Drzewa Gomory-Hu Wprowadzenie. Drzewa Gomory-Hu. Jakub Š cki. 14 pa¹dziernika 2009

Wielkość: px
Rozpocząć pokaz od strony:

Download "Drzewa Gomory-Hu Wprowadzenie. Drzewa Gomory-Hu. Jakub Š cki. 14 pa¹dziernika 2009"

Transkrypt

1 Wprowadzenie Drzewa Gomory-Hu Jakub Š cki 14 pa¹dziernika 2009

2 Wprowadzenie 1 Wprowadzenie Podstawowe poj cia i fakty 2 Istnienie drzew Gomory-Hu 3 Algorytm budowy drzew 4 Problemy otwarte

3 Wprowadzenie Podstawowe poj cia i fakty Podstawowe poj cia i fakty Niech G = (V, E, c) b dzie grafem nieskierowanym z funkcj przepustowo±ci. Przez f ij oznaczamy maksymalny przepªyw mi dzy wierzchoªkami i oraz j. Denicja (przekrój) Przekrojem nazywamy dowolny podzbiór wierzchoªków grafu G. Wag przekroju C okre±lamy jako e1e2 E,e1 C,e2 / C c(e 1, e 2 )

4 Wprowadzenie Podstawowe poj cia i fakty Podstawowe poj cia i fakty Niech G = (V, E, c) b dzie grafem nieskierowanym z funkcj przepustowo±ci. Przez f ij oznaczamy maksymalny przepªyw mi dzy wierzchoªkami i oraz j. Denicja (przekrój) Przekrojem nazywamy dowolny podzbiór wierzchoªków grafu G. Wag przekroju C okre±lamy jako e1e2 E,e1 C,e2 / C c(e 1, e 2 ) Twierdzenie o maksymalnym przepªywie i minimalnym przekroju Niech G = (V, E, c) b dzie grafem nieskierowanym z funkcj przepustowo±ci. Warto± maksymalnego przepªywu z s do t jest równa minimalnej wadze przekroju rozdzielaj cego s od t.

5 Wprowadzenie Podstawowe poj cia i fakty Drzewo Gomory-Hu Drzewo Gomory-Hu Drzewem Gomory-Hu dla grafu G = (V, E, c) nazywamy takie wa»one drzewo T = (V, F, w),»e po usuni ciu kraw dzi e 1 e 2 F powstaªe spójne skªadowe wyznaczaj minimalny przekrój rozdzielaj cy e 1 i e 2, za± wag tego przekroju jest w(e 1 e 2 ).

6 Wprowadzenie Podstawowe poj cia i fakty Drzewo Gomory-Hu Drzewo Gomory-Hu Drzewem Gomory-Hu dla grafu G = (V, E, c) nazywamy takie wa»one drzewo T = (V, F, w),»e po usuni ciu kraw dzi e 1 e 2 F powstaªe spójne skªadowe wyznaczaj minimalny przekrój rozdzielaj cy e 1 i e 2, za± wag tego przekroju jest w(e 1 e 2 ). Twierdzenie Niech T = (V, F, w) b dzie drzewem Gomory-Hu dla grafu G = (V, E, c) oraz niech uv b dzie kraw dzi o minimalnej wadze na ±cie»ce od s do t w drzewie T. Oznaczmy przez K przekrój grafu wyznaczony prez spójne skªadowe drzewa T po usuni ciu kraw dzi uv. Wtedy K jest minimalnm przekrojem rozdzielaj cym u i v.

7 Wprowadzenie Podstawowe poj cia i fakty Chcemy pokaza,»e: f st = w(uv) Korzystamy z nierówno±ci trójk ta dla przepªywu. Dla a b oraz c a, c b: f ab min{f ac, f cb } Z nierówno±ci tej otrzymujemy: f st w(uv) Z drugiej strony, K to przekrój grafu, który rozdziela s i t, zatem f st w(uv)

8 Istnienie drzew Gomory-Hu Lemat o zawieraniu przekrojów Niech U b dzie minimalnym przekrojem rozdzielaj cym s i t w grae G oraz niech u, v U, u v. Wtedy istnieje minimalny przekrój rozdzielaj cy u i v zawarty w U. Stwierdzenie Niech A i B b d przekrojami w grae G. Wtedy c(a) + c(b) c(a B) + c(a B). Dowód: wystarczy narysowa.

9 Istnienie drzew Gomory-Hu Dowód lematu o zawieraniu przekrojów Niech X to dowolny spo±ród minimalnych przekrojów rozdzielaj cych u i v. Zachodzi jeden z dwóch przypadków.

10 Istnienie drzew Gomory-Hu Dowód lematu o zawieraniu przekrojów (2) Przypadek I, t / X Skoro c(x ) + c(u) c(x U) + c(x U)(ze stwierdzenia) oraz c(x U) c(u)(z minimalno±ci U), to c(x ) + c(u) c(x U) + c(x U) c(x U) + c(u), czyli c(x ) c(x U)

11 Istnienie drzew Gomory-Hu Dowód lematu o zawieraniu przekrojów (3) Przypadek II, t X Stosuj c stwierdzenie dla U oraz V \ X c(u) + c(x ) c(x \ U) + c(u \ X ) oraz c(x \ U) c(u)(z minimalno±ci U), to c(u) + c(x ) c(x \ U) + c(u \ X ) c(u) + c(u \ X ) czyli c(x ) c(u \ X )

12 Algorytm budowy drzew Budowa drzewa algorytm Zaczynamy od T = (V,, c), gdzie V = {V }, w ka»dym kroku dzielimy wierzchoªek z V, maj cy co najmniej 2 elementy, na 2 mniejsze wierzchoªki, algorytm ko«czy si, gdy V skªada si z V jednoelementowych wierzchoªków.

13 Algorytm budowy drzew Jeden krok algorytmu: 1 Niech v to taki wierzchoªek w drzewie T,»e s, t v, s t. Ukorzeniamy T w v. 2 Na podstawie grafu G budujemy graf G poprzez zwini cie wierzchoªków z ka»dego poddrzewa v. 3 Znajdujemy minimalny przekrój rozdzielaj cy s od t w G (W ). 4 Rozbijamy v na v W i v \ W, ª czymy te wierzchoªki kraw dzi i podpinamy do nich odpowiednio drzewa zawarte w W i te spoza W

14 Algorytm budowy drzew Dowód poprawno±ci Drzewo Gomory-Hu Drzewem Gomory-Hu dla grafu G = (V, E, c) nazywamy takie wa»one drzewo T = (V, F, w),»e po usuni ciu kraw dzi e 1 e 2 F powstaªe spójne skªadowe wyznaczaj minimalny przekrój rozdzielaj cy e 1 i e 2, za± wag tego przekroju jest w(e 1 e 2 ). 1 Z lematu o zawieraniu przekrojów, mo»emy rozpatrywa maksymalny przepªyw w grae ze zwini tymi zbiorami wierzchoªków. 2 Aby pokaza,»e drzewo jest skonstruowane poprawnie, udowadniamy niezmiennik: drzewo T jest drzewem Gomory-Hu, dla grafu G, w którym zwini to wierzchoªki zawarte w wierzchoªkach T.

15 Problemy otwarte Problemy otwarte Opisana metoda daje algorytm dziaªaj cy w czasie n-krotnego uruchomienia algorytmu znajdowania maksymalnego przepªywu. Hariharan, Kavitha oraz Panigrahi: randomizowany algorytm konstrukcji drzewa Gomory-Hu dla grafu bez wag w czasie O(nm polylog(n)) Czy da si uzyska taki czas dla grafów z dowolnymi wagami? Czy istnieje algorytm deterministyczny?

16 Problemy otwarte Bibliograa A. Schrijver, Combinatorial optimization: polyhedra and eciency, Volume 1 Springer, 2008 R. E. Gomory, T. C. Hu, Multi-terminal network ows, SIAM Journal 9, 1961 M. Kao Encyclopedia of Algorithms Springer, 2008

c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach

c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach 12: w sieciach Spis zagadnie«sieci przepªywowe przepªywy w sieciach ±cie»ka powi kszaj ca tw. Forda-Fulkersona Znajdowanie maksymalnego przepªywu Zastosowania przepªywów Sieci przepªywowe Sie przepªywowa

Bardziej szczegółowo

Algorytmy grafowe 2. Andrzej Jastrz bski. Akademia ETI. Politechnika Gda«ska Algorytmy grafowe 2

Algorytmy grafowe 2. Andrzej Jastrz bski. Akademia ETI. Politechnika Gda«ska Algorytmy grafowe 2 Algorytmy grafowe 2 Andrzej Jastrz bski Akademia ETI Minimalne drzewo spinaj ce Drzewem nazywamy spójny graf nie posiadaj cy cyklu. Liczba wierzchoªków drzewa jest o jeden wi ksza od liczby jego kraw dzi.

Bardziej szczegółowo

c Marcin Sydow Spójno± Grafy i Zastosowania Grafy Eulerowskie 2: Drogi i Cykle Grafy Hamiltonowskie Podsumowanie

c Marcin Sydow Spójno± Grafy i Zastosowania Grafy Eulerowskie 2: Drogi i Cykle Grafy Hamiltonowskie Podsumowanie 2: Drogi i Cykle Spis Zagadnie«drogi i cykle spójno± w tym sªaba i silna k-spójno± (wierzchoªkowa i kraw dziowa) dekompozycja grafu na bloki odlegªo±ci w grae i poj cia pochodne grafy Eulera i Hamiltona

Bardziej szczegółowo

Teoria grafów i sieci 1 / 58

Teoria grafów i sieci 1 / 58 Teoria grafów i sieci 1 / 58 Literatura 1 B.Korte, J.Vygen, Combinatorial optimization 2 D.Jungnickel, Graphs, Networks and Algorithms 3 M.Sysªo, N.Deo Metody optymalizacji dyskretnej z przykªadami w Turbo

Bardziej szczegółowo

Teoria grafów i sieci 1 / 188

Teoria grafów i sieci 1 / 188 Teoria grafów i sieci / Drzewa z wagami Drzewem z wagami nazywamy drzewo z korzeniem, w którym do ka»dego li±cia przyporz dkowana jest liczba nieujemna, nazywana wag tego li±cia. / Drzewa z wagami Drzewem

Bardziej szczegółowo

c Marcin Sydow Planarno± Grafy i Zastosowania Tw. Eulera 7: Planarno± Inne powierzchnie Dualno± Podsumowanie

c Marcin Sydow Planarno± Grafy i Zastosowania Tw. Eulera 7: Planarno± Inne powierzchnie Dualno± Podsumowanie 7: Spis zagadnie«twierdzenie Kuratowskiego Wªasno±ci planarno±ci Twierdzenie Eulera Grafy na innych powierzchniach Poj cie dualno±ci geometrycznej i abstrakcyjnej Graf Planarny Graf planarny to taki graf,

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na.

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na. Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zadanko 1 (12p.) Na imprezie w Noc Kupaªy s 44 dziewczyny. Nosz one 11 ró»nych imion, a dla ka»dego imienia s dokªadnie 4 dziewczyny o tym imieniu przy czym ka»da

Bardziej szczegółowo

Wykład 8. Drzewo rozpinające (minimum spanning tree)

Wykład 8. Drzewo rozpinające (minimum spanning tree) Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,

Bardziej szczegółowo

Wykªad 1. Wprowadzenie do teorii grafów

Wykªad 1. Wprowadzenie do teorii grafów Wykªad 1. Wprowadzenie do teorii grafów 1 / 112 Literatura 1 W. Lipski; Kombinatoryka dla programistów. 2 T. Cormen, Ch. E. Leiserson, R. L. Rivest; Wprowadzenie do algorytmów. 3 K. A. Ross, Ch. R. B.

Bardziej szczegółowo

Szeregowanie zada« Wykªad nr 6. dr Hanna Furma«czyk. 11 kwietnia 2013

Szeregowanie zada« Wykªad nr 6. dr Hanna Furma«czyk. 11 kwietnia 2013 Wykªad nr 6 11 kwietnia 2013 System otwarty - open shop O3 C max Problem O3 C max jest NP-trudny. System otwarty - open shop O3 C max Problem O3 C max jest NP-trudny. Dowód Redukcja PP O3 C max : bierzemy

Bardziej szczegółowo

Minimalne drzewa rozpinaj ce

Minimalne drzewa rozpinaj ce y i y i drzewa Spis zagadnie«y i drzewa i lasy cykle fundamentalne i rozci cia fundamentalne wªasno±ci cykli i rozci minimalne drzewa algorytm algorytm Drzewo y i spójnego, nieskierowanego grafu prostego

Bardziej szczegółowo

Teoria grafów i jej zastosowania. 1 / 126

Teoria grafów i jej zastosowania. 1 / 126 Teoria grafów i jej zastosowania. 1 / 126 Mosty królewieckie W Królewcu, na rzece Pregole znajduj si dwie wyspy poª czone ze sob, a tak»e z brzegami za pomoc siedmiu mostów, tak jak pokazuje rysunek 2

Bardziej szczegółowo

XVII Warmi«sko-Mazurskie Zawody Matematyczne

XVII Warmi«sko-Mazurskie Zawody Matematyczne 1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych

Bardziej szczegółowo

Przekroje Dedekinda 1

Przekroje Dedekinda 1 Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2

Bardziej szczegółowo

Mosty królewieckie, chi«ski listonosz i... kojarzenie maª»e«stw

Mosty królewieckie, chi«ski listonosz i... kojarzenie maª»e«stw Mosty królewieckie, chi«ski listonosz i... kojarzenie maª»e«stw 3 kwietnia 2014 roku 1 / 106 Mosty królewieckie W Królewcu, na rzece Pregole znajduj si dwie wyspy poª czone ze sob, a tak»e z brzegami za

Bardziej szczegółowo

TEORIA GRAFÓW. Graf skierowany dla ka»dej kraw dzi (oznaczanej tutaj jako ªuk) para wierzchoªków incydentnych jest par uporz dkowan {u, v}.

TEORIA GRAFÓW. Graf skierowany dla ka»dej kraw dzi (oznaczanej tutaj jako ªuk) para wierzchoªków incydentnych jest par uporz dkowan {u, v}. Podstawowe denicje: TEORIA GRAFÓW Graf (nieskierowany) G = (V, E) struktura skªadaj ca si ze: zbioru wierzchoªków V = {,,..., v n } oraz zbioru kraw dzi E = {e 1, e 2,..., e m }. Z ka»d kraw dzi e skojarzona

Bardziej szczegółowo

Algorytmy zwiazane z gramatykami bezkontekstowymi

Algorytmy zwiazane z gramatykami bezkontekstowymi Algorytmy zwiazane z gramatykami bezkontekstowymi Rozpoznawanie j zyków bezkontekstowych Problem rozpoznawania j zyka L polega na sprawdzaniu przynale»no±ci sªowa wej±ciowego x do L. Zakªadamy,»e j zyk

Bardziej szczegółowo

Omówienie zada«potyczki Algorytmiczne 2015

Omówienie zada«potyczki Algorytmiczne 2015 Omówienie zada« Biznes Najszybsze rozwi zanie: Jarosªaw Kwiecie«(0:24) Na pocz tku mamy kapitaª P (megabajtalarów) i dochody 0 (megabajtalary/rok). W dowolnym momencie mo»emy kupi maszyn typu i, co kosztuje

Bardziej szczegółowo

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt:

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: zdzedzej@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/zdzedzej () 5 pa¹dziernika 2016 1 / 1 Literatura podstawowa R. Rudnicki, Wykªady z analizy

Bardziej szczegółowo

Egzaminy i inne zadania. Semestr II.

Egzaminy i inne zadania. Semestr II. Egzaminy i inne zadania. Semestr II. Poni»sze zadania s wyborem zada«ze Wst pu do Informatyki z egzaminów jakie przeprowadziªem w ci gu ostatnich lat. Ponadto doª czyªem szereg zada«, które pojawiaªy si

Bardziej szczegółowo

Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II.

Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II. Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II. Poni»sze zadania s wyborem zada«z kolokwiów ze Wst pu do Informatyki jakie przeprowadziªem w ci gu ostatnich lat. Marek Zawadowski Zadanie 1 Napisz

Bardziej szczegółowo

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór

Bardziej szczegółowo

Grafy. 3. G = (V, E ) jest podgrafem G = (V, G), je±li V V i E E. 4. G = (V, G) jest sum grafów G = (V, E ), G = (V, E ), je±li V = V V, E = E E.

Grafy. 3. G = (V, E ) jest podgrafem G = (V, G), je±li V V i E E. 4. G = (V, G) jest sum grafów G = (V, E ), G = (V, E ), je±li V = V V, E = E E. Grafy 1. Denicja. Graf jest par G = (V, E), gdzie V jest zbiorem wierzchoªków, a E zbiorem kraw dzi. Kraw dzie s nieuporz dkowanymi parami wierzchoªków lub parami uporz dkowanymi (mówimy wtedy o grafach

Bardziej szczegółowo

Grafy. Andrzej Jastrz bski. Akademia ET I. Politechnika Gda«ska

Grafy. Andrzej Jastrz bski. Akademia ET I. Politechnika Gda«ska Andrzej Jastrz bski Akademia ET I Graf Grafem nazywamy par G = (V, E), gdzie V to zbiór wierzchoªków, E zbiór kraw dzi taki,»e E {{u, v} : u, v V u v}. Wierzchoªki v, u V s s siaduj ce je±li s poª czone

Bardziej szczegółowo

Minimalne drzewo rozpinaj ce

Minimalne drzewo rozpinaj ce Minimalne drzewo rozpinaj ce Autor projektu: dr Andrzej Mróz (UMK) Projekt pn. Wzmocnienie potencjaªu dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziaªania

Bardziej szczegółowo

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem

Bardziej szczegółowo

Podstawowepojęciateorii grafów

Podstawowepojęciateorii grafów 7 Podstawowepojęciateorii grafów Wiele sytuacji z»ycia codziennego mo»e by w wygodny sposób opisanych gracznie za pomoc rysunków skªadaj cych si ze zbioru punktów i linii ª cz cych pewne pary tych punktów.

Bardziej szczegółowo

Notatki z AiSD. Nr 2. 4 marca 2010 Algorytmy Zachªanne.

Notatki z AiSD. Nr 2. 4 marca 2010 Algorytmy Zachªanne. Notatki z AiSD. Nr 2. 4 marca 2010 Algorytmy Zachªanne. IIUWr. II rok informatyki. Przygotowaª: Krzysztof Lory± 1 Schemat ogólny. Typowe zadanie rozwi zywane metod zachªann ma charakter optymalizacyjny.

Bardziej szczegółowo

10a: Wprowadzenie do grafów

10a: Wprowadzenie do grafów 10a: Wprowadzenie do grafów Spis zagadnie«zastosowania grafów denicja grafu (i skierowanego), prostego, multigrafu drogi i cykle, spójno± w tym sªaba i silna drzewo i las: denicja, charakteryzacje, wªasno±ci

Bardziej szczegółowo

Funkcje, wielomiany. Informacje pomocnicze

Funkcje, wielomiany. Informacje pomocnicze Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a

Bardziej szczegółowo

c Marcin Sydow Wst p Grafy i Zastosowania Wierzchoªki 8: Kolorowanie Grafów Mapy Kraw dzie Zliczanie Podsumowanie

c Marcin Sydow Wst p Grafy i Zastosowania Wierzchoªki 8: Kolorowanie Grafów Mapy Kraw dzie Zliczanie Podsumowanie 8: Kolorowanie Grafów Spis zagadnie«kolorowanie wierzchoªków Kolorowanie map Kolorowanie kraw dzi Wielomian chromatyczny Zastosowania Problem kolorowania grafów ma wiele odmian (np. kolorowanie wierzchoªków,

Bardziej szczegółowo

Uogólnione drzewa Humana

Uogólnione drzewa Humana czyli ang. lopsided trees Seminarium Algorytmika 2009/2010 Plan prezentacji Sformuªowanie 1 Sformuªowanie problemów Wyj±ciowy problem Problem uogólniony 2 3 Modykacje problemu Zastosowania Plan prezentacji

Bardziej szczegółowo

Wektory w przestrzeni

Wektory w przestrzeni Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

Grafy i Zastosowania. 11: Twierdzenia Minimaksowe. c Marcin Sydow. Wst p: Tw. Halla. Dualno± Zbiory niezale»ne. Skojarzenia c.d.

Grafy i Zastosowania. 11: Twierdzenia Minimaksowe. c Marcin Sydow. Wst p: Tw. Halla. Dualno± Zbiory niezale»ne. Skojarzenia c.d. 11: Twierdzenia Minimaksowe Spis zagadnie«wst p: Kojarzenie Maª»e«stw i i twierdzenia minimaksowe i pokrycia (Tw. Gallai) w grafach (tw. Berge'a) w grafach dwudzielnych (tw. Königa, ) Pokrycia macierzy

Bardziej szczegółowo

Algorytmiczna teoria grafów Przepływy w sieciach.

Algorytmiczna teoria grafów Przepływy w sieciach. Algorytmiczna teoria grafów Sieć przepływowa Siecią przepływową S = (V, E, c) nazywamy graf zorientowany G = (V,E), w którym każdy łuk (u, v) E ma określoną przepustowość c(u, v) 0. Wyróżniamy dwa wierzchołki:

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Rachunek ró»niczkowy funkcji wielu zmiennych

Zadania z analizy matematycznej - sem. II Rachunek ró»niczkowy funkcji wielu zmiennych Zadania z analizy matematycznej - sem II Rachunek ró»niczkowy funkcji wielu zmiennych Denicja (Pochodne cz stkowe dla funkcji trzech zmiennych) Niech D R 3 b dzie obszarem oraz f : D R f = f y z) P 0 =

Bardziej szczegółowo

Stereometria (geometria przestrzenna)

Stereometria (geometria przestrzenna) Stereometria (geometria przestrzenna) Wzajemne poªo»enie prostych w przestrzeni Stereometria jest dziaªem geometrii, którego przedmiotem bada«s bryªy przestrzenne oraz ich wªa±ciwo±ci. Na pocz tek omówimy

Bardziej szczegółowo

Elementy teorii grafów, sposoby reprezentacji grafów w komputerze

Elementy teorii grafów, sposoby reprezentacji grafów w komputerze Elementy teorii grafów, sposoby reprezentacji grafów w komputerze Autor projektu: dr Andrzej Mróz (UMK) Projekt pn. Wzmocnienie potencjaªu dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych

Bardziej szczegółowo

Szybkie mno»enie wielomianów i macierzy

Szybkie mno»enie wielomianów i macierzy Szybkie mno»enie wielomianów i macierzy Šukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski Šukasz Kowalik (UW) FFT & FMM 1 / 30 Szybka Transformata Fouriera Šukasz Kowalik (UW) FFT & FMM 2 / 30

Bardziej szczegółowo

Problemy optymalizacyjne - zastosowania

Problemy optymalizacyjne - zastosowania Problemy optymalizacyjne - zastosowania www.qed.pl/ai/nai2003 PLAN WYKŁADU Zło ono obliczeniowa - przypomnienie Problemy NP-zupełne klika jest NP-trudna inne problemy NP-trudne Inne zadania optymalizacyjne

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Wstp. Warto przepływu to

Wstp. Warto przepływu to 177 Maksymalny przepływ Załoenia: sie przepływow (np. przepływ cieczy, prdu, danych w sieci itp.) bdziemy modelowa za pomoc grafów skierowanych łuki grafu odpowiadaj kanałom wierzchołki to miejsca połcze

Bardziej szczegółowo

Minimalne drzewo rozpinaj ce

Minimalne drzewo rozpinaj ce Minimalne drzewo rozpinaj ce dr Andrzej Mróz (UMK w Toruniu) 013 Projekt wspóªnansowany ze ±rodków Unii Europejskiej w ramach Europejskiego Funduszu Spoªecznego Projekt pn. Wzmocnienie potencjaªu dydaktycznego

Bardziej szczegółowo

Grafy i Zastosowania. 9: Digrafy (grafy skierowane) c Marcin Sydow. Digrafy. Porz dki cz ±ciowe * Euler i Hamilton. Turnieje

Grafy i Zastosowania. 9: Digrafy (grafy skierowane) c Marcin Sydow. Digrafy. Porz dki cz ±ciowe * Euler i Hamilton. Turnieje 9: (grafy skierowane) Spis zagadnie«cz ±ciowe Przykªady: gªosowanie wi kszo±ciowe, Digraf (graf skierowany) Digraf to równowa»ny termin z terminem graf skierowany (od ang. directed graph). W grafach skierowanych

Bardziej szczegółowo

Grafy i Zastosowania. 6: Najkrótsze ±cie»ki. c Marcin Sydow. Najkrótsze cie»ki. Warianty. Relaksacja DAG. Algorytm Dijkstry.

Grafy i Zastosowania. 6: Najkrótsze ±cie»ki. c Marcin Sydow. Najkrótsze cie»ki. Warianty. Relaksacja DAG. Algorytm Dijkstry. 6: ±cie»ki Spis zagadnie«problem najkrótszych ±cie»ek z jednym ¹ródªem Rozwi zanie sznurkowe kraw dzi Wariant 1: Wariant 2: nieujemne kraw dzie (Dijkstra) Wariant 3: dowolny graf () ±cie»ki dla wszystkich

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

Informacje pomocnicze

Informacje pomocnicze Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia

Bardziej szczegółowo

Wykªad 4. Droga i cykl Eulera i Hamiltona

Wykªad 4. Droga i cykl Eulera i Hamiltona Wykªad 4. Droga i cykl Eulera i Hamiltona 1 / 92 Grafy Eulera Droga i cykl Eulera Niech G b dzie grafem spójnym. Denicja Je»eli w grae G istnieje zamkni ta droga prosta zawieraj ca wszystkie kraw dzie

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

Elementy teorii grafów, sposoby reprezentacji grafów w komputerze

Elementy teorii grafów, sposoby reprezentacji grafów w komputerze Elementy teorii grafów, sposoby reprezentacji grafów w komputerze dr Andrzej Mróz (UMK w Toruniu) 2013 Projekt wspóªnansowany ze ±rodków Unii Europejskiej w ramach Europejskiego Funduszu Spoªecznego Projekt

Bardziej szczegółowo

Grafy i Zastosowania. 1: Wprowadzenie i poj cia podstawowe. c Marcin Sydow. Wprowadzenie. Podstawowe poj cia. Operacje na grafach.

Grafy i Zastosowania. 1: Wprowadzenie i poj cia podstawowe. c Marcin Sydow. Wprowadzenie. Podstawowe poj cia. Operacje na grafach. 1: i podstawowe Spis Zagadnie«zastosowania grafów denicja grafu (i skierowanego), prostego, multigrafu s siedztwo i incydencja izomorzm grafów stopnie wierzchoªków (w tym wej±ciowy i wyj±ciowy), lemat

Bardziej szczegółowo

Najkrótsze drogi w grafach z wagami

Najkrótsze drogi w grafach z wagami Najkrótsze drogi w grafach z wagami Autor projektu: dr Andrzej Mróz (UMK) Projekt pn. Wzmocnienie potencjaªu dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziaªania

Bardziej szczegółowo

Metoda tablic semantycznych. 1 Metoda tablic semantycznych

Metoda tablic semantycznych. 1 Metoda tablic semantycznych 1 Zarówno metoda tablic semantycznych, jak i rezolucji, to dosy sprawny algorytm do badania speªnialni±ci formuª, a wi c i tautologii. Chodzi w niej o wskazanie, je±li istnieje, modelu dla formuªy. Opiera

Bardziej szczegółowo

12: Znajdowanie najkrótszych ±cie»ek w grafach

12: Znajdowanie najkrótszych ±cie»ek w grafach 12: Znajdowanie najkrótszych ±cie»ek w grafach Spis zagadnie«problem najkrótszych ±cie»ek z jednym ¹ródªem Rozwi zanie sznurkowe kraw dzi Wariant 1: Wariant 2: nieujemne kraw dzie (Dijkstra) Wariant 3:

Bardziej szczegółowo

Podstawy matematyki dla informatyków

Podstawy matematyki dla informatyków Podstawy matematyki dla informatyków Wykªad 6 10 listopada 2011 W poprzednim odcinku... Zbiory A i B s równoliczne (tej samej mocy ), gdy istnieje bijekcja f : A 1 1 B. Piszemy A B lub A = B. na Moc zbioru

Bardziej szczegółowo

AM II /2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium

AM II /2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium AM II.1 2018/2019 (gr. 2 i 3) zadania przygotowawcze do I kolokwium Normy w R n, iloczyn skalarny sprawd¹ czy dana funkcja jest norm sprawd¹, czy dany zbiór jest kul w jakiej± normie i oblicz norm wybranego

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Algorytmy i struktury danych Cz ± druga Prowadz cy: dr Andrzej Mróz, Wydziaª Matematyki i Informatyki, Uniwersytet Mikoªaja Kopernika 1 / 82 Rekurencja Procedura (funkcja) rekurencyjna wywoªuje sam siebie.

Bardziej szczegółowo

Ekstremalna teoria grafów Filip Lurka V Liceum ogólnoksztaªc ce w Krakowie

Ekstremalna teoria grafów Filip Lurka V Liceum ogólnoksztaªc ce w Krakowie Ekstremala teoria grafów Filip Lurka V Liceum ogóloksztaªc ce w Krakowie 1 Ekstremala Teoria Grafów 1 Ekstremala Teoria Grafów Filip Lurka 1.1 Teoria Deicja 1.1 Klik azywamy graf peªy; ka»de dwa wierzchoªki

Bardziej szczegółowo

Bilansowanie systemu dystrybucyjnego (w zakresie punktów WR, czyli punktów z dobową rejestracją poboru) 16 października 2014 r.

Bilansowanie systemu dystrybucyjnego (w zakresie punktów WR, czyli punktów z dobową rejestracją poboru) 16 października 2014 r. Bilansowanie systemu dystrybucyjnego (w zakresie punktów WR, czyli punktów z dobową rejestracją poboru) 16 października 2014 r. Plan prezentacji 1. Wstęp założenia do bilansowania 2. Wyznaczenie ilości

Bardziej szczegółowo

Graf. Definicja marca / 1

Graf. Definicja marca / 1 Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych

Bardziej szczegółowo

Grafy i Zastosowania. 5: Drzewa Rozpinaj ce. c Marcin Sydow. Drzewa rozpinaj ce. Cykle i rozci cia fundamentalne. Zastosowania

Grafy i Zastosowania. 5: Drzewa Rozpinaj ce. c Marcin Sydow. Drzewa rozpinaj ce. Cykle i rozci cia fundamentalne. Zastosowania Grafy i Grafy i 5: Rozpinaj ce Spis zagadnie«grafy i i lasy cykle fundamentalne i wªasno±ci cykli i rozci przestrzenie cykli i rozci * : zastosowanie w sieciach elektrycznych minimalne * algorytm Kruskala*

Bardziej szczegółowo

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów *** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów I.1 Przestrze«towarów Podstawowe poj cia Rynek towarów

Bardziej szczegółowo

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza 165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie

Bardziej szczegółowo

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Drzewa Las - graf, który nie zawiera cykli Drzewo - las spójny Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Niech T graf o n wierzchołkach będący

Bardziej szczegółowo

Algorytmika Problemów Trudnych

Algorytmika Problemów Trudnych Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.

Bardziej szczegółowo

1 a + b 1 = 1 a + 1 b 1. (a + b 1)(a + b ab) = ab, (a + b)(a + b ab 1) = 0, (a + b)[a(1 b) + (b 1)] = 0,

1 a + b 1 = 1 a + 1 b 1. (a + b 1)(a + b ab) = ab, (a + b)(a + b ab 1) = 0, (a + b)[a(1 b) + (b 1)] = 0, XIII Warmi«sko-Mazurskie Zawody Matematyczne. Olsztyn 2015 Rozwi zania zada«dla szkóª ponadgimnazjalnych ZADANIE 1 Zakªadamy,»e a, b 0, 1 i a + b 1. Wykaza,»e z równo±ci wynika,»e a = -b 1 a + b 1 = 1

Bardziej szczegółowo

Najkrótsze drogi w grafach z wagami

Najkrótsze drogi w grafach z wagami Najkrótsze drogi w grafach z wagami dr Andrzej Mróz (UMK w Toruniu) 013 Projekt wspóªnansowany ze ±rodków Unii Europejskiej w ramach Europejskiego Funduszu Spoªecznego Projekt pn. Wzmocnienie potencjaªu

Bardziej szczegółowo

Minimalne drzewa rozpinające

Minimalne drzewa rozpinające KNM UŚ 26-28 listopada 2010 Ostrzeżenie Wprowadzenie Motywacja Definicje Niektóre pojęcia pojawiające się podczas tego referatu są naszymi autorskimi tłumaczeniami z języka angielskiego. Nie udało nam

Bardziej szczegółowo

c Marcin Sydow Podstawy Grafy i Zastosowania Kod Prüfera 3: Drzewa Drzewa ukorzenione * Drzewa binarne Zastosowania Podsumowanie

c Marcin Sydow Podstawy Grafy i Zastosowania Kod Prüfera 3: Drzewa Drzewa ukorzenione * Drzewa binarne Zastosowania Podsumowanie Grafy i Grafy i 3: Spis zagadnie«grafy i drzewo i las: denicja, charakteryzacje, wªasno±ci kodowanie Prüfera i zliczanie drzew etykietowanych (tw. Cayleya) drzewa drzewa zliczanie drzew binarnych (tw.

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

Stereometria. Zimowe Powtórki Maturalne. 22 lutego 2016 r.

Stereometria. Zimowe Powtórki Maturalne. 22 lutego 2016 r. Stereometria Zimowe Powtórki Maturalne 22 lutego 2016 r. 1. Przek tna sze±cianu o boku 1 ma dªugo± : 1. Przek tna sze±cianu o boku 1 ma dªugo± : 1 1. Przek tna sze±cianu o boku 1 ma dªugo± : 1 2 1. Przek

Bardziej szczegółowo

Wnioskowanie Boolowskie i teoria zbiorów przybli»onych

Wnioskowanie Boolowskie i teoria zbiorów przybli»onych Wnioskowanie Boolowskie i teoria zbiorów przybli»onych 4 Zbiory przybli»one Wprowadzenie do teorii zbiorów przybli»onych Zªo»ono± problemu szukania reduktów 5 Wnioskowanie Boolowskie w obliczaniu reduktów

Bardziej szczegółowo

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki.

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki. SPÓJNOŚĆ Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja równoważna: Graf jest spójny, gdy każde dwa wierzchołki są połączone ścieżką

Bardziej szczegółowo

Podstawowe algorytmy grafowe i ich zastosowania

Podstawowe algorytmy grafowe i ich zastosowania Podstawowe algorytmy grafowe i ich zastosowania Autor projektu: dr Andrzej Mróz (UMK) Projekt pn. Wzmocnienie potencjaªu dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany

Bardziej szczegółowo

Geometria Algebraiczna

Geometria Algebraiczna Geometria Algebraiczna Zadania domowe: seria 1 Zadania 1-11 to powtórzenie podstawowych poj z teorii kategorii. Zapewne rozwi zywali Pa«stwo te zadania wcze±niej, dlatego nie b d one omawiane na wiczeniach.

Bardziej szczegółowo

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1 Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem

Bardziej szczegółowo

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.

Bardziej szczegółowo

Indeksowane rodziny zbiorów

Indeksowane rodziny zbiorów Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T

Bardziej szczegółowo

. 0 0... 1 0. 0 0 0 0 1 gdzie wektory α i tworz baz ortonormaln przestrzeni E n

. 0 0... 1 0. 0 0 0 0 1 gdzie wektory α i tworz baz ortonormaln przestrzeni E n GAL II 2013-2014 A. Strojnowski str.45 Wykªad 20 Denicja 20.1 Przeksztaªcenie aniczne f : H H anicznej przestrzeni euklidesowej nazywamy izometri gdy przeksztaªcenie pochodne f : T (H) T (H) jest izometri

Bardziej szczegółowo

c Marcin Sydow Grafy i Zastosowania BFS DFS 4: Przeszukiwanie Grafów (BFS, DFS i zastosowania) DFS nieskierowane DFS skierowane Podsumowanie

c Marcin Sydow Grafy i Zastosowania BFS DFS 4: Przeszukiwanie Grafów (BFS, DFS i zastosowania) DFS nieskierowane DFS skierowane Podsumowanie 4: Przeszukiwanie Grafów (, i zastosowania) Spis zagadnie«przeszukiwanie grafów (rola, schemat ogólny, zastosowania) realizacje (kolejka, stos, rekurencja) przeszukiwanie wszerz zastosowania przeszukiwanie

Bardziej szczegółowo

Matematyka dyskretna. 1. Relacje

Matematyka dyskretna. 1. Relacje Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych Lista zada«. Nr 4. 9 kwietnia 2016 IIUWr. II rok informatyki. Algorytmy i Struktury Danych 1. (0pkt) Rozwi» wszystkie zadania dodatkowe. 2. (1pkt) Uªó» algorytm znajduj cy najta«sz drog przej±cia przez

Bardziej szczegółowo

Podstawy matematyki dla informatyków. Funkcje. Funkcje caªkowite i cz ±ciowe. Deniowanie funkcji. Wykªad pa¹dziernika 2012

Podstawy matematyki dla informatyków. Funkcje. Funkcje caªkowite i cz ±ciowe. Deniowanie funkcji. Wykªad pa¹dziernika 2012 Podstawy matematyki dla informatyków Wykªad 3 Funkcje 18 pa¹dziernika 2012 Deniowanie funkcji Funkcje caªkowite i cz ±ciowe Denicja wprost: f (x) = x + y f = λx. x + y Denicja warunkowa: { n/2, je±li n

Bardziej szczegółowo

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy

Bardziej szczegółowo

Lista 4. Kamil Matuszewski 22 marca 2016

Lista 4. Kamil Matuszewski 22 marca 2016 Lista 4 Kamil Matuszewski 22 marca 2016 1 2 3 4 5 6 7 8 9 10 Zadanie 2 Ułóż algorytm który dla danego n-wierzchołkowego drzewa i liczby k pokoloruje jak najwięcej wierzchołków tak, by na każdej ścieżce

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 1: GRY W POSTACI EKSTENSYWNEJ I NORMALNEJ

TEORIA GIER W EKONOMII WYKŁAD 1: GRY W POSTACI EKSTENSYWNEJ I NORMALNEJ TEORIA GIER W EKONOMII WYKŁAD : GRY W POSTACI EKSTENSYWNEJ I NORMALNEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Schemat gry. Początek gry. 2. Ciąg kolejnych posunięć

Bardziej szczegółowo

Znajdowanie skojarzeń na maszynie równoległej

Znajdowanie skojarzeń na maszynie równoległej 11 grudnia 2008 Spis treści 1 Skojarzenia w różnych klasach grafów Drzewa Grafy gęste Grafy regularne dwudzielne Claw-free graphs 2 Drzewa Skojarzenia w drzewach Fakt Wybierajac krawędź do skojarzenia

Bardziej szczegółowo

Elementy geometrii w przestrzeni R 3

Elementy geometrii w przestrzeni R 3 Elementy geometrii w przestrzeni R 3 Z.Šagodowski Politechnika Lubelska 29 maja 2016 Podstawowe denicje Wektorem nazywamy uporz dkowan par punktów (A,B) z których pierwszy nazywa si pocz tkiem a drugi

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Wykªad 4. Funkcje wielu zmiennych.

Wykªad 4. Funkcje wielu zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.

Bardziej szczegółowo

Materiaªy do Repetytorium z matematyki

Materiaªy do Repetytorium z matematyki Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (

Bardziej szczegółowo

i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017

i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017 i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski Uniwersytet Šódzki, Wydziaª Matematyki i Informatyki UŠ piotr@fulmanski.pl http://fulmanski.pl/zajecia/prezentacje/festiwalnauki2017/festiwal_wmii_2017_

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Wprowadzenie PWSZ Gªogów, 2009 Plan wykªadów Wprowadzenie, podanie zagadnie«, poj cie metody numerycznej i algorytmu numerycznego, obszar zainteresowa«i stosowalno±ci

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 203/4 Spis tre±ci Kodowanie i dekodowanie 4. Kodowanie a szyfrowanie..................... 4.2 Podstawowe poj cia........................

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof yjewski Mechatronika; S-I.in». 5 pa¹dziernika 6 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja. Tablic nast puj cej postaci a a... a n a a... a n A =... a m a m...

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5. Nr zadania Nr czynno ci... ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Etapy rozwi zania zadania Wprowadzenie oznacze : x, x, y poszukiwane liczby i zapisanie równania: x y lub: zapisanie

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 8

Języki formalne i automaty Ćwiczenia 8 Języki formalne i automaty Ćwiczenia 8 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Konwersja NFA do DFA... 2 Minimalizacja liczby stanów DFA... 4 Konwersja automatu DFA do

Bardziej szczegółowo