Odbiór i dekodowanie znaków ASCII za pomocą makiety cyfrowej. Znaki wysyłane przez komputer za pośrednictwem łącza RS-232.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Odbiór i dekodowanie znaków ASCII za pomocą makiety cyfrowej. Znaki wysyłane przez komputer za pośrednictwem łącza RS-232."

Transkrypt

1 Odbiór i dekodowanie znaków ASCII za pomocą makiety cyfrowej. Znaki wysyłane przez komputer za pośrednictwem łącza RS-232. Opracowanie: Andrzej Grodzki Do wysyłania znaków ASCII zastosujemy dostępny w systemie Windows program TERMINAL, ale może to być dowolny terminal, który komunikuje się za pośrednictwem złącza COM (RS-232). Nasza transmisja będzie dla uproszczenia układu ASYNCHRONICZNA, będzie odbywać się po jednej linii, tylko w jedną stronę z komputera do makiety cyfrowej. W TERMINALU ustawimy parametry transmisji: Liczba bitów na sekundę: Bity danych: 8 Parzystość: brak Bit STOPU: 1 Sterowanie przepływem: brak Na ekranie TERMINALA parametry wyświetlą się tak: Jeśli kogoś interesuje bardziej standard przesyłania danych RS-232, jego historia powstania i rozwoju, warianty, szczegółowe parametry, itp. w internetowej Wikipedii można znaleźć prawdziwe informacje na ten temat pod adresem: Zanim przejdziemy do szczegółowego schematu zapoznajmy się ze schematem blokowym zamieszczonym poniżej. Strona 1 z 7

2 Układ do odbioru i dekodowania znaków ASCII będzie składał się z pięciu bloków: 1. Translatora poziomów. 2. Rejestru przesuwnego. 3. Układu START/STOP. 4. Dzielnika częstotliwości. 5. Wyświetlacza siedmiosegmentowego. Oto krótkie omówienie budowy i działania poszczególnych bloków. Translator poziomów Ponieważ cyfrowe sygnały transmisji RS-232 wysyłane przez komputer posiadają poziomy napięcia rzędu +-12V, a nasz układ będzie zbudowany z tradycyjnych układów TTL musimy w pierwszej kolejności dokonać translacji sygnału ze standardu RS-232 do standardu TTL. Można tego dokonać wykorzystując specjalizowane układy scalone dedykowane do tego celu, ale my zastosujemy najprostszą metodę, użyjemy tzw. obcinacza napięcia zbudowanego na oporniku R1 i diodzie Zenera D1. Napięcie dodatnie na wyjściu takiego układu nie przekracza napięcia Zenera, które w naszym przypadku wynosi 5,1V. Po obniżeniu napięcia do bezpiecznego poziomu dla układów TTL pozostaje nam jeszcze odwrócenie sygnału ponieważ RS-232 nadaje w logice ujemnej, a TTL to logika dodatnia dlatego po obcinaczu znajduje się bramka NAND U pełniąca rolę inwertera. Strona 2 z 7

3 Poniżej przedstawiony jest obraz rzeczywistego sygnału przychodzącego z komputera (Kanał 1) i po obcięciu przez układ obcinacza napięcia (Kanał 2). Sygnał TTL przed (Kanał 1) i po inwersji, odwróceniu (Kanał2) Rejestr przesuwny Zadaniem rejestru przesuwnego jest zamiana informacji szeregowej na informacje równoległą (ang. SIPO Serial Input Parallel Output). Układ ten jest sercem całego układu. Zrozumienie działania układu jest kluczowe dla zrozumienia działania całego układu. Jak działa rejestr przesuwny? Do naszej pracy wykorzystujemy tylko dwa wejścia: szeregowe wejście danych DSa i wejście taktujące CP. W momencie każdego narastającego zbocza na wejściu taktującym CP stan logiczny z wejścia szeregowego danych jest przenoszony do pierwszego rejestru D0 (zapamiętany), jednocześnie dane które były przed nadejściem zbocza zostają przesunięte o jedną pozycję w prawo, czyli stan pierwszego rejestru D0 przesuwa się do rejestru D1, D1 do D2, D2 do D3 itd. Dane przesuwają się w prawo robiąc miejsce nowej danej w D0. Dana z ostatniego rejestru D7 ponieważ nie ma już następnego rejestru zostaje w wyniku takiego działania przesuwania utracona. Układ rejestru przesuwnego U posiada wyjścia wszystkich ośmiu wewnętrznych rejestrów, są to piny D0 do D7. Dzięki własności zapamiętywania i przesuwania informacji oraz posiadania wyjść ze wszystkich rejestrów świetnie nadaje się do przetwarzania informacji szeregowej na równoległą i do tego został on przede wszystkim skonstruowany. Można powiedzieć w momentach narastającego zbocza na CP, Strona 3 z 7

4 próbkujemy informacje szeregową, a wynik próbkowania jest zapamiętany zatrzaśnięty, w kolejnych rejestrach. Pobieramy kolejne w czasie próbki przebiegu szeregowego. Mamy do wykorzystania osiem rejestrów, które możemy nazwać również komórkami pamięci. Poniżej przedstawiamy rzeczywisty obraz z oscyloskopu, w kanale1 obraz danych, w kanale2 przebieg taktujący. Przebiegi pomierzone na naszej makiecie cyfrowej. Osiem próbek trafia do rejestru przesuwnego, z czego pierwsza próbka to bit STARTU, kolejne to kod binarny wysłanego znaku ASCII, od bitu najmłodszego LSB(2), do najstarszego MSB(8). Nasz znak ma kod binarny , co odpowiada 4A w układzie heksadecymalnym, a 112 w układzie oktalnym, łatwo sprawdzić w tabeli taki kod posiada duża litera J. Na podstawie schematu elektronicznego wyjaśnij dlaczego ostatni impuls taktujący jest w postaci tzw. szpilki, jego czas trwania jest tak krótki? Od czego zależy jego czas trwania? Układ START/STOP Zadaniem układu jest jednoznaczne rozpoznanie początku nadawania znaków ASCII przez komputer, ponieważ znak może przyjść w dowolnym momencie. Linia przesyłania znaków w stanie spoczynku jest w stanie logicznej jedynki. Układ START/STOP czeka na pierwsze opadające zbocze, bit STARTU. Kiedy ono nadejdzie następuje przełączenie układu zezwalające licznikowi przez 10 zliczanie impulsów zegarowych 576kHz. Po podziale przez 10 przebieg o częstotliwości 57,6kHz taktuje rejestr przesuwny w odpowiednich momentach przesuwając informacje od pierwszego rejestru D0 do Strona 4 z 7

5 ostatniego D7. Kiedy na wyjściu ostatniego rejestru D7 pojawi się opadające zbocze bitu STARTU, układ zatrzymuje licznik przez 10, do rejestru przestają docierać impulsy zegarowe, informacja szeregowa zostaje zapamiętana w poszczególnych rejestrach i jednocześnie zmieniona na informację równoległą stan każdego z rejestru jest obecny na wyjściach D0 do D7. Układ START/STOP to klasyczny układ przerzutnika RS zbudowany na bramkach NAND. Wyświetlacz siedmio-segmentowy Tego bloku nie musimy budować, jest on częścią makiety cyfrowej. Niestety zastosowane dekodery 7 segmentowe dekodują poprawnie tylko cyfry od 0 do 9 są to dekodery dziesiętne, dlatego podłączymy je w sposób niekonwencjonalny. Do pierwszych dwóch dekoderów podłączymy tylko trzy kolejne linie, czwarte wejścia dekoderów podłączymy do zera, a do ostatniego dekodera podłączymy tylko jedną linię. W taki sposób zespół trzech wyświetlaczy będzie wyświetlał liczbę binarną naszego znaku ASCII w systemie oktalnym, od 0 do 177(oct). Dla ułatwienia, aby nie trzeba było przeliczać, w tabeli znaków ASCII zamieszczonej poniżej znajduje się rubryka z gotowymi oktalnymi reprezentacjami, które powinny wyświetlić się na wyświetlaczach, przy prawidłowym połączeniu układu. Strona 5 z 7

6 Dzielnik częstotliwości Po co stosować dzielnik częstotliwości? dlaczego nie można taktować rejestru przesuwnego bezpośrednio z generatora zewnętrznego? Nasze generatory zewnętrzne nie posiadają wejścia wyzwalania zewnętrznego, nie potrafią w odpowiednim momencie zacząć generowanie zadanego przebiegu, są generatorami samobieżnymi bez możliwości synchronizacji z zewnętrznym przebiegiem, a taka synchronizacja jest konieczna. Generator taktujący powinien rozpocząć swoją pracę w momencie przyjścia znaku, dokładnie bitu STARTU, a nasz generator takiej funkcji nie posiada. Co w takim wypadku należy zrobić? Zbudować własny wewnętrzny generator na makiecie cyfrowej? Niekoniecznie, można zastosować inne prostsze rozwiązanie. Jeżeli zastosujemy dzielnik przez 10 (7490) taktowany częstotliwością 10 krotnie większą i zezwolimy na dzielenie, tworzenie sygnału taktującego rejestr przesuwny w momencie przyjścia bitu STARTU, to maksymalny błąd (opóźnienie) jaki może powstać wynosi max 1/10 okresu, ponieważ taktujemy rejestr przesuwny w ½ okresu ta 1/10 opóźnienia absolutnie nie zagraża prawidłowemu taktowaniu. Resetowanie układu Na koniec warto omówić funkcje resetowania układu. Założeniem układu była jego maksymalna prostota, ale jednocześnie prawidłowe, bezbłędne, dekodowanie znaków ASCII. Upraszczając układ zrezygnowaliśmy z możliwości dekodowania wielu znaków ASCII wysyłanych po sobie. Za każdym razem aby odebrać znak, należy układ ręcznie wyzerować, a dokładnie przygotować do odbioru znaku. Warunkiem koniecznym do prawidłowej pracy jest ustawienie rejestru przesuwnego w stanie samych jedynek we wszystkich rejestrach. Wyjaśnij dlaczego? Układ niestety nie posiada takiej funkcji, takiego wejścia SET, posiada jedynie wejście RESET zerowanie wszystkich rejestrów. Jak ustawić same jedynki? W czasie kiedy nie są nadawane znaki na wejściu rejestru (szynie danych) panuje logiczna jedynka, wystarczy 8 taktów zegara, aby jedynka z wejścia pojawiła się we wszystkich rejestrach, włączmy więc na krótko dzielnik częstotliwości wykorzystując drugie wejście zerujące, podłączone do wyjścia NIE Q generatora pojedynczych impulsów w makiecie. W czasie trwania pojedynczego impulsu dzielnik wygeneruje nam wystarczającą ilość impulsów, aby ustawić rejestry w stanie jeden, co będzie widoczne pojawieniem się liczby 177 na wyświetlaczach makiety, układ jest gotowy do odbioru kolejnego znaku. Wykaz elementów 1. U cztery dwuwejściowe bramki NAND z wejściem Schmitt a. 2. U licznik dziesiętny. 3. U3-74HC164 ośmiobitowy rejestr przesuwny typu SIPO 4. R1-rezystor 10 kiloomów. 5. D1-dioda Zener a 5V1 (5,1V) Strona 6 z 7

7 Cdn Strona 7 z 7

Układy sekwencyjne. Podstawowe informacje o układach cyfrowych i przerzutnikach (rodzaje, sposoby wyzwalania).

Układy sekwencyjne. Podstawowe informacje o układach cyfrowych i przerzutnikach (rodzaje, sposoby wyzwalania). Ćw. 10 Układy sekwencyjne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną układy rejestrów

Bardziej szczegółowo

UKŁADY CYFROWE. Układ kombinacyjny

UKŁADY CYFROWE. Układ kombinacyjny UKŁADY CYFROWE Układ kombinacyjny Układów kombinacyjnych są bramki. Jedną z cech układów kombinacyjnych jest możliwość przedstawienia ich działania (opisu) w postaci tabeli prawdy. Tabela prawdy podaje

Bardziej szczegółowo

Ćw. 7: Układy sekwencyjne

Ćw. 7: Układy sekwencyjne Ćw. 7: Układy sekwencyjne Wstęp Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną następujące układy

Bardziej szczegółowo

PRZERZUTNIKI: 1. Należą do grupy bloków sekwencyjnych, 2. podstawowe układy pamiętające

PRZERZUTNIKI: 1. Należą do grupy bloków sekwencyjnych, 2. podstawowe układy pamiętające PRZERZUTNIKI: 1. Należą do grupy bloków sekwencyjnych, 2. podstawowe układy pamiętające Zapamiętywanie wartości wybranych zmiennych binarnych, jak również sekwencji tych wartości odbywa się w układach

Bardziej szczegółowo

1. Poznanie właściwości i zasady działania rejestrów przesuwnych. 2. Poznanie właściwości i zasady działania liczników pierścieniowych.

1. Poznanie właściwości i zasady działania rejestrów przesuwnych. 2. Poznanie właściwości i zasady działania liczników pierścieniowych. Ćwiczenie 9 Rejestry przesuwne i liczniki pierścieniowe. Cel. Poznanie właściwości i zasady działania rejestrów przesuwnych.. Poznanie właściwości i zasady działania liczników pierścieniowych. Wprowadzenie.

Bardziej szczegółowo

dwójkę liczącą Licznikiem Podział liczników:

dwójkę liczącą Licznikiem Podział liczników: 1. Dwójka licząca Przerzutnik typu D łatwo jest przekształcić w przerzutnik typu T i zrealizować dzielnik modulo 2 - tzw. dwójkę liczącą. W tym celu wystarczy połączyć wyjście zanegowane Q z wejściem D.

Bardziej szczegółowo

Ćwiczenie D2 Przerzutniki. Wydział Fizyki UW

Ćwiczenie D2 Przerzutniki. Wydział Fizyki UW Wydział Fizyki UW Pracownia fizyczna i elektroniczna (w tym komputerowa) dla Inżynierii Nanostruktur (1100-1INZ27) oraz Energetyki i Chemii Jądrowej (1100-1ENFIZELEK2) Ćwiczenie 2 Przerzutniki Streszczenie

Bardziej szczegółowo

Cel. Poznanie zasady działania i budowy liczników zliczających ustaloną liczbę impulsów. Poznanie kodów BCD, 8421 i Rys. 9.1.

Cel. Poznanie zasady działania i budowy liczników zliczających ustaloną liczbę impulsów. Poznanie kodów BCD, 8421 i Rys. 9.1. Ćwiczenie 8 Liczniki zliczające, kody BCD, 8421, 2421 Cel. Poznanie zasady działania i budowy liczników zliczających ustaloną liczbę impulsów. Poznanie kodów BCD, 8421 i 2421. Wstęp teoretyczny. Przerzutniki

Bardziej szczegółowo

Zapoznanie się z podstawowymi strukturami liczników asynchronicznych szeregowych modulo N, zliczających w przód i w tył oraz zasadą ich działania.

Zapoznanie się z podstawowymi strukturami liczników asynchronicznych szeregowych modulo N, zliczających w przód i w tył oraz zasadą ich działania. Badanie liczników asynchronicznych - Ćwiczenie 4 1. el ćwiczenia Zapoznanie się z podstawowymi strukturami liczników asynchronicznych szeregowych modulo N, zliczających w przód i w tył oraz zasadą ich

Bardziej szczegółowo

UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak

UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak PODSTAWY TEORII UKŁADÓW CYFROWYCH UKŁADY SEKWENCYJNE Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Układem sekwencyjnym nazywamy układ

Bardziej szczegółowo

Przerzutnik ma pewną liczbę wejść i z reguły dwa wyjścia.

Przerzutnik ma pewną liczbę wejść i z reguły dwa wyjścia. Kilka informacji o przerzutnikach Jaki układ elektroniczny nazywa się przerzutnikiem? Przerzutnikiem bistabilnym jest nazywany układ elektroniczny, charakteryzujący się istnieniem dwóch stanów wyróżnionych

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa

Państwowa Wyższa Szkoła Zawodowa Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 6 BADANIE UKŁADÓW SEKWENCYJNYCH A. Cel ćwiczenia. - Poznanie przeznaczenia i zasady działania przerzutnika

Bardziej szczegółowo

Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10.

Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10. Projekt z przedmiotu Systemy akwizycji i przesyłania informacji Temat pracy: Licznik binarny zliczający do 10. Andrzej Kuś Aleksander Matusz Prowadzący: dr inż. Adam Stadler Układy cyfrowe przetwarzają

Bardziej szczegółowo

Podstawy Elektroniki dla Elektrotechniki. Liczniki synchroniczne na przerzutnikach typu D

Podstawy Elektroniki dla Elektrotechniki. Liczniki synchroniczne na przerzutnikach typu D AGH Katedra Elektroniki Podstawy Elektroniki dla Elektrotechniki Liczniki synchroniczne na przerzutnikach typu D Ćwiczenie 7 Instrukcja do ćwiczeń symulacyjnych 2016 r. 1 1. Wstęp Celem ćwiczenia jest

Bardziej szczegółowo

Plan wykładu. Architektura systemów komputerowych. Cezary Bolek

Plan wykładu. Architektura systemów komputerowych. Cezary Bolek Architektura systemów komputerowych Poziom układów logicznych. Układy sekwencyjne Cezary Bolek Katedra Informatyki Plan wykładu Układy sekwencyjne Synchroniczność, asynchroniczność Zatrzaski Przerzutniki

Bardziej szczegółowo

Układy sekwencyjne. 1. Czas trwania: 6h

Układy sekwencyjne. 1. Czas trwania: 6h Instytut Fizyki oświadczalnej UG Układy sekwencyjne 1. Czas trwania: 6h 2. Cele ćwiczenia Poznanie zasad działania podstawowych typów przerzutników: RS, -latch,, T, JK-MS. Poznanie zasad działania rejestrów

Bardziej szczegółowo

Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu

Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu Temat: Sprawdzenie poprawności działania przerzutników. Wstęp: Przerzutnik (z ang. flip-flop) jest to podstawowy element pamiętający każdego układu cyfrowego, przeznaczonego do przechowywania i ewentualnego

Bardziej szczegółowo

Cyfrowe układy sekwencyjne. 5 grudnia 2013 Wojciech Kucewicz 2

Cyfrowe układy sekwencyjne. 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowe układy sekwencyjne 5 grudnia 2013 Wojciech Kucewicz 2 Układy sekwencyjne Układy sekwencyjne to takie układy logiczne, których stan wyjść zależy nie tylko od aktualnego stanu wejść, lecz również

Bardziej szczegółowo

WYKŁAD 8 Przerzutniki. Przerzutniki są inną niż bramki klasą urządzeń elektroniki cyfrowej. Są najprostszymi układami pamięciowymi.

WYKŁAD 8 Przerzutniki. Przerzutniki są inną niż bramki klasą urządzeń elektroniki cyfrowej. Są najprostszymi układami pamięciowymi. 72 WYKŁAD 8 Przerzutniki. Przerzutniki są inną niż bramki klasą urządzeń elektroniki cyfrowej. ą najprostszymi układami pamięciowymi. PZEZUTNIK WY zapamietanie skasowanie Przerzutmik zapamiętuje zmianę

Bardziej szczegółowo

WFiIS CEL ĆWICZENIA WSTĘP TEORETYCZNY

WFiIS CEL ĆWICZENIA WSTĘP TEORETYCZNY WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Ćwiczenie

Bardziej szczegółowo

Komunikacja w mikrokontrolerach Laboratorium

Komunikacja w mikrokontrolerach Laboratorium Laboratorium Ćwiczenie 4 Magistrala SPI Program ćwiczenia: konfiguracja transmisji danych między mikrokontrolerem a cyfrowym czujnikiem oraz sterownikiem wyświetlaczy 7-segmentowych przy użyciu magistrali

Bardziej szczegółowo

Statyczne i dynamiczne badanie przerzutników - ćwiczenie 2

Statyczne i dynamiczne badanie przerzutników - ćwiczenie 2 tatyczne i dynamiczne badanie przerzutników - ćwiczenie 2. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami przerzutników w wersji TTL realizowanymi przy wykorzystaniu bramek logicznych NAND oraz

Bardziej szczegółowo

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE. Wydział Informatyki, Elektroniki i Telekomunikacji LABORATORIUM.

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE. Wydział Informatyki, Elektroniki i Telekomunikacji LABORATORIUM. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Elektroniki LABORATORIUM Elektronika LICZNIKI ELWIS Rev.1.0 1. Wprowadzenie Celem

Bardziej szczegółowo

Liczniki, rejestry lab. 07 Układy sekwencyjne cz. 1

Liczniki, rejestry lab. 07 Układy sekwencyjne cz. 1 Liczniki, rejestry lab. 07 Układy sekwencyjne cz. 1 PODSTAWY TECHNIKI CYFROWEJ I MIKROPROCESOROWEJ EIP KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII WWW.KEIASPE.AGH.EDU.PL AKADEMIA

Bardziej szczegółowo

Ćwiczenie MMLogic 002 Układy sekwencyjne cz. 2

Ćwiczenie MMLogic 002 Układy sekwencyjne cz. 2 Ćwiczenie MMLogic 002 Układy sekwencyjne cz. 2 TECHNIKA MIKROPROCESOROWA 3EB KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII WWW.KEIASPE.AGH.EDU.PL AKADEMIA GÓRNICZO-HUTNICZA WWW.AGH.EDU.PL

Bardziej szczegółowo

U 2 B 1 C 1 =10nF. C 2 =10nF

U 2 B 1 C 1 =10nF. C 2 =10nF Dynamiczne badanie przerzutników - Ćwiczenie 3. el ćwiczenia Zapoznanie się z budową i działaniem przerzutnika astabilnego (multiwibratora) wykonanego w technice TTL oraz zapoznanie się z działaniem przerzutnika

Bardziej szczegółowo

Układy kombinacyjne - przypomnienie

Układy kombinacyjne - przypomnienie SWB - Układy sekwencyjne - wiadomości podstawowe - wykład 4 asz 1 Układy kombinacyjne - przypomnienie W układzie kombinacyjnym wyjście zależy tylko od wejść, SWB - Układy sekwencyjne - wiadomości podstawowe

Bardziej szczegółowo

Podstawy elektroniki cyfrowej dla Inżynierii Nanostruktur. Piotr Fita

Podstawy elektroniki cyfrowej dla Inżynierii Nanostruktur. Piotr Fita Podstawy elektroniki cyfrowej dla Inżynierii Nanostruktur Piotr Fita Elektronika cyfrowa i analogowa Układy analogowe - przetwarzanie sygnałów, których wartości zmieniają się w sposób ciągły w pewnym zakresie

Bardziej szczegółowo

Badanie układów średniej skali integracji - ćwiczenie Cel ćwiczenia. 2. Wykaz przyrządów i elementów: 3. Przedmiot badań

Badanie układów średniej skali integracji - ćwiczenie Cel ćwiczenia. 2. Wykaz przyrządów i elementów: 3. Przedmiot badań adanie układów średniej skali integracji - ćwiczenie 6. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi układami SSI (Średniej Skali Integracji). Przed wykonaniem ćwiczenia należy zapoznać

Bardziej szczegółowo

Podstawy Techniki Cyfrowej Liczniki scalone

Podstawy Techniki Cyfrowej Liczniki scalone Podstawy Techniki Cyfrowej Liczniki scalone Liczniki scalone są budowane zarówno jako asynchroniczne (szeregowe) lub jako synchroniczne (równoległe). W liczniku równoległym sygnał zegarowy jest doprowadzony

Bardziej szczegółowo

LEKCJA. TEMAT: Funktory logiczne.

LEKCJA. TEMAT: Funktory logiczne. TEMAT: Funktory logiczne. LEKCJA 1. Bramką logiczną (funktorem) nazywa się układ elektroniczny realizujący funkcje logiczne jednej lub wielu zmiennych. Sygnały wejściowe i wyjściowe bramki przyjmują wartość

Bardziej szczegółowo

Wstęp działanie i budowa nadajnika

Wstęp działanie i budowa nadajnika Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie LABORATORIUM Teoria Automatów Temat ćwiczenia Górnik L.p. Imię i nazwisko Grupa ćwiczeniowa: Poniedziałek 8.000 Ocena Podpis 1. 2. 3. 4. Krzysztof

Bardziej szczegółowo

LICZNIKI Liczniki scalone serii 749x

LICZNIKI Liczniki scalone serii 749x LABOATOIUM PODSTAWY ELEKTONIKI LICZNIKI Liczniki scalone serii 749x Cel ćwiczenia Zapoznanie się z budową i zasadą działania liczników synchronicznych i asynchronicznych. Poznanie liczników dodających

Bardziej szczegółowo

Ćw. 9 Przerzutniki. 1. Cel ćwiczenia. 2. Wymagane informacje. 3. Wprowadzenie teoretyczne PODSTAWY ELEKTRONIKI MSIB

Ćw. 9 Przerzutniki. 1. Cel ćwiczenia. 2. Wymagane informacje. 3. Wprowadzenie teoretyczne PODSTAWY ELEKTRONIKI MSIB Ćw. 9 Przerzutniki 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi elementami sekwencyjnymi, czyli przerzutnikami. Zostanie przedstawiona zasada działania przerzutników oraz sposoby

Bardziej szczegółowo

Podstawowe elementy układów cyfrowych układy sekwencyjne. Rafał Walkowiak

Podstawowe elementy układów cyfrowych układy sekwencyjne. Rafał Walkowiak Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak 3.12.2015 Przypomnienie - podział układów cyfrowych Układy kombinacyjne pozbawione właściwości pamiętania stanów, realizujące funkcje

Bardziej szczegółowo

Uniwersalny asynchroniczny. UART Universal Asynchronous Receier- Transmiter

Uniwersalny asynchroniczny. UART Universal Asynchronous Receier- Transmiter UART Universal Asynchronous Receier- Transmiter Cel projektu: Zbudowanie układu transmisji znaków z komputera na wyświetlacz zamontowany na płycie Spartan-3AN, poprzez łacze RS i program TeraTerm. Laboratorium

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW

LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW POLITECHNIKA POZNAŃSKA FILIA W PILE LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW numer ćwiczenia: data wykonania ćwiczenia: data oddania sprawozdania: OCENA: 6 21.11.2002 28.11.2002 tytuł ćwiczenia: wykonawcy:

Bardziej szczegółowo

CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE

CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 5 str. 1/16 ĆWICZENIE 5 CYFROWE UKŁADY SCALONE STOSOWANE W AUTOMATYCE 1.CEL ĆWICZENIA: zapoznanie się z podstawowymi elementami cyfrowymi oraz z

Bardziej szczegółowo

Temat: Projektowanie i badanie liczników synchronicznych i asynchronicznych. Wstęp:

Temat: Projektowanie i badanie liczników synchronicznych i asynchronicznych. Wstęp: Temat: Projektowanie i badanie liczników synchronicznych i asynchronicznych. Wstęp: Licznik elektroniczny - układ cyfrowy, którego zadaniem jest zliczanie wystąpień sygnału zegarowego. Licznik złożony

Bardziej szczegółowo

Cyfrowe Elementy Automatyki. Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem

Cyfrowe Elementy Automatyki. Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem Cyfrowe Elementy Automatyki Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów,

Bardziej szczegółowo

Układy sekwencyjne. 1. Czas trwania: 6h

Układy sekwencyjne. 1. Czas trwania: 6h Instytut Fizyki oświadczalnej UG Układy sekwencyjne 1. Czas trwania: 6h 2. Cele ćwiczenia Poznanie zasad działania podstawowych typów przerzutników: RS, -latch,, T, JK-MS. Poznanie zasad działania rejestrów

Bardziej szczegółowo

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej

Bardziej szczegółowo

Podstawy Elektroniki dla Elektrotechniki. Układy cyfrowe - bramki logiczne i przerzutniki

Podstawy Elektroniki dla Elektrotechniki. Układy cyfrowe - bramki logiczne i przerzutniki AGH Katedra Elektroniki Podstawy Elektroniki dla Elektrotechniki Układy cyfrowe - bramki logiczne i przerzutniki Ćwiczenie 6a, 6b Instrukcja do ćwiczeń symulacyjnych (6a) Instrukcja do ćwiczeń sprzętowych

Bardziej szczegółowo

Ćwiczenie 27C. Techniki mikroprocesorowe Badania laboratoryjne wybranych układów synchronicznych

Ćwiczenie 27C. Techniki mikroprocesorowe Badania laboratoryjne wybranych układów synchronicznych Ćwiczenie 27C Techniki mikroprocesorowe Badania laboratoryjne wybranych układów synchronicznych Cel ćwiczenia Poznanie budowy i zasad działania oraz właściwości układów synchronicznych, aby zapewnić podstawy

Bardziej szczegółowo

Przerzutniki. Układy logiczne sekwencyjne odpowiedź zależy od stanu układu przed pobudzeniem

Przerzutniki. Układy logiczne sekwencyjne odpowiedź zależy od stanu układu przed pobudzeniem 2-3-29 Przerzutniki Układy logiczne sekwencyjne odpowiedź zależy od stanu układu przed pobudzeniem (dotychczas mówiliśmy o układach logicznych kombinatorycznych - stan wyjść określony jednoznacznie przez

Bardziej szczegółowo

Ćwiczenie 6. Przerzutniki bistabilne (Flip-Flop) Cel

Ćwiczenie 6. Przerzutniki bistabilne (Flip-Flop) Cel Ćwiczenie 6 Przerzutniki bistabilne (Flip-Flop) Cel Poznanie zasady działania i charakterystycznych właściwości różnych typów przerzutników bistabilnych. Wstęp teoretyczny. Przerzutniki Flip-flop (FF),

Bardziej szczegółowo

Automatyzacja i robotyzacja procesów produkcyjnych

Automatyzacja i robotyzacja procesów produkcyjnych Automatyzacja i robotyzacja procesów produkcyjnych Instrukcja laboratoryjna Technika cyfrowa Opracował: mgr inż. Krzysztof Bodzek Cel ćwiczenia. Celem ćwiczenia jest zapoznanie studenta z zapisem liczb

Bardziej szczegółowo

Tranzystor JFET i MOSFET zas. działania

Tranzystor JFET i MOSFET zas. działania Tranzystor JFET i MOSFET zas. działania brak kanału v GS =v t (cutoff ) kanał otwarty brak kanału kanał otwarty kanał zamknięty w.2, p. kanał zamknięty Co było na ostatnim wykładzie? Układy cyfrowe Najczęściej

Bardziej szczegółowo

f we DZIELNIKI I PODZIELNIKI CZĘSTOTLIWOŚCI Dzielnik częstotliwości: układ dający impuls na wyjściu co P impulsów na wejściu

f we DZIELNIKI I PODZIELNIKI CZĘSTOTLIWOŚCI Dzielnik częstotliwości: układ dający impuls na wyjściu co P impulsów na wejściu DZIELNIKI I PODZIELNIKI CZĘSTOTLIWOŚCI Dzielnik częstotliwości: układ dający impuls na wyjściu co P impulsów na wejściu f wy f P Podzielnik częstotliwości: układ, który na każde p impulsów na wejściu daje

Bardziej szczegółowo

Instrukcja do ćwiczenia : Matryca komutacyjna

Instrukcja do ćwiczenia : Matryca komutacyjna Instrukcja do ćwiczenia : Matryca komutacyjna 1. Wstęp Każdy kanał w systemach ze zwielokrotnieniem czasowym jest jednocześnie określany przez swoją współrzędną czasową T i współrzędną przestrzenną S.

Bardziej szczegółowo

Krótkie przypomnienie

Krótkie przypomnienie Krótkie przypomnienie Prawa de Morgana: Kod Gray'a A+ B= Ā B AB= Ā + B Układ kombinacyjne: Tablicy prawdy Symbolu graficznego Równania Boole a NOR Negative-AND w.11, p.1 XOR Układy arytmetyczne Cyfrowe

Bardziej szczegółowo

Ćwiczenie 29 Temat: Układy koderów i dekoderów. Cel ćwiczenia

Ćwiczenie 29 Temat: Układy koderów i dekoderów. Cel ćwiczenia Ćwiczenie 29 Temat: Układy koderów i dekoderów. Cel ćwiczenia Poznanie zasad działania układów koderów. Budowanie koderów z podstawowych bramek logicznych i układu scalonego Czytanie schematów elektronicznych,

Bardziej szczegółowo

Politechnika Wrocławska, Wydział PPT Laboratorium z Elektroniki i Elektrotechniki

Politechnika Wrocławska, Wydział PPT Laboratorium z Elektroniki i Elektrotechniki Politechnika Wrocławska, Wydział PP 1. Cel ćwiczenia Zapoznanie z wybranymi cyfrowymi układami sekwencyjnymi. Poznanie właściwości, zasad działania i sposobów realizacji przerzutników oraz liczników. 2.

Bardziej szczegółowo

Podstawy działania układów cyfrowych...2 Systemy liczbowe...2 Kodowanie informacji...3 Informacja cyfrowa...4 Bramki logiczne...

Podstawy działania układów cyfrowych...2 Systemy liczbowe...2 Kodowanie informacji...3 Informacja cyfrowa...4 Bramki logiczne... Podstawy działania układów cyfrowych...2 Systemy liczbowe...2 Kodowanie informacji...3 Informacja cyfrowa...4 Bramki logiczne...4 Podział układów logicznych...6 Cyfrowe układy funkcjonalne...8 Rejestry...8

Bardziej szczegółowo

4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ

4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ 4. UKŁADY FUNKCJONALNE TECHNIKI CYFROWEJ 4.1. UKŁADY KONWERSJI KODÓW 4.1.1. Kody Kod - sposób reprezentacji sygnału cyfrowego za pomocą grupy sygnałów binarnych: Sygnał cyfrowy wektor bitowy Gdzie np.

Bardziej szczegółowo

LICZNIKI PODZIAŁ I PARAMETRY

LICZNIKI PODZIAŁ I PARAMETRY LICZNIKI PODZIAŁ I PARAMETRY Licznik jest układem służącym do zliczania impulsów zerojedynkowych oraz zapamiętywania ich liczby. Zależnie od liczby n przerzutników wchodzących w skład licznika pojemność

Bardziej szczegółowo

Modelowanie liczników w języku Verilog i ich implementacja w strukturze FPGA

Modelowanie liczników w języku Verilog i ich implementacja w strukturze FPGA Modelowanie liczników w języku Verilog i ich implementacja w strukturze FPGA Licznik binarny Licznik binarny jest najprostszym i najpojemniejszym licznikiem. Kod 4 bitowego synchronicznego licznika binarnego

Bardziej szczegółowo

KATEDRA ELEKTRONIKI AGH WYDZIAŁ EAIIE. Dydaktyczny model 4-bitowego przetwornika C/A z siecią rezystorów o wartościach wagowych

KATEDRA ELEKTRONIKI AGH WYDZIAŁ EAIIE. Dydaktyczny model 4-bitowego przetwornika C/A z siecią rezystorów o wartościach wagowych KATEDRA ELEKTRONIKI AGH WYDZIAŁ EAIIE Przetworniki A/C i C/A Data wykonania LABORATORIUM TECHNIKI CYFROWEJ Skład zespołu: Dydaktyczny model 4-bitowego przetwornika C/A z siecią rezystorów o wartościach

Bardziej szczegółowo

Podstawy Informatyki Elementarne podzespoły komputera

Podstawy Informatyki Elementarne podzespoły komputera Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Reprezentacja informacji Podstawowe bramki logiczne 2 Przerzutniki Przerzutnik SR Rejestry Liczniki 3 Magistrala Sygnały

Bardziej szczegółowo

Interfejsy. w systemach pomiarowych. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

Interfejsy. w systemach pomiarowych. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Interfejsy w systemach pomiarowych Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Interfejsy w systemach pomiarowych Układ (topologia) systemu pomiarowe może być układem gwiazdy

Bardziej szczegółowo

Podstawy elektroniki cz. 2 Wykład 2

Podstawy elektroniki cz. 2 Wykład 2 Podstawy elektroniki cz. 2 Wykład 2 Elementarne prawa Trzy elementarne prawa 2 Prawo Ohma Stosunek natężenia prądu płynącego przez przewodnik do napięcia pomiędzy jego końcami jest stały R U I 3 Prawo

Bardziej szczegółowo

Elementy struktur cyfrowych. Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych.

Elementy struktur cyfrowych. Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych. Elementy struktur cyfrowych Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych. Magistrale W układzie bank rejestrów służy do przechowywania danych. Wybór źródła

Bardziej szczegółowo

Liniowe układy scalone. Elementy miernictwa cyfrowego

Liniowe układy scalone. Elementy miernictwa cyfrowego Liniowe układy scalone Elementy miernictwa cyfrowego Wielkości mierzone Czas Częstotliwość Napięcie Prąd Rezystancja, pojemność Przesunięcie fazowe Czasomierz cyfrowy f w f GW g N D L start stop SB GW

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI. Jakub Kaźmierczak. 2.1 Sekwencyjne układy pamiętające

LABORATORIUM ELEKTRONIKI. Jakub Kaźmierczak. 2.1 Sekwencyjne układy pamiętające 2 Cyfrowe układy sekwencyjne Cel ćwiczenia LABORATORIUM ELEKTRONIKI Celem ćwiczenia jest zapoznanie się z cyfrowymi elementami pamiętającymi, budową i zasada działania podstawowych przerzutników oraz liczników

Bardziej szczegółowo

Podstawowe układy cyfrowe

Podstawowe układy cyfrowe ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 4 Podstawowe układy cyfrowe Grupa 6 Prowadzący: Roman Płaneta Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi,

Bardziej szczegółowo

TEMAT: PROJEKTOWANIE I BADANIE PRZERZUTNIKÓW BISTABILNYCH

TEMAT: PROJEKTOWANIE I BADANIE PRZERZUTNIKÓW BISTABILNYCH Praca laboratoryjna 2 TEMAT: PROJEKTOWANIE I BADANIE PRZERZUTNIKÓW BISTABILNYCH Cel pracy poznanie zasad funkcjonowania przerzutników różnych typów w oparciu o różne rozwiązania układowe. Poznanie sposobów

Bardziej szczegółowo

Statyczne badanie przerzutników - ćwiczenie 3

Statyczne badanie przerzutników - ćwiczenie 3 Statyczne badanie przerzutników - ćwiczenie 3. Cel ćwiczenia Zapoznanie się z podstawowymi strukturami przerzutników w wersji TTL realizowanymi przy wykorzystaniu bramek logicznych NAND oraz NO. 2. Wykaz

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI PRZERZUTNIKI

LABORATORIUM PODSTAWY ELEKTRONIKI PRZERZUTNIKI LABORATORIUM PODSTAWY ELETRONII PRZERZUTNII el ćwiczenia Zapoznanie się z budową i zasada działania przerzutników synchronicznych jak i asynchronicznych. Poznanie przerzutników asynchronicznych odniesione

Bardziej szczegółowo

Układy czasowo-licznikowe w systemach mikroprocesorowych

Układy czasowo-licznikowe w systemach mikroprocesorowych Układy czasowo-licznikowe w systemach mikroprocesorowych 1 W każdym systemie mikroprocesorowym znajduje zastosowanie układ czasowy lub układ licznikowy Liczba liczników stosowanych w systemie i ich długość

Bardziej szczegółowo

Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak Wersja

Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak Wersja Podstawowe elementy układów cyfrowych układy sekwencyjne Rafał Walkowiak Wersja 0.1 29.10.2013 Przypomnienie - podział układów cyfrowych Układy kombinacyjne pozbawione właściwości pamiętania stanów, realizujące

Bardziej szczegółowo

a) dolno przepustowa; b) górno przepustowa; c) pasmowo przepustowa; d) pasmowo - zaporowa.

a) dolno przepustowa; b) górno przepustowa; c) pasmowo przepustowa; d) pasmowo - zaporowa. EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2009/2010 Zadania dla grupy elektroniczno-telekomunikacyjnej na zawody I. stopnia 1 Na rysunku przedstawiony jest schemat

Bardziej szczegółowo

1.2 Schemat blokowy oraz opis sygnałów wejściowych i wyjściowych

1.2 Schemat blokowy oraz opis sygnałów wejściowych i wyjściowych Dodatek A Wyświetlacz LCD. Przeznaczenie i ogólna charakterystyka Wyświetlacz ciekłokrystaliczny HY-62F4 zastosowany w ćwiczeniu jest wyświetlaczem matrycowym zawierającym moduł kontrolera i układ wykonawczy

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część VII Układy cyfrowe Janusz Brzychczyk IF UJ Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów, którym przyporządkowywane

Bardziej szczegółowo

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)

Bardziej szczegółowo

Projektowanie i badanie liczników synchronicznych i asynchronicznych

Projektowanie i badanie liczników synchronicznych i asynchronicznych Laboratorium Podstaw Techniki Cyfrowej dr Marek Siłuszyk mgr Arkadiusz Wysokiński Ćwiczenie 08 PTC Projektowanie i badanie liczników synchronicznych i asynchronicznych opr. tech. Mirosław Maś Uniwersytet

Bardziej szczegółowo

SYSTEMY LICZBOWE 275,538 =

SYSTEMY LICZBOWE 275,538 = SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej

Bardziej szczegółowo

4. Karta modułu Slave

4. Karta modułu Slave sygnały na magistralę. Można wyróżnić trzy typy układów scalonych takie jak bramki o otwartym kolektorze wyjściowym, bramki trójstanowe i bramki o przeciwsobnym wzmacniaczu wyjściowym. Obciążalność prądową

Bardziej szczegółowo

Elementy struktur cyfrowych. Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych.

Elementy struktur cyfrowych. Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych. Elementy struktur cyfrowych Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych. Magistrale W układzie bank rejestrów do przechowywania danych. Wybór źródła danych

Bardziej szczegółowo

Układy TTL i CMOS. Trochę logiki

Układy TTL i CMOS. Trochę logiki Układy TTL i CMOS O liczbie elementów użytych do budowy jakiegoś urządzenia elektronicznego, a więc i o możliwości obniżenia jego ceny, decyduje dzisiaj liczba zastosowanych w nim układów scalonych. Najstarszą

Bardziej szczegółowo

Elementy struktur cyfrowych. Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych.

Elementy struktur cyfrowych. Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych. Elementy struktur cyfrowych Magistrale, układy iterowane w przestrzeni i w czasie, wprowadzanie i wyprowadzanie danych. PTC 2015/2016 Magistrale W układzie cyfrowym występuje bank rejestrów do przechowywania

Bardziej szczegółowo

interfejs szeregowy wyświetlaczy do systemów PLC

interfejs szeregowy wyświetlaczy do systemów PLC LDN SBCD interfejs szeregowy wyświetlaczy do systemów PLC SEM 08.2003 Str. 1/5 SBCD interfejs szeregowy wyświetlaczy do systemów PLC INSTRUKCJA OBSŁUGI Charakterystyka Interfejs SBCD w wyświetlaczach cyfrowych

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI REJESTRY

LABORATORIUM PODSTAWY ELEKTRONIKI REJESTRY LABORATORIUM PODSTAWY ELEKTRONIKI REJESTRY Cel ćwiczenia Zapoznanie się z budową i zasadą działania rejestrów cyfrowych wykonanych w ramach TTL. Zestawienie przyrządów i połączenie rejestru by otrzymać

Bardziej szczegółowo

Moduł licznika położenia LP 2.

Moduł licznika położenia LP 2. Pracownia Elektroniki i Automatyki W.J. Dubiński ul. Krzyszkowicka 16 32-020 WIELICZKA tel./fax (12) 278 29 11 NIP 676-010-37-14 Moduł licznika położenia LP 2. 1. Przeznaczenie. Licznik rewersyjny LP 2

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne

Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne Wstęp do Techniki Cyfrowej... Synchroniczne układy sekwencyjne Schemat ogólny X Y Układ kombinacyjny S Z Pamięć Zegar Działanie układu Zmiany wartości wektora S możliwe tylko w dyskretnych chwilach czasowych

Bardziej szczegółowo

Hardware mikrokontrolera X51

Hardware mikrokontrolera X51 Hardware mikrokontrolera X51 Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Hardware mikrokontrolera X51 (zegar)

Bardziej szczegółowo

Układy sekwencyjne - wiadomości podstawowe - wykład 4

Układy sekwencyjne - wiadomości podstawowe - wykład 4 SWB - Układy sekwencyjne - wiadomości podstawowe - wykład 4 asz 1 Układy sekwencyjne - wiadomości podstawowe - wykład 4 Adam Szmigielski aszmigie@pjwstk.edu.pl Laboratorium robotyki s09 SWB - Układy sekwencyjne

Bardziej szczegółowo

ĆWICZENIE 7. Wprowadzenie do funkcji specjalnych sterownika LOGO!

ĆWICZENIE 7. Wprowadzenie do funkcji specjalnych sterownika LOGO! ćwiczenie nr 7 str.1/1 ĆWICZENIE 7 Wprowadzenie do funkcji specjalnych sterownika LOGO! 1. CEL ĆWICZENIA: zapoznanie się z zaawansowanymi możliwościami mikroprocesorowych sterowników programowalnych na

Bardziej szczegółowo

Kontrola dostępu przy użyciu sterownika Sterbox.

Kontrola dostępu przy użyciu sterownika Sterbox. Kontrola dostępu przy użyciu sterownika Sterbox. Wejście do firmy, drzwi zewnętrzne, klatka schodowa lub korytarz, następne drzwi do pomieszczeń. Otwieranie drzwi przez upoważnione osoby posiadanymi kluczami

Bardziej szczegółowo

MIKROPROCESORY architektura i programowanie

MIKROPROCESORY architektura i programowanie Struktura portów (CISC) Port to grupa (zwykle 8) linii wejścia/wyjścia mikrokontrolera o podobnych cechach i funkcjach Większość linii we/wy może pełnić dwie lub trzy rozmaite funkcje. Struktura portu

Bardziej szczegółowo

Ćwiczenie 01 - Strona nr 1 ĆWICZENIE 01

Ćwiczenie 01 - Strona nr 1 ĆWICZENIE 01 ĆWICZENIE 01 Ćwiczenie 01 - Strona nr 1 Polecenie: Bez użycia narzędzi elektronicznych oraz informatycznych, wykonaj konwersje liczb z jednego systemu liczbowego (BIN, OCT, DEC, HEX) do drugiego systemu

Bardziej szczegółowo

PODSTAWY TEORII UKŁADÓW CYFROWYCH

PODSTAWY TEORII UKŁADÓW CYFROWYCH PODSTAWY TEORII UKŁADÓW CYFROWYCH UKŁADY KODUJĄCE Kodery Kodery Kodery służą do przedstawienia informacji z tylko jednego aktywnego wejścia na postać binarną. Ponieważ istnieje fizyczna możliwość jednoczesnej

Bardziej szczegółowo

LICZNIKI. Liczniki asynchroniczne.

LICZNIKI. Liczniki asynchroniczne. LICZNIKI Liczniki asynchroniczne. Liczniki buduje się z przerzutników. Najprostszym licznikiem jest tzw. dwójka licząca. Łatwo ją otrzymać z przerzutnika D albo z przerzutnika JK. Na rys.1a został pokazany

Bardziej szczegółowo

3.2. Zegar/kalendarz z pamięcią statyczną RAM 256 x 8

3.2. Zegar/kalendarz z pamięcią statyczną RAM 256 x 8 3.2. Zegar/kalendarz z pamięcią statyczną RAM 256 x 8 Układ PCF 8583 jest pobierającą małą moc, 2048 bitową statyczną pamięcią CMOS RAM o organizacji 256 x 8 bitów. Adresy i dane są przesyłane szeregowo

Bardziej szczegółowo

CHARAKTERYSTYKI BRAMEK CYFROWYCH TTL

CHARAKTERYSTYKI BRAMEK CYFROWYCH TTL CHARAKTERYSTYKI BRAMEK CYFROWYCH TTL. CEL ĆWICZENIA Celem ćwiczenia jest poznanie zasad działania, budowy i właściwości podstawowych funktorów logicznych wykonywanych w jednej z najbardziej rozpowszechnionych

Bardziej szczegółowo

W przypadku spostrzeżenia błędu proszę o przesłanie informacji na adres

W przypadku spostrzeżenia błędu proszę o przesłanie informacji na adres PROJEKTOWANIE LICZNIKÓW (skrót wiadomości) Autor: Rafał Walkowiak W przypadku spostrzeżenia błędu proszę o przesłanie informacji na adres rafal.walkowiak@cs.put.poznan.pl 1. Synchroniczne łączenie liczników

Bardziej szczegółowo

1 Moduł Neuronu Cyfrowego SM

1 Moduł Neuronu Cyfrowego SM 1 Moduł Neuronu Cyfrowego SM Moduł Neuronu Cyfrowego SM daje użytkownikowi Systemu Vision możliwość obsługi fizycznych urządzeń Neuronów Cyfrowych podłączonych do Sterownika Magistrali. Moduł odpowiada

Bardziej szczegółowo

RS-H0-05 (K)* Czytnik RFID MHz Mifare. Karta użytkownika

RS-H0-05 (K)* Czytnik RFID MHz Mifare. Karta użytkownika RS-H0-05 (K)* Czytnik RFID 13.56 MHz Mifare Karta użytkownika *Litera K odnosi się do wersji czytnika ze wspólną katodą. Informacje szczególne dla tej wersji będą prezentowane oddzielnie. Przed użyciem

Bardziej szczegółowo

Interfejsy komunikacyjne pomiary sygnałów losowych i pseudolosowych. Instrukcja do ćwiczenia laboratoryjnego

Interfejsy komunikacyjne pomiary sygnałów losowych i pseudolosowych. Instrukcja do ćwiczenia laboratoryjnego Interfejsy komunikacyjne pomiary sygnałów losowych i pseudolosowych Instrukcja do ćwiczenia laboratoryjnego opracował: Łukasz Buczek 05.2015 rev. 05.2018 1 1. Cel ćwiczenia Doskonalenie umiejętności obsługi

Bardziej szczegółowo