ANALIZA ROZPRASZANIA ENERGII DRGAŃ W AKTYWNYCH ZAWIESZENIACH POJAZDU DLA WYBRANYCH ALGORYTMÓW STEROWANIA

Wielkość: px
Rozpocząć pokaz od strony:

Download "ANALIZA ROZPRASZANIA ENERGII DRGAŃ W AKTYWNYCH ZAWIESZENIACH POJAZDU DLA WYBRANYCH ALGORYTMÓW STEROWANIA"

Transkrypt

1 JACEK SNAMINA, JANUSZ KOWAL, TOMASZ WZOREK ANALIZA ROZPRASZANIA ENERGII DRGAŃ W AKTYWNYCH ZAWIESZENIACH POJAZDU DLA WYBRANYCH ALGORYTMÓW STEROWANIA ANALYSIS OF THE ENERGY DISSIPATION IN VEHICLE SUSPENSIONS FOR SELECTED CONTROL ALGORITHMS S t r e s z c z e n i e A b s t r a c t W niniejszym artykule przedstawiono analizę rozpraszania energii drgań w aktywnym zawieszeniu pojazdu dla wybranych algorytmów sterowania. Przyjęte algorytmy sterowania zostały zbadane zarówno pod kątem skutecznej redukcji drgań masy resorowanej, jak i ilości energii rozpraszanej. Wybrano i opisano następujące algorytmy sterowania: algorytm realizujący ujemne sprzężenie od przyspieszenia, algorytm częściowo kompensujący składowe dynamiczne siły sprężystości układu zawieszenia oraz algorytm sterowania ślizgowego. Słowa kluczowe: aktywny układ zawieszenia, rozpraszanie energii The paper is devoted to calculation of the energy dissipation in active vehicle suspensions. Three methods of control were considered and results of analysis were discussed. Control algorithms presented in this paper are as follows: the negative feedback acceleration algorithm, the dynamic suspension stiffness compensation algorithm, the sliding mode control algorithm. Keywords: active vehicle suspension, energy dissipation Dr hab. inż. Jacek Snamina, prof. AGH, prof. dr hab. inż. Janusz Kowal, mgr inż. Tomasz Wzorek, Katedra Automatyzacji Procesów, Wydział Inżynierii Mechanicznej i Robotyki, AGH Akademia Górniczo-Hutnicza.

2 Wstęp Układy aktywne stosowane w zawieszeniach pojazdów zapewniają znacznie lepszą redukcję drgań niż tradycyjne zawieszenia bazujące na elementach pasywnych. W układach aktywnych odpowiednio sterowane zewnętrzne źródło mocy może dostarczać lub absorbować energię w określony sposób [3]. Najczęściej stosowane są układy ze sprzężeniem zwrotnym, w których umieszczony jest odpowiedni przetwornik wielkości fizycznej (przemieszczenia prędkości, przyspieszenia, siły, ciśnienia itp.) oraz regulator, wzmacniacz i element wykonawczy. Element wykonawczy wytwarza siłę, która kompensuje siły wymuszające drgania. W praktycznych zastosowaniach aktywnych układów zawieszeń jako elementy wykonawcze stosuje się najczęściej siłowniki elektryczne, hydrauliczne lub pneumatyczne. Elementy aktywne stosowane w zawieszeniach pojazdów wymagają dostarczenia zewnętrznej energii (hydraulicznej, sprężonego powietrza, elektrycznej itp.) niezbędnej do prawidłowej pracy układu [4]. Duże zapotrzebowanie układu aktywnego na energię jest jednym z głównych problemów dotyczących projektowania i eksploatacji aktywnych zawieszeń pojazdów. 2. Model układu Do obliczeń przyjęto model ćwiartki samochodu, przedstawiony na rys. 1a. Między bryłą o masie resorowanej m s a bryłą o masie nieresorowanej m u zostały umieszczone równolegle: sprężyna o współczynniku sztywności k s, tłumik o współczynniku tłumienia wiskotycznego c s oraz element aktywny wytwarzający siłę F(t). Podstawowe własności dynamiczne opony samochodu opisano współczynnikiem sztywności k t oraz współczynnikiem tłumienia c t. Na rysunku 1a) przedstawiono dwa układy współrzędnych, względem których opisywane jest położenie brył o masach m s i m u. Osie układów y 1, y 2 mają początki w punktach przyłożenia mas dla sprężyn swobodnych, natomiast osie układów x 1, x 2 w punktach położenia mas w równowadze statycznej układu. Do obliczeń przyjęto następujące dane, typowe dla układu zawieszenia samochodu osobowego: m s = 300 kg, m u = 30 kg, c s = 5000 Ns/m, c t = 800 Ns/m, k s = N/m, k t = N/m, zaczerpnięte z [2]. x 2 x 1 Rys. 1. Aktywny układ zawieszenia pojazdu: a) model obliczeniowy ćwiartki pojazdu, b) model zawieszenia z układem regulacji Fig. 1. Active car suspension: a) computational model, b) model with the control system

3 Równania opisujące ruch układu mają postać: mɺɺ y + c ( yɺ yɺ ) + k ( y y ) + c ( yɺ yɺ ) + k ( y y ) + m g + F ( t) = 0 u 1 s 1 2 s 1 2 t 1 0 t 1 0 u mɺɺ y + c ( yɺ yɺ ) + k ( y y ) + m g F( t) = 0 s 2 s 2 1 s 2 1 s 235 W równowadze statycznej sprężyny są ściśnięte. Pod wpływem sił ciężkości i przy założeniu F = 0 N bryły o masach m u i m s przemieszczają się odpowiednio o δ 1 = 0,0270 m i δ 2 = 0,145 m ku dołowi. Wprowadzając następującą transformację układu współrządnych: równania ruchu przyjmują postać: y y = x δ = x δ mɺɺ x + c ( xɺ xɺ ) + k ( x x ) + c ( xɺ yɺ ) + k ( x y ) + F( t) = 0 u 1 s 1 2 s 1 2 t 1 0 t 1 0 mɺɺ x + c ( xɺ xɺ ) + k ( x x ) F( t) = 0 s 2 s 2 1 s 2 1 Dla przyjętego modelu ćwiartki pojazdu wyznaczono częstości i wektory drgań własnych. Pierwsza częstość drgań własnych jest równa ω 1 = 8,292 rad/s, a odpowiadający jej wektor własny ma współrzędne [1; 5,760]. Druga częstość drgań własnych jest równa ω 2 = 69,627 rad/s, a odpowiadający jej wektor własny ma współrzędne [1; 0,0175]. Wyniki analizy modalnej pokazują dominujące przemieszczenia. Dla drgań z pierwszą formą jest to przemieszczenie karoserii samochodu (bryła o masie m s ), a dla drugiej formy przemieszczenia elementów zawieszenia (bryła o masie m u ). (1) (2) (3) 3. Analiza wybranych algorytmów sterowania w aktywnych zawieszeniach pojazdów Zgodnie ze schematem na rys. 1b, zaczerpniętym z [5], aktywny element wykonawczy został umieszczony równolegle do sprężyny i tłumika, i jego zadaniem jest wytworzenie dodatkowej siły zgodnie z przyjętymi algorytmami redukcji drgań. W pętli sprzężenia zwrotnego zaznaczono układ sterowania (US). Przetworniki prędkości lub przyspieszenia przymocowane do brył o masach m u i m s oznaczono symbolem P. Realizacja układu sterowania elementem aktywnym zależy od rodzaju przyjętego algorytmu. W dalszej części pracy opisano wybrane algorytmy sterowania, które mogą zostać wykorzystane do aktywnej redukcji drgań. Przeprowadzone symulacje, obrazujące działanie każdego z opisanych algorytmów posłużyły do porównania skuteczności działania badanych sposobów sterowania Modelowanie losowego sygnału wejściowego Źródłem drgań są nierówności drogi, po której porusza się pojazd. Wobec tego warunkiem przeprowadzenia miarodajnych symulacji ruchu jest poprawne zamodelowanie profilu nawierzchni drogi. Nierówności drogi są najczęściej opisywane procesami stochastycznymi. W obliczeniach wykorzystuje się gęstość widmową mocy. W normie ISO 8608 przedstawiono klasyfikację profili dróg według gęstości widmowej mocy (PSD)

4 236 nierówności (rys. 2) [6]. Gęstości widmowe uszeregowano i oznaczono literami A, B, C, D, E, F, G, H. Literą A oznaczono drogę o najlepszej jakości, a literą H drogę o najgorszej jakości. Rys. 2. Klasyfikacja profili według gęstości widmowej mocy nierówności zgodna z ISO 8608 [6] Fig. 2. The road profile classification according to the ISO 8608 [6] Zakładając, że samochód porusza się z prędkością 72 km/h po drodze oznaczonej w klasyfikacji literą C, oraz biorąc pod uwagę pasmo częstotliwości 4 20 Hz wyznaczono realizację procesu stochastycznego odpowiadającą wymuszeniu kinematycznemu podczas przejazdu samochodu. Przebieg sygnału przedstawiono na rys. 3. Rys. 3. Przykładowy przebieg czasowy wygenerowanego losowego sygnału wejściowego y 0 Fig. 3. The example time course for the obtained random input signal y Algorytm realizujący ujemne sprzężenie zwrotne od przyspieszenia Zmiana własności dynamicznych zawieszenia może zostać zrealizowana w wyniku przyłożenia siły, która jest proporcjonalna do przyspieszenia bezwzględnego układu chronionego o masie m s. Realizacja tego algorytmu polega na pomiarze przyspieszenia układu resorowanego i generowaniu w pętli ujemnego sprzężenia zwrotnego siły proporcjonalnej do tego przyspieszenia zgodnie z zależnością: gdzie: K a współczynnik wzmocnienia. F( t) = Kɺɺ a x (4) Wyniki symulacji działania układu z wykorzystaniem algorytmu opisanego zależnością 4 dla współczynnika wzmocnienia K a = 5m s zostały przedstawione na rys. 4. Porównując wykresy wymuszenia oraz przemieszczenia, zaobserwowano znaczne wytłumienie drgań bryły o masie m s. Sterowanie według opisanego powyżej algorytmu daje dobre rezultaty w rzeczywistych układach, ponieważ powoduje obniżenie częstości drgań własnych i związane z tym przesunięcie rezonansu układu w kierunku mniejszych częstotliwości. Pomimo dużych wartości sił, które muszą zostać zrealizowane przez elementy wykonawcze, ten sposób 2

5 sterowania jest często spotykany w praktyce ze względu na stosunkowo dużą łatwość jego implementacji. 237 Rys. 4. Odpowiedź układu sterowanego za pomocą algorytmu realizującego ujemne sprzężenie od przyspieszenia układu o masie resorowanej: 1) sygnał wejściowy, 2) przemieszczenie układu o masie nieresorowanej m u, 3) przemieszczenie układu o masie resorowanej m s Fig. 4. The system response with the negative feedback acceleration algorithm: 1) input signal, 2) displacement of unsprung mass m u, 3) displacement of sprung mass m s 3.3. Algorytm częściowo kompensujący składowe dynamiczne siły sprężystości układu zawieszenia Aby wyeliminować drgania chronionego układu zawieszenia o masie m s, można zastosować algorytm umożliwiający tzw. częściową dynamiczną kompensację sztywności zawieszenia poprzez dodatnie sprzężenie zwrotne od przemieszczenia względnego. Zadaniem elementu aktywnego sterowanego według tego algorytmu jest obniżenie składowych dynamicznych sił działających na bryłę o masie m s. Sprężyna mechaniczna przy takim sterowaniu przenosi składowe statyczne sił, a składowa dynamiczna siły jest w znacznym stopniu kompensowana przez układ aktywny. Realizacja tego algorytmu polega na pomiarze dynamicznej składowej przemieszczenia względnego bryły o masie resorowanej względem bryły o masie nieresorowanej i wygenerowaniu siły proporcjonalnej do tego przemieszczenia: F ( t) = K ( x x ) (5) 2 1 gdzie K to współczynnik wzmocnienia. Do obliczeń przyjęto przykładowo K = 0,8 k. Rys. 5. Odpowiedź układu przy sterowaniu za pomocą algorytmu umożliwiającego częściową dynamiczną kompensację sztywności zawieszenia: 1) sygnał wejściowy, 2) przemieszczenie układu o masie nieresorowanej m u, 3) przemieszczenie układu o masie resorowanej m s Fig. 5. The system response for the dynamic suspension stiffness compensation algorithm: 1) input signal, 2) displacement of unsprung mass m u, 3) displacement of sprung mass m s Na podstawie przedstawionych na rys. 5 wykresów widać, że podobnie jak w przypadku algorytmu realizującego ujemne sprzężenie zwrotne, algorytm umożliwiający dy-

6 238 namiczną kompensację sztywności zawieszenia działa poprawnie. Zaobserwowano znaczne wytłumienie drgań układu chronionego Algorytm sterowania ślizgowego Sterowanie polega na naprowadzeniu ruchu układu, rozważanego w przestrzeni stanu, na odpowiednią powierzchnię, zwaną powierzchnią ślizgową, następnie utrzymaniu go w bezpośrednim otoczeniu tej powierzchni. W rozpatrywanym przypadku powierzchnia ślizgowa, zgodnie z [1], została przyjęta następująco: s( x, xɺ ) = x + xɺ (6) gdzie: α współczynnik określający skuteczność sprowadzania układu do położenia równowagi statycznej. Wyznaczono go, biorąc pod uwagę okres drgań własnych: ω α = 0, π Funkcja opisująca powierzchnię ślizgową jest podstawą do określenia sterowania. Warunkiem idealnego ruchu ślizgowego jest równość: 2 2 (7) s( x, x ɺ ) = 0 (8) Oddalanie się układu w przestrzeni stanu od powierzchni ślizgowej jest opisywane przez wprowadzenie funkcji Lapunowa. Najczęściej przyjmuje się ją w postaci: V = s 2 (9) Warunkiem utrzymania układu w otoczeniu powierzchni ślizgowej jest warunek ujemnej wartości pochodnej funkcji Lapunowa wzdłuż trajektorii ruchu. Wykorzystując przyjętą postać funkcji Lapunowa oraz równania ruchu, otrzymano wzór określający siłę oddziaływania elementu aktywnego na masę resorowaną: F( t) = k ( x x ) + c ( xɺ xɺ ) αm xɺ T sgn( xɺ + αx ) (10) s 2 1 s 2 1 s gdzie: T 0 parametr, którego wartość przyjęto przez odniesienie do ciężaru samochodu: T o = 0,2 m s g. Rys. 6. Odpowiedź układu przy sterowaniu z wykorzystaniem powierzchni ślizgowej: 1) sygnał wejściowy, 2) przemieszczenie układu o masie nieresorowanej m u, 3) przemieszczenie układu o masie resorowanej m s Fig. 6. The system response for the sliding mode control algorithm: 1) input signal, 2) displacement of unsprung mass m u, 3) displacement of sprung mass m s

7 239 Sterowanie realizowane według algorytmu (10) polega na dynamicznej kompensacji sztywności zawieszenia i wprowadzeniu tłumienia ruchu bryły o masie m s. Dzięki składnikowi zawierającemu funkcję signum układ jest utrzymywany w sąsiedztwie założonej powierzchni ślizgowej. Przebiegi czasowe (rys. 6) przedstawiają dużą skuteczność badanego algorytmu sterowania. Przemieszczenia bryły o masie m s są znacznie mniejsze niż przemieszczenia bryły o masie m u Analiza rozpraszania energii drgań Poniżej przedstawiono analizę rozpraszania energii drgań układu zawieszenia. Na rysunku 7 zostały zilustrowane przebiegi mocy chwilowej P wyznaczonej podczas symulacji, dla różnych algorytmów sterowania omówionych w poprzednim rozdziale. Rys. 7. Przebiegi mocy chwilowej przy sterowania z wykorzystaniem: a) algorytmu realizującego ujemne sprzężenie od przyspieszenia, b) algorytmu umożliwiającego dynamiczną kompensację sztywności zawieszenia, c) powierzchni ślizgowej Fig. 7. Power courses for the system with: a) the negative feedback acceleration algorithm, b) dynamic suspension stiffness compensation algorithm, c) sliding mode control Moc chwilowa wyraża zmiany energii dostarczanej do układu wibroizolowanego odniesione do czasu, w którym te zmiany nastąpiły. Jeżeli wartość mocy chwilowej ma znak dodatni (P > 0), wówczas energia jest dostarczana do układu przez układ regulacji. Jeżeli moc chwilowa ma wartość ujemną (P < 0), to energia jest rozpraszana. Analiza przebiegów mocy chwilowej dla sterowania z wykorzystaniem algorytmu realizującego ujemne sprzężenie od przyspieszenia oraz dla sterowania realizującego dynamiczną kompensację sztywności zawieszenia pozwala stwierdzić, że w obu przypadkach następuje rozpraszanie energii drgań. Wskazują na to ujemne wartości mocy chwilowych przedstawionych na rysunku 7.

8 240 Przebieg mocy chwilowej dla algorytmu wykorzystującego powierzchnię ślizgową pokazuje, że podczas sterowania elementem aktywnym pojawiają się zarówno wartości ujemne, jak i dodatnie. Ujemne wartości wskazują na rozpraszanie energii drgań, natomiast wartości dodatnie wskazują na to, że w pewnych momentach energia jest dostarczana do układu. Wartości średnie mocy obliczone w całym przedziale czasu symulacji dla poszczególnych algorytmów wynoszą odpowiednio; dla algorytmu realizującego ujemne sprzężenie od przyspieszenia: P s = 2,69 W, dla algorytmu umożliwiającą częściową dynamiczną kompensację sztywności zawieszenia: P s = 2,30 W, a dla algorytmu wykorzystującego powierzchnię ślizgową: P s = 2,32 W. 4. Wnioski Badania aktywnych układów zawieszeń pojazdów sprowadzają się nie tylko do oceny skuteczności ochrony układu masy resorowanej przed drganiami związanymi z nierównościami podłoża, ale również powinny uwzględniać bilans energii układu. Omówione w niniejszym artykule algorytmy sterowania wykazują się dobrymi własnościami redukcji drgań. We wszystkich przypadkach karoseria jest dobrze chroniona przed skutkami nierówności nawierzchni. Analiza rozpraszania energii drgań może być podstawą oceny algorytmów sterowania i wyboru algorytmu o najlepszych własnościach. Pracę wykonano w ramach projektu badawczego nr N N L i t e r a t u r a [1] E d w a r d s Ch., S p u r g e o n S., Sliding Mode Control: Theory and Aplications, Taylor & Francis, [2] H a n s e n C.H., S n y d e r S.D., Active Control of Noise and Vibration, E & FN SPON, [3] K o w a l J., Sterowanie drganiami, Gutenberg, Kraków [4] S e n t h i l M., V i j a y a r a n g a n S., Analytical and experimental studies on active suspension system of light passenger vehicle to improve ride comfort, Mechanika, nr 3(65), [5] W i l l i a m s E.D., H a d d a d W.M.S., Active suspension control to Improve Vehicle Ride and Handling, Vehicle System Dynamics, 28 (1997), [6] ISO 8608:1995 Mechanical vibration Road surface profiles Reporting of measured data.

DYNAMIC STIFFNESS COMPENSATION IN VIBRATION CONTROL SYSTEMS WITH MR DAMPERS

DYNAMIC STIFFNESS COMPENSATION IN VIBRATION CONTROL SYSTEMS WITH MR DAMPERS MARCIN MAŚLANKA, JACEK SNAMINA KOMPENSACJA SZTYWNOŚCI DYNAMICZNEJ W UKŁADACH REDUKCJI DRGAŃ Z TŁUMIKAMI MR DYNAMIC STIFFNESS COMPENSATION IN VIBRATION CONTROL SYSTEMS WITH MR DAMPERS S t r e s z c z e

Bardziej szczegółowo

Dwa w jednym teście. Badane parametry

Dwa w jednym teście. Badane parametry Dwa w jednym teście Rys. Jacek Kubiś, Wimad Schemat zawieszenia z zaznaczeniem wprowadzonych pojęć Urządzenia do kontroli zawieszeń metodą Boge badają ich działanie w przebiegach czasowych. Wyniki zależą

Bardziej szczegółowo

3 Podstawy teorii drgań układów o skupionych masach

3 Podstawy teorii drgań układów o skupionych masach 3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny

Bardziej szczegółowo

I. DYNAMIKA PUNKTU MATERIALNEGO

I. DYNAMIKA PUNKTU MATERIALNEGO I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć

Bardziej szczegółowo

STEROWANIE STRUKTUR DYNAMICZNYCH Model fizyczny semiaktywnego zawieszenia z tłumikami magnetoreologicznymi

STEROWANIE STRUKTUR DYNAMICZNYCH Model fizyczny semiaktywnego zawieszenia z tłumikami magnetoreologicznymi STEROWANIE STRUKTUR DYNAMICZNYCH Model fizyczny semiaktywnego zawieszenia z tłumikami magnetoreologicznymi mgr inż. Łukasz Jastrzębski Katedra Automatyzacji Procesów - Akademia Górniczo-Hutnicza Kraków,

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7

INSTRUKCJA DO ĆWICZENIA NR 7 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

PRACA DYPLOMOWA Magisterska

PRACA DYPLOMOWA Magisterska POLITECHNIKA WARSZAWSKA Wydział Samochodów i Maszyn Roboczych PRACA DYPLOMOWA Magisterska Studia stacjonarne dzienne Semiaktywne tłumienie drgań w wymuszonych kinematycznie układach drgających z uwzględnieniem

Bardziej szczegółowo

DRGANIA MECHANICZNE. Poniższe materiały tylko dla studentów uczęszczających na zajęcia. Zakaz rozpowszechniania i powielania bez zgody autora.

DRGANIA MECHANICZNE. Poniższe materiały tylko dla studentów uczęszczających na zajęcia. Zakaz rozpowszechniania i powielania bez zgody autora. DRGANIA MECHANICZNE materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak część 3 drgania wymuszone siłą harmoniczną drgania

Bardziej szczegółowo

Rys 1 Schemat modelu masa- sprężyna- tłumik

Rys 1 Schemat modelu masa- sprężyna- tłumik Rys 1 Schemat modelu masa- sprężyna- tłumik gdzie: m-masa bloczka [kg], ẏ prędkośćbloczka [ m s ]. 3. W kolejnym energię potencjalną: gdzie: y- przemieszczenie bloczka [m], k- stała sprężystości, [N/m].

Bardziej szczegółowo

Sposoby modelowania układów dynamicznych. Pytania

Sposoby modelowania układów dynamicznych. Pytania Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,

Bardziej szczegółowo

Podstawy Automatyki. Wykład 6 - Miejsce i rola regulatora w układzie regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 6 - Miejsce i rola regulatora w układzie regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 6 - Miejsce i rola regulatora w układzie regulacji Instytut Automatyki i Robotyki Warszawa, 2015 Regulacja zadajnik regulator sygnał sterujący (sterowanie) zespół wykonawczy przetwornik pomiarowy

Bardziej szczegółowo

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów LABORATORIUM DRGANIA I WIBROAUSTYA MASZYN Wydział Budowy Maszyn i Zarządzania Zakład Wibroakustyki i Bio-Dynamiki Systemów Ćwiczenie nr WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów

Bardziej szczegółowo

KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK

KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK Inżynieria Rolnicza 8(117)/2009 KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK Ewa Wachowicz, Piotr Grudziński Katedra Automatyki, Politechnika Koszalińska Streszczenie. W pracy

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 5

INSTRUKCJA DO ĆWICZENIA NR 5 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 5 PRZEDMIOT TEMAT OPRACOWAŁ MODELOWANIE UKŁADÓW MECHANICZNYCH Badania analityczne układu mechanicznego

Bardziej szczegółowo

Laboratorium Dynamiki Maszyn

Laboratorium Dynamiki Maszyn Laboratorium Dynamiki Maszyn Laboratorium nr 5 Temat: Badania eksperymentane drgań wzdłużnych i giętnych układów mechanicznych Ce ćwiczenia:. Zbudować mode o jednym stopniu swobody da zadanego układu mechanicznego.

Bardziej szczegółowo

Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY. 1. Cel ćwiczenia

Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY. 1. Cel ćwiczenia Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY 1. Cel ćwiczenia Przeprowadzenie izolacji drgań przekładni zębatej oraz doświadczalne wyznaczenie współczynnika przenoszenia drgań urządzenia na fundament.. Wprowadzenie

Bardziej szczegółowo

Analiza możliwości ograniczenia drgań w podłożu od pojazdów szynowych na przykładzie wybranego tunelu

Analiza możliwości ograniczenia drgań w podłożu od pojazdów szynowych na przykładzie wybranego tunelu ADAMCZYK Jan 1 TARGOSZ Jan 2 BROŻEK Grzegorz 3 HEBDA Maciej 4 Analiza możliwości ograniczenia drgań w podłożu od pojazdów szynowych na przykładzie wybranego tunelu WSTĘP Przedmiotem niniejszego artykułu

Bardziej szczegółowo

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów LABORATORIUM WIBROAUSTYI MASZYN Wydział Budowy Maszyn i Zarządzania Instytut Mechaniki Stosowanej Zakład Wibroakustyki i Bio-Dynamiki Systemów Ćwiczenie nr WIBROIZOLACJA określanie właściwości wibroizolacyjnych

Bardziej szczegółowo

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola

Bardziej szczegółowo

Laboratorium Mechaniki Technicznej

Laboratorium Mechaniki Technicznej Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22

Bardziej szczegółowo

ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA

ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA Inżynieria Rolnicza 7(105)/2008 ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA Katedra Podstaw Techniki, Uniwersytet Przyrodniczy w Lublinie Streszczenie. W pracy przedstawiono

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI BUDOWLANYCH

DYNAMIKA KONSTRUKCJI BUDOWLANYCH DYNAMIKA KONSTRUKCJI BUDOWLANYCH Roman Lewandowski Wydawnictwo Politechniki Poznańskiej, Poznań 2006 Książka jest przeznaczona dla studentów wydziałów budownictwa oraz inżynierów budowlanych zainteresowanych

Bardziej szczegółowo

Mechanika Robotów. Wojciech Lisowski. 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej

Mechanika Robotów. Wojciech Lisowski. 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej Katedra Robotyki i Mechatroniki Akademia Górniczo-Hutnicza w Krakowie Mechanika Robotów Wojciech Lisowski 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej Mechanika Robotów KRiM, WIMIR, AGH

Bardziej szczegółowo

WYKORZYSTANIE OPROGRAMOWANIA ADAMS/CAR RIDE W BADANIACH KOMPONENTÓW ZAWIESZENIA POJAZDU SAMOCHODOWEGO

WYKORZYSTANIE OPROGRAMOWANIA ADAMS/CAR RIDE W BADANIACH KOMPONENTÓW ZAWIESZENIA POJAZDU SAMOCHODOWEGO ZESZYTY NAUKOWE POLITECHNIKA ŚLĄSKA 2012 Seria: TRANSPORT z. 77 Nr kol.1878 Łukasz KONIECZNY WYKORZYSTANIE OPROGRAMOWANIA ADAMS/CAR RIDE W BADANIACH KOMPONENTÓW ZAWIESZENIA POJAZDU SAMOCHODOWEGO Streszczenie.

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 4

INSTRUKCJA DO ĆWICZENIA NR 4 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 4 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA UKŁADÓW MECHANCZNYCH Modelowanie fizyczne układu o dwóch stopniach

Bardziej szczegółowo

Badania doświadczalne drgań własnych nietłumionych i tłumionych

Badania doświadczalne drgań własnych nietłumionych i tłumionych Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny Politechnika Śląska www.imio.polsl.pl fb.com/imiopolsl twitter.com/imiopolsl LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Badania

Bardziej szczegółowo

Wyznaczanie sił w przegubach maszyny o kinematyce równoległej w trakcie pracy, z wykorzystaniem metod numerycznych

Wyznaczanie sił w przegubach maszyny o kinematyce równoległej w trakcie pracy, z wykorzystaniem metod numerycznych kinematyka równoległa, symulacja, model numeryczny, sterowanie mgr inż. Paweł Maślak, dr inż. Piotr Górski, dr inż. Stanisław Iżykowski, dr inż. Krzysztof Chrapek Wyznaczanie sił w przegubach maszyny o

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

Dwa problemy związane z jakością dróg

Dwa problemy związane z jakością dróg Dwa problemy związane z jakością dróg Leszek Rafalski Instytut Badawczy Dróg i Mostów Jakość w realizacji robót drogowych Ostróda 7-8. 10. 2010 r. 1 1. Obciążenia nawierzchni. 2. Przemarzanie nawierzchni

Bardziej szczegółowo

OKREŚLENIE WPŁYWU WYŁĄCZANIA CYLINDRÓW SILNIKA ZI NA ZMIANY SYGNAŁU WIBROAKUSTYCZNEGO SILNIKA

OKREŚLENIE WPŁYWU WYŁĄCZANIA CYLINDRÓW SILNIKA ZI NA ZMIANY SYGNAŁU WIBROAKUSTYCZNEGO SILNIKA ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2008 Seria: TRANSPORT z. 64 Nr kol. 1803 Rafał SROKA OKREŚLENIE WPŁYWU WYŁĄCZANIA CYLINDRÓW SILNIKA ZI NA ZMIANY SYGNAŁU WIBROAKUSTYCZNEGO SILNIKA Streszczenie. W

Bardziej szczegółowo

DOŚWIADCZALNE I SYMULACYJNE ANALIZY WPŁYWU DRGAŃ STYCZNYCH POPRZECZNYCH NA SIŁĘ TARCIA W RUCHU ŚLIZGOWYM

DOŚWIADCZALNE I SYMULACYJNE ANALIZY WPŁYWU DRGAŃ STYCZNYCH POPRZECZNYCH NA SIŁĘ TARCIA W RUCHU ŚLIZGOWYM MODELOWANIE INŻYNIERSKIE nr 47, ISSN 896-77X DOŚWIADCZALNE I SYMULACYJNE ANALIZY WPŁYWU DRGAŃ STYCZNYCH POPRZECZNYCH NA SIŁĘ TARCIA W RUCHU ŚLIZGOWYM Mariusz Leus a, Paweł Gutowski b Katedra Mechaniki

Bardziej szczegółowo

Analiza właściwości filtrów dolnoprzepustowych

Analiza właściwości filtrów dolnoprzepustowych Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.

Bardziej szczegółowo

Modelowanie systemów empirycznych - analiza modelu amortyzacji samochodu o dwóch stopniach swobody

Modelowanie systemów empirycznych - analiza modelu amortyzacji samochodu o dwóch stopniach swobody Zadanie Modelowanie systemów empirycznych - analiza modelu amortyzacji samochodu o dwóch stopniach swobody Na rysunku przedstawiono model amortyzacji samochodu z dwoma stopniami swobody. m y c k m y k

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

MATERIAŁY I KONSTRUKCJE INTELIGENTNE Laboratorium. Ćwiczenie 2

MATERIAŁY I KONSTRUKCJE INTELIGENTNE Laboratorium. Ćwiczenie 2 MATERIAŁY I KONSTRUKCJE INTELIGENTNE Laboratorium Ćwiczenie Hamulec magnetoreologiczny Katedra Automatyzacji Procesów Wydział Inżynierii Mechanicznej i Robotyki Akademia Górniczo-Hutnicza Ćwiczenie Cele:

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Przygotowanie zadania sterowania do analizy i syntezy zestawienie schematu blokowego

Bardziej szczegółowo

Amortyzator. Model: Dodatkowe zmienne: Należy uwzględnić zmienność tłumienia. oraz możliwość oderwania się koła od powierzchni drogi.

Amortyzator. Model: Dodatkowe zmienne: Należy uwzględnić zmienność tłumienia. oraz możliwość oderwania się koła od powierzchni drogi. Amortyzator Na rys 1. pokazano schemat układu amortyzacji samochodu, którego wszystkie koła jednocześnie najeżdżają na przeszkodę. Zamodelowano ćwiartkę samochodu przy następujących danych: masa kola =

Bardziej szczegółowo

Projektowanie układów metodą sprzężenia od stanu - metoda przemieszczania biegunów

Projektowanie układów metodą sprzężenia od stanu - metoda przemieszczania biegunów Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Sterowania Procesami Ciągłych Projektowanie układów metodą sprzężenia od stanu - metoda przemieszczania biegunów. Obliczanie

Bardziej szczegółowo

Eliminacja drgań w układach o słabym tłumieniu przy zastosowaniu filtru wejściowego (Input Shaping Filter)

Eliminacja drgań w układach o słabym tłumieniu przy zastosowaniu filtru wejściowego (Input Shaping Filter) Eliminacja drgań w układach o słabym tłumieniu przy zastosowaniu filtru wejściowego (Input Shaping Filter) 1. WSTĘP W wielu złożonych układach mechanicznych elementy występują połączenia elastyczne (długi

Bardziej szczegółowo

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan Wprowadzenie do technik regulacji automatycznej prof nzw. dr hab. inż. Krzysztof Patan Czym jest AUTOMATYKA? Automatyka to dziedzina nauki i techniki zajmująca się teorią i praktycznym zastosowaniem urządzeń

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

Analiza właściwości filtra selektywnego

Analiza właściwości filtra selektywnego Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D-3

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D-3 POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie D-3 Temat: Obliczenie częstotliwości własnej drgań swobodnych wrzecion obrabiarek Konsultacje: prof. dr hab. inż. F. Oryński

Bardziej szczegółowo

BADANIA I MODELOWANIE DRGAŃ UKŁADU WYPOSAŻONEGO W STEROWANY TŁUMIK MAGNETOREOLOGICZNY

BADANIA I MODELOWANIE DRGAŃ UKŁADU WYPOSAŻONEGO W STEROWANY TŁUMIK MAGNETOREOLOGICZNY MODELOWANIE INŻYNIERSKIE ISNN 1896-771X 32, s. 361-368, Gliwice 2006 BADANIA I MODELOWANIE DRGAŃ UKŁADU WYPOSAŻONEGO W STEROWANY TŁUMIK MAGNETOREOLOGICZNY MICHAŁ MAKOWSKI LECH KNAP JANUSZ POKORSKI Instytut

Bardziej szczegółowo

ANALIZA WPŁYWU NIERÓWNOŚCI TORU NA ODPOWIEDŹ DYNAMICZNĄ POJAZDU SZYNOWEGO Z ZASTOSOWANIEM SYMULACJI METODĄ WIELOBRYŁOWĄ

ANALIZA WPŁYWU NIERÓWNOŚCI TORU NA ODPOWIEDŹ DYNAMICZNĄ POJAZDU SZYNOWEGO Z ZASTOSOWANIEM SYMULACJI METODĄ WIELOBRYŁOWĄ Piotr Kurowski Adam Martowicz Tadeusz Uhl Grzegorz Lasko Akademia Górniczo-Hutnicza im. St. Staszica w Krakowie ANALIZA WPŁYWU NIERÓWNOŚCI TORU NA ODPOWIEDŹ DYNAMICZNĄ POJAZDU SZYNOWEGO Z ZASTOSOWANIEM

Bardziej szczegółowo

Napęd pojęcia podstawowe

Napęd pojęcia podstawowe Napęd pojęcia podstawowe Równanie ruchu obrotowego (bryły sztywnej) suma momentów działających na bryłę - prędkość kątowa J moment bezwładności d dt ( J ) d dt J d dt dj dt J d dt dj d Równanie ruchu obrotowego

Bardziej szczegółowo

Wektory, układ współrzędnych

Wektory, układ współrzędnych Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.

Bardziej szczegółowo

TRANSCOMP XV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT

TRANSCOMP XV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT TRANSCOMP XV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT BEDNARZ Jarosław 1 TARGOSZ Jan 2 Wibroizolacja torowisk, Badania eksperymentalne, Układy sprężyste EKSPERYMENTALNA

Bardziej szczegółowo

Badania symulacyjne dynamiki przejazdów kolejowo drogowych pod kątem minimalizacji ich oddziaływań na środowisko

Badania symulacyjne dynamiki przejazdów kolejowo drogowych pod kątem minimalizacji ich oddziaływań na środowisko ADAMCZYK Jan 1 TARGOSZ Jan 2 Badania symulacyjne dynamiki przejazdów kolejowo drogowych pod kątem minimalizacji ich oddziaływań na środowisko WSTĘP Duży postęp techniczny w obecnych czasach, związany ściśle

Bardziej szczegółowo

3.DRGANIA SWOBODNE MODELU O JEDNYM STOPNIU SWOBODY(JSS)

3.DRGANIA SWOBODNE MODELU O JEDNYM STOPNIU SWOBODY(JSS) 3.DRGANIA SWOBODNE MODELU O JEDNYM STOPNIU SWOBODY(JSS) 3.1. DRGANIA TRANSLACYJNE I SKRĘTNE WYMUSZME SIŁOWO I KINEMATYCZNIE W poprzednim punkcie o modelowaniu doszliśmy do przekonania, że wielokrotnie

Bardziej szczegółowo

Projekt nr 4. Dynamika ujęcie klasyczne

Projekt nr 4. Dynamika ujęcie klasyczne Projekt nr 4 Dynamika POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 4 Dynamika ujęcie klasyczne Konrad Kaczmarek

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

Regulacja adaptacyjna w anemometrze stałotemperaturowym

Regulacja adaptacyjna w anemometrze stałotemperaturowym 3 Prace Instytutu Mechaniki Górotworu PAN Tom 8, nr 1-4, (2006), s. 3-7 Instytut Mechaniki Górotworu PAN Regulacja adaptacyjna w anemometrze stałotemperaturowym PAWEŁ LIGĘZA Instytut Mechaniki Górotworu

Bardziej szczegółowo

BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH

BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH Dr inż. Artur JAWORSKI, Dr inż. Hubert KUSZEWSKI, Dr inż. Adam USTRZYCKI W artykule przedstawiono wyniki analizy symulacyjnej

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników 1. Podstawowe pojęcia związane z niewyważeniem Stan niewyważenia stan wirnika określony takim rozkładem masy, który w czasie wirowania wywołuje

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ eoria maszyn i podstawy automatyki semestr zimowy 2016/2017

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Modelowanie matematyczne elementów systemu sterowania (obwody elektryczne, mechaniczne

Bardziej szczegółowo

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn

Bardziej szczegółowo

TEORIA DRGAŃ Program wykładu 2016

TEORIA DRGAŃ Program wykładu 2016 TEORIA DRGAŃ Program wykładu 2016 I. KINEMATYKA RUCHU POSTE POWEGO 1. Ruch jednowymiarowy 1.1. Prędkość (a) Prędkość średnia (b) Prędkość chwilowa (prędkość) 1.2. Przyspieszenie (a) Przyspieszenie średnie

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Zadanie nr II-22: Opracowanie modelu aktywnego ustroju dźwiękochłonno-izolacyjnego o zmiennych tłumieniu i izolacyjności

Zadanie nr II-22: Opracowanie modelu aktywnego ustroju dźwiękochłonno-izolacyjnego o zmiennych tłumieniu i izolacyjności Materiały informacyjne dotyczące wyników realizacji zadania badawczego pt: Opracowanie modelu aktywnego ustroju dźwiękochłonno-izolacyjnego o zmiennych Hałas jest jednym z najpowszechniej występujących

Bardziej szczegółowo

REGULATOR PRĄDU SPRĘŻYNY MAGNETYCZNEJ CURRENT REGULATOR OF MAGNETIC SPRING

REGULATOR PRĄDU SPRĘŻYNY MAGNETYCZNEJ CURRENT REGULATOR OF MAGNETIC SPRING PIOTR HABEL, JACEK SNAMINA * REGULATOR PRĄDU SPRĘŻYNY MAGNETYCZNEJ CURRENT REGULATOR OF MAGNETIC SPRING Streszczenie Abstract Artykuł dotyczy zastosowania regulatora prądu do sterowania siłą sprężyny magnetycznej.

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA KOŁA NA ZMIANĘ SZTYWNOŚCI ZAZĘBIENIA

WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA KOŁA NA ZMIANĘ SZTYWNOŚCI ZAZĘBIENIA ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2009 Seria: TRANSPORT z. 65 Nr kol. 1807 Tomasz FIGLUS, Piotr FOLĘGA, Piotr CZECH, Grzegorz WOJNAR WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA

Bardziej szczegółowo

Ruch drgający i falowy

Ruch drgający i falowy Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch

Bardziej szczegółowo

Znów trochę teorii...

Znów trochę teorii... Znów trochę teorii... Rys. Toyota, Jacek Kubiś, Wimad Tego rodzaju artykuły są trudne w pisaniu i odbiorze, bo przyzwyczajeni już jesteśmy do reklam opisujących najbardziej złożone produkty i technologie

Bardziej szczegółowo

Drgania. O. Harmoniczny

Drgania. O. Harmoniczny Dobrej fazy! Drgania O. Harmoniczny Położenie równowagi, 5 lipca 218 r. 1 Zadanie Zegar Małgorzata Berajter, update: 217-9-6, id: pl-ciepło-5, diff: 2 Pewien zegar, posiadający wahadło ze srebra, odmierza

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

EXPERIMENTAL RESULTS OF FORCED VIBRATIONS OF THE BEAM WITH MAGNETORHEOLOGICAL FLUID

EXPERIMENTAL RESULTS OF FORCED VIBRATIONS OF THE BEAM WITH MAGNETORHEOLOGICAL FLUID BOGDAN SAPIŃSKI, JACEK SNAMINA, MATEUSZ ROMASZKO WYNIKI BADAŃ DOŚWIADCZALNYCH DRGAŃ WYMUSZONYCH BELKI Z CIECZĄ MAGNETOREOLOGICZNĄ EXPERIMENTAL RESULTS OF FORCED VIBRATIONS OF THE BEAM WITH MAGNETORHEOLOGICAL

Bardziej szczegółowo

REDUKCJA DRGAŃ KONSTRUKCJI BUDOWLANYCH WPROWADZENIE

REDUKCJA DRGAŃ KONSTRUKCJI BUDOWLANYCH WPROWADZENIE REDUKCJA DRGAŃ KONSTRUKCJI BUDOWLANYCH WPROWADZENIE Roman Lewandowski Wstęp Pasywne eliminatory drgań Aktywne eliminatory drgań Półaktywne eliminatory drgań Zastosowania w budownictwie Przykładowe rozwiązania

Bardziej szczegółowo

Stabilność II Metody Lapunowa badania stabilności

Stabilność II Metody Lapunowa badania stabilności Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli

Bardziej szczegółowo

Ćw. 18: Pomiary wielkości nieelektrycznych II

Ćw. 18: Pomiary wielkości nieelektrycznych II Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 18: Pomiary wielkości nieelektrycznych

Bardziej szczegółowo

Dynamika samochodu II Vehicle Dynamics II

Dynamika samochodu II Vehicle Dynamics II Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Opis ruchu Opis ruchu Tor, równanie toru Zależność od czasu wielkości wektorowych: położenie przemieszczenie prędkość przyśpieszenie UWAGA! Ważne żeby zaznaczać w jakim układzie

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Ruch drgający

Podstawy fizyki sezon 1 VII. Ruch drgający Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania

Bardziej szczegółowo

Ć w i c z e n i e K 4

Ć w i c z e n i e K 4 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

PORÓWNANIE DYNAMICZNYCH ODPOWIEDZI SEMIAKTYWNYCH TŁUMIKÓW OPISANYCH MODELAMI BOUC-WENA I SPENCERA

PORÓWNANIE DYNAMICZNYCH ODPOWIEDZI SEMIAKTYWNYCH TŁUMIKÓW OPISANYCH MODELAMI BOUC-WENA I SPENCERA JAN ŁUCZKO PORÓWNANIE DYNAMICZNYCH ODPOWIEDZI SEMIAKTYWNYCH TŁUMIKÓW OPISANYCH MODELAMI BOUC-WENA I SPENCERA COMPARISON OF DYNAMICAL RESPONSES OF SEMIACTIVE DAMPERS DESCRIBED BY THE BOUC-WEN AND THE SPENCER

Bardziej szczegółowo

Na wykresie przedstawiono zależność drogi od czasu trwania ruchu dla ciał A i B.

Na wykresie przedstawiono zależność drogi od czasu trwania ruchu dla ciał A i B. Imię i nazwisko Pytanie 1/ Na wykresie przedstawiono zależność drogi od czasu trwania ruchu dla ciał A i Wskaż poprawną odpowiedź Które stwierdzenie jest prawdziwe? Prędkości obu ciał są takie same Ciało

Bardziej szczegółowo

Równania różniczkowe opisujące ruch fotela z pilotem:

Równania różniczkowe opisujące ruch fotela z pilotem: . Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 7. Metoda projektowania

Bardziej szczegółowo

Blok 2: Zależność funkcyjna wielkości fizycznych. Rzuty

Blok 2: Zależność funkcyjna wielkości fizycznych. Rzuty Blok : Zależność funkcyjna wielkości fizycznych. Rzuty ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przeanalizuj wykresy zaprezentowane na rysunkach. Załóż, żę w każdym przypadku ciało poruszało się zgodnie ze

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

FREQUENCY ANALYSIS OF VIBRATION ISOLATION SYSTEM WITH MAGNETIC SPRING

FREQUENCY ANALYSIS OF VIBRATION ISOLATION SYSTEM WITH MAGNETIC SPRING JACEK SNAMINA, PIOTR HABEL ANALIZA CZĘSTOTLIWOŚCIOWA UKŁADU WIBROIZOLACJI ZE SPRĘŻYNĄ MAGNETYCZNĄ FREQUENCY ANALYSIS OF VIBRATION ISOLATION SYSTEM WITH MAGNETIC SPRING S t r e s z c z e n i e A b s t r

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Wykład 7b - Układy wieloobwodowe ze sprzężeniem od zmiennych stanu Instytut Automatyki i Robotyki Warszawa, 2014 Układy wieloobwodowe ze sprzężeniem od zmiennych stanu Zadanie przestawiania Postać modalna

Bardziej szczegółowo

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych

Bardziej szczegółowo

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) Wprowadzenie Wartość współczynnika sztywności użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić pionowo

Bardziej szczegółowo

a, F Włodzimierz Wolczyński sin wychylenie cos cos prędkość sin sin przyspieszenie sin sin siła współczynnik sprężystości energia potencjalna

a, F Włodzimierz Wolczyński sin wychylenie cos cos prędkość sin sin przyspieszenie sin sin siła współczynnik sprężystości energia potencjalna Włodzimierz Wolczyński 3 RUCH DRGAJĄCY. CZĘŚĆ 1 wychylenie sin prędkość cos cos przyspieszenie sin sin siła współczynnik sprężystości sin sin 4 3 1 - x. v ; a ; F v -1,5T,5 T,75 T T 8t x -3-4 a, F energia

Bardziej szczegółowo

STRESZCZENIE PRACY MAGISTERSKIEJ

STRESZCZENIE PRACY MAGISTERSKIEJ WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego STRESZCZENIE PRACY MAGISTERSKIEJ MODELOWANIE D I BADANIA NUMERYCZNE BELKOWYCH MOSTÓW KOLEJOWYCH PODDANYCH DZIAŁANIU POCIĄGÓW SZYBKOBIEŻNYCH Paulina

Bardziej szczegółowo

DRGANIA ELEMENTÓW KONSTRUKCJI

DRGANIA ELEMENTÓW KONSTRUKCJI DRGANIA ELEMENTÓW KONSTRUKCJI (Wprowadzenie) Drgania elementów konstrukcji (prętów, wałów, belek) jak i całych konstrukcji należą do ważnych zagadnień dynamiki konstrukcji Przyczyna: nawet niewielkie drgania

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

Wpływ tarcia na serwomechanizmy

Wpływ tarcia na serwomechanizmy Wpływ tarcia na serwomechanizmy Zakłócenia oddziałujące na serwomechanizm Siły potencjalne/grawitacji, Tarcie, Zmienny moment bezwładności, Zmienny moment obciążenia Tarcie Zjawisko to znane jest od bardzo

Bardziej szczegółowo

(R) przy obciążaniu (etap I) Wyznaczanie przemieszczenia kątowego V 2

(R) przy obciążaniu (etap I) Wyznaczanie przemieszczenia kątowego V 2 SPIS TREŚCI Przedmowa... 10 1. Tłumienie drgań w układach mechanicznych przez tłumiki tarciowe... 11 1.1. Wstęp... 11 1.2. Określenie modelu tłumika ciernego drgań skrętnych... 16 1.3. Wyznaczanie rozkładu

Bardziej szczegółowo

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 01/18. WIESŁAW FIEBIG, Wrocław, PL WUP 08/18 RZECZPOSPOLITA POLSKA

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 01/18. WIESŁAW FIEBIG, Wrocław, PL WUP 08/18 RZECZPOSPOLITA POLSKA RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 229701 (13) B1 (21) Numer zgłoszenia: 419686 (51) Int.Cl. F16F 15/24 (2006.01) F03G 7/08 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

Ćwiczenie nr 8. Podstawowe czwórniki aktywne i ich zastosowanie cz. 1

Ćwiczenie nr 8. Podstawowe czwórniki aktywne i ich zastosowanie cz. 1 Ćwiczenie nr Podstawowe czwórniki aktywne i ich zastosowanie cz.. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się ze sposobem realizacji czwórników aktywnych opartym na wzmacniaczu operacyjnym µa, ich

Bardziej szczegółowo