszawa, 2015 Kody liczb całkowitych nieujemnych Kody liczbowe dzielimy na analityczne nieanalityczne (symboliczne)

Bardziej szczegółowo

Dowody założeniowe w KRZ

Dowody założeniowe w KRZ Dowody założeniowe w KRZ Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl w styczniu 2007 Jerzy Pogonowski (MEG) Dowody założeniowe w KRZ w styczniu 2007 1 / 10 Dowody

Bardziej szczegółowo