Metody symulacji komputerowej
|
|
- Seweryna Matuszewska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Wydział Odlewnictwa Wirtualizacja procesów odlewniczych Katedra Informatyki Stosowanej WZ AGH Metody symulacji Projektowanie informatycznych systemów zarządzania produkcją
2 Treść wykładu Co to jest symulacja Zalety i wady symulacji Przebieg symulacji Metoda Monte Carlo Statystyczne aspekty symulacji Układ komputerowego eksperymentu symulacyjnego Przykładowe problemy 2
3 Wprowadzenie Symulacja - słownik języka polskiego: stwarzanie fałszywych pozorów, udawanie, zmyślanie czegoś, pozór, fikcja, sztuczne odtwarzanie (np. w warunkach laboratoryjnych, często przy pomocy maszyn cyfrowych) właściwości danego obiektu, zjawiska lub przestrzeni występujących w naturze, lecz trudnych do obserwacji, zbadania, powtórzenia. 3
4 Pojęcie symulacji Jest to metoda polegająca na badaniu zachowania się systemu przy użyciu modeli. Pod pojęciem systemu rozumieć będziemy pewien zbiór powiązanych ze sobą obiektów scharakteryzowanych przy pomocy atrybutów (cech), które również mogą być ze sobą powiązane. Zakładamy, że ich struktura nie podlega zmianom, a jedynie cechy poszczególnych obiektów mogą przyjmować różne wartości w kolejnych chwilach czasu tzn. system osiąga kolejne stany pod wpływem zachodzących zdarzeń. 4
5 Pojęcie symulacji Innymi słowy symulacja jest metodą prowadzenia eksperymentu, w którym decydent buduje model imitujący (naśladujący) działanie rzeczywistego systemu. Poprzez eksperymenty z modelem, decydent może studiować charakterystykę i zachowanie się tegoż systemu w czasie. Jeżeli używamy modeli matematycznych mówimy o symulacji numerycznej. Czasem terminem tym określa się pewne typy iteracyjnych procedur obliczeniowych, w których często pobierane są próbki z rozkładów, lecz czynnik czasu nie odgrywa zasadniczej roli. Jest to tzw. metoda Monte Carlo. 5
6 Modele symulacyjne Druga połowa lat prognoza, że przewozy główną linią CNR (Canadian National Railway) podwoją się w następnej dekadzie. Przewidywano konieczność wydania 2,2 mld CAD, z tego 1,3 mld na zbudowanie drugiego toru. Kosztem 300 tys. CAD zbudowano model symulacyjny i przeprowadzono nań eksperymenty. Okazało się, że nie wszędzie potrzebne są 2 tory: nie wybudowano odcinka o długości 128 mil. Efekt: oszczędność około 300 mln CAD. 6
7 Modele symulacyjne Technika symulacji jest szeroko używana w biznesie i w instytucjach rządowych. Wg źródeł amerykańskich około 85% organizacji używa różnego rodzaju modeli symulacyjnych. Symulacja przybiera najróżniejsze formy od modelowania prostych systemów dla celów zarządzania operacyjnego (zapasy, produkcja, finanse, obsługa), poprzez gry menadżerskie, do modelowania wielkich systemów (korporacje, ekonomia światowa, pogoda). 7
8 Modele symulacyjne Większość modeli numerycznych zawiera dane wejściowe, zmienne decyzyjne i dane wyjściowe. Dane wejściowe wprowadzają do modelu wartości stałe w trakcie pojedynczego eksperymentu, zmienne decyzyjne to zmienne kontrolowane przez decydenta. Dane wyjściowe są określone przez dane wejściowe i decyzyjne i służą do wyboru pewnej kombinacji wartości zmiennych decyzyjnych, najlepszych z punktu widzenia rozwiązania problemu. 8
9 Modele symulacyjne Firma A konkuruje z firmą B na lokalnym rynku w sprzedaży pokryć dachowych. Badania wykazały, że chłonność rynku wynosi 1040 szt. rocznie. Sugerowana cena detaliczna wynosi 5000 zł, a cena zakupu od producenta zł (dla obu firm). Dyrektor firmy A chce znać cenę, która pozwoli na maksymalizację rocznego zysku. Nie jest to proste, gdyż udział A w rynku zależy od stosunku cen A i B. Firma B zmienia ceny bez uprzedzenia z tygodnia na tydzień. Jeśli obie firmy mają jednakowe ceny, A ma 40% udział w rynku. Jeżeli B ma niższą cenę, A traci z tego poziomu 4% udziału za każde 100 zł różnicy, gdy sytuacja jest odwrotna, A zyskuje 1% udziału za każde 100 zł różnicy. 9
10 Modele symulacyjne Wejściowa zmienna kontrolowana: cena A C A Model: Cel: maksymalizacja sumy tygodniowych zysków gdzie: Z = 20*U A *(C A -4000), U A =0.4 jeśli C A =C B U A = *( C A -C B )/100 jeśli C A >C B U A = *( C A -C B )/100 jeśli C A <C B Wyjście: tygodniowy zysk Z Wejściowa zmienna niekontrolowana: cena B C B 10
11 Przykładowy problem Ile kas ma być czynnych w banku? Identyfikacja głównych obiektów systemu: stanowiska obsługi i klienci. Zdefiniowanie każdej operacji: do systemu przybywa klient - w jaki sposób, np. wg rozkładu Poissona o określonej średniej lub zgodnie z danymi empirycznymi. klient wybiera kolejkę - w jaki sposób: z reguły najkrótszą a jeśli są jednakowo długie - wg innych kryteriów. przesuwanie się kolejki - reguła FIFO, czas obsługi losowany z rozkładu empirycznego lub np. normalnego z daną średnią i odchyleniem. klient opuszcza system. 11
12 Przykładowy problem Ile kas ma być czynnych w banku? Symulację tego systemu zaczynamy od wylosowania momentu przybycia pierwszego klienta. Posyłamy go do wybranej wg jakiejś reguły kasy, gdzie jest natychmiast obsłużony. Wyznaczamy czas jego obsługi losując z odpowiedniego rozkładu i notujemy moment zakończenia. Następnie losujemy czas przybycia następnego klienta itd. Na każdym etapie musimy uważać, by we właściwej chwili wprowadzić każdego klienta, usunąć go z systemu, uaktualnić kolejkę po zakończeniu każdej obsługi. W miarę trwania symulacji obliczamy też statystyki np. średni czas oczekiwania, średnia długość kolejki, łączny czas bezczynności osób pracujących w kasie. 12
13 Przykładowy problem Ile kas ma być czynnych w banku? Ta prosta sytuacja ilustruje najważniejsze cechy symulacji: mechanizm przesuwania czasu, aby przejść do następnego zdarzenia (przybycie klienta, obsługa, czas zakończenia obsługi), określone reguły kierowania zmianami w systemie, pobieranie próbek z rozkładów. 13
14 Metoda Monte Carlo Metoda Monte Carlo to każda metoda wymagająca użycia zachowania losowego do rozwiązania problemu. Metody te są stosowane do szerokich klas problemów deterministycznych i probabilistycznych. Problemy deterministyczne to np. rozwiązywanie równań różniczkowych, znajdowanie pól i objętości, odwracanie macierzy czy obliczanie wartości p. Zastosowania probabilistyczne dotyczą symulacji procesów, które istotnie zawierają zmienne losowe, np. symulacja połączeń telefonicznych przez centralę czy obsługa samochodów na stacji benzynowej. 14
15 Metoda Monte Carlo Zastosowanie metody Monte Carlo do problemów deterministycznych opiera się na prawie wielkich liczb Bernoulliego: częstość występowania zdarzenia w n próbach jest zbieżna do prawdopodobieństwa tego zdarzenia, gdy n dąży do nieskończoności. Wychodząc z tego twierdzenia, metoda Monte Carlo może być zastosowana np. do całkowania dowolnych funkcji. Całkowanie numeryczne oparte na definicji Riemanna jest bardzo dobrą techniką aproksymacji całki z żądaną dokładnością. Zawodzi jednak w przypadku całek nad skomplikowanymi obszarami przestrzeni wielowymiarowych. 15
16 Metoda Monte Carlo 2 Załóżmy, że mamy daną część R płaszczyzny poprzez określenie jej brzegów jako relacji między dwoma zmiennymi. Chcemy obliczyć pole powierzchni R. Wychodzimy od części płaszczyzny Q, która zawiera R, a której pole jest łatwo obliczyć (Q jest zwykle p p 1 3 p 5 p 4 p 11 p 8 p 12 R Q p 9 p 7 p 10 p 6 p kwadratem). Używając generatora liczb losowych losujemy punkty p 1,p 2,...p n z obszaru Q. Dla każdego punktu p i sprawdzamy, czy leży on w obszarze R, jednocześnie je zliczając. Liczbę tych punktów oznaczmy P(n). 1 16
17 Dlaczego symulacja Jest dobrze dostosowana do problemów, które są trudne lub wręcz niemożliwe do analitycznego rozwiązania. Możliwość analizy what if. Modele optymalizacyjne odpowiadają na pytanie, jakie wartości zmiennych decyzyjnych są najlepsze dla przyjętej funkcji celu. Przyczyną powstania trudności jest zwykle złożoność rozpatrywanego modelu. Zastosowanie zwykłych metod analitycznych wymaga przyjęcia nierealistycznych założeń i uproszczeń. W tej sytuacji decydent może woleć określić zbiór decyzji, symulować rezultaty i obserwować, co się dzieje z kryterium. Realistyczne założenia (dokładne rozwiązanie przybliżonego modelu czy przybliżone rozwiązanie dokładnego modelu). 17
18 Dlaczego symulacja Łatwa w użyciu. Symulacja nie wymaga skomplikowanego aparatu matematycznego. Decydent, który zna strukturę systemu może bez trudu opracować jego model przy użyciu aplikacji menedżerskich (np. arkusz kalkulacyjny). Model opisuje problem z punktu widzenia decydenta, który w łatwy sposób może go zrozumieć i kontrolować. 18
19 Dlaczego symulacja Kontrolowany eksperyment. Model symulacyjny explicite pokazuje najważniejsze relacje w rozważanym problemie. Dlatego decydenci używają modeli do systematycznego szacowania proponowanych polityk w symulowanych warunkach i do oceny wpływu kluczowych elementów na system. Eksperymenty te prowadzone są bez naruszania działania aktualnego systemu. Można w ten sposób uniknąć decyzji prowadzących do fatalnych następstw ekonomicznych, politycznych czy socjalnych. 19
20 Dlaczego symulacja Kompresja czasu. Eksperyment, który w rzeczywistym systemie trwałby miesiące czy lata, można przeprowadzić w ciągu kilku minut przy użyciu jego symulacyjnego modelu. Laboratorium zarządzania. Model ilustruje i pozwala lepiej poznać rzeczywisty proces. Gry kierownicze pozwalają uczestnikom zrozumieć relacje między zmiennymi decyzyjnymi a rezultatami oraz rozwinąć umiejętności decyzyjne. 20
21 Ograniczenia symulacji Nie gwarantuje optymalnego rozwiązania. Podczas eksperymentu badane są tylko warianty podane przez użytkownika. Zawsze mogą istnieć lepsze układy zmiennych decyzyjnych, których decydent nie wziął pod uwagę i/lub o których nie ma pojęcia. Kosztowna. Modelowanie złożonego systemu, wykonywanie wielu obserwacji oraz pisanie programów jest bardzo pracochłonne nawet przy użyciu wyspecjalizowanych narzędzi. W celu oszacowania pojedynczej statystyki należy wielokrotnie powtarzać przebieg symulacji. 21
22 Ograniczenia symulacji Pozorna łatwość stosowania. Często istnieje pokusa by stosować ją tam, gdzie można wyznaczyć rozwiązanie optymalne przy użyciu metod analitycznych. Ponadto nadmiar szczegółów wbudowanych w model może utrudnić przeprowadzenie eksperymentów. Kiedy nie stosować symulacji. Wiedza o wyjściach jest niedostępna, niewiarygodna lub trudna do zebrania (GIGO), Problem można rozwiązać analitycznie, Zakres swobody w podejmowaniu decyzji jest zbyt szeroki. 22
23 Przebieg symulacji Zdefiniowanie problemu Stworzenie i walidacja modelu Zaprojektowanie eksperymentów Wykonanie symulacji Analiza i interpretacja wyników 23
24 Przebieg symulacji Zdefiniowanie problemu. Zawiera przede wszystkim cele projektu i określenie przyczyn stosowania symulacji. Użytkownik powinien zdefiniować zarówno atrybuty interesujących cech jak i miary jakości rozwiązania. Ponadto należy określić zakres projektu i pożądany poziom szczegółowości. Przykład: bank. 24
25 Przebieg symulacji Stworzenie i walidacja modelu. Ogólnie rzecz biorąc model identyfikuje kluczowe elementy problemu oraz ich relacje i ma przetransformować niekontrolowane i kontrolowane (decyzyjne) wejścia w zamierzone dane wyjściowe. Jeśli możemy dokładnie opisać zmienne niekontrolowane to mówimy o symulacji deterministycznej, jeśli zmienne te są opisane rozkładami statystycznymi - o symulacji probabilistycznej. Zmienne mogą mieć charakter dyskretny lub ciągły. 25
26 Przebieg symulacji Stworzenie i walidacja modelu. Estymacji parametrów modelu dokonuje się na podstawie bezpośrednich obserwacji lub danych historycznych. Parametry te i założenia modelu powinny być zweryfikowane przez doświadczonych użytkowników lub ekspertów. Po oprogramowaniu modelu, należy go zweryfikować statystycznie wprowadzając doń dane historyczne. W razie potrzeby należy model przebudować. 26
27 Przebieg symulacji Stworzenie i walidacja modelu. Do oceny adekwatności stosuje się między innymi następujące testy: obserwację pracującego modelu przez osoby niezwiązane z opracowaniem tego modelu, prześledzenie w odwrotnym kierunku toku rozumowania przyjętego w trakcie opracowywania modelu, sprawdzenie, czy model nie generuje absurdalnych wyników dla typowych danych wejściowych, sprawdzenie, czy otrzymane wyniki mają sens i czy istnieje ich interpretacja w rzeczywistym systemie. Jeśli wiarygodność modelu nie zostanie podważona, model taki jest uważany za adekwatny i nadaje się do eksploatacji. 27
28 Przebieg symulacji Zaprojektowanie eksperymentu. W projekcie eksperymentu należy przede wszystkim określić warunki początkowe (przykład: bank, skrzyżowanie). Jako że eksperyment ma dostarczyć odpowiedzi na pytania decydenta, należy ponadto przewidzieć wszystkie interesujące użytkownika wartości zmiennych decyzyjnych, dla których będą prowadzone oddzielne przebiegi. 28
29 Przebieg symulacji Wykonanie symulacji. W przypadku symulacji deterministycznej prowadzimy tylko jeden przebieg dla każdej wartości zmiennej kontrolowanej. W przypadku symulacji probabilistycznej wartości zmiennych niekontrolowanych są losowane z odpowiednich rozkładów, stąd każdy przebieg daje inne wyniki. By wyniki były statystycznie wiarygodne należy przeprowadzić kilkadziesiąt przebiegów dla każdej wartości zmiennej decyzyjnej. 29
30 Przebieg symulacji Analiza rezultatów. Analiza obejmuje porównanie symulowanych wyników otrzymanych z wyspecyfikowanych polityk. Ponieważ w przypadku symulacji probabilistycznej mamy do czynienia z rozkładem wyników, należy stosować narzędzia statystyczne (analiza wariancji, analiza spektralna i testy istotności) do oceny otrzymanych wyników. Z reguły analiza wystarcza do wyboru najlepszej polityki spośród zbadanych. Czasem wyniki wskazują, że potrzebne są dalsze badania (ze zmianą modelu włącznie). 30
31 Aspekty statystyczne symulacji We wszystkich symulacjach probabilistycznych występują elementy losowe (rozkład cen, czasy obsługi itp.). Dlatego wynik symulacji nie jest dokładną odpowiedzią, lecz szeregiem liczb o losowym rozkładzie. W symulacjach występuje wiele problemów statystycznych, specyficznych i nie - dla tej metody: wygenerowanie ciągu liczb losowych o zadanym rozkładzie opisującym zmienną losową, statystyczna analiza modelu, statystyczna analiza wyników. 31
32 Liczby losowe W przypadku symulacji stochastycznej podstawowe znaczenie ma generowanie liczb z rozkładu jednostajnego, gdyż przez jego przekształcenie można uzyskać liczby losowe o dowolnym rozkładzie. Rozkład jednostajny to taki rozkład, w którym prawdopodobieństwa wylosowania dowolnej wartości z danego przedziału (np. [0...1]) są sobie równe. Losowy oznacza, że nie da się przewidzieć, jakie liczby otrzymamy. 32
33 Pobieranie próbek z rozkładów Wykonując operacje matematyczne na liczbach losowych o rozkładzie równomiernym [0, 1], można tworzyć liczby losowe o innych rozkładach. Ciąg liczb R =1-R (R={r i }) ma też rozkład jednostajny w przedziale [0, 1] i nazywany jest ciągiem przeciwnym. Ciągi takie są ważnym środkiem zmniejszania wariancji w symulacjach stochastycznych. 33
34 Pobieranie próbek z rozkładów Zmienne losowe o danym rozkładzie dyskretnym Wykonujemy mapowanie liczb losowych z przedziału [0, 1] na dystrybuantę: określ prawdopodobieństwa, że zmienna przybiera określone wartości, utwórz dystrybuantę (skumuluj prawdopodobieństwa), przyporządkuj przedziały liczb losowych do dystrybuanty, wylosuj liczbę z [0, 1], znajdź tę liczbę w przedziałach dystrybuanty, odczytaj wartość zmiennej, której przyporządkowano ten przedział. 34
35 Pobieranie próbek z rozkładów Zmienne losowe o danym rozkładzie dyskretnym przykład Lp Cena Prawdopodobieństwo Dystrybuanta ,15 0, ,19 0, ,30 0, ,26 0, ,10 1, ,00 Lp L.losowa Dystrybuanta Cena rzecz. Cena wyl. 1 0, , ,48 0, ,91 0, ,53 0, ,09 0, ,61 1, , , ,
36 Pobieranie próbek z rozkładów Zmienne losowe o danym rozkładzie ciągłym Ogólna metoda polega na odwróceniu dystrybuanty F(x). Weź liczbę losową R o rozkładzie jednostajnym w przedziale [0, 1] i rozwiąż równanie F(X) = R lub F(X) = 1-R. Wtedy X ma szukany rozkład i nazywa się liczbą losową o dystrybuancie F(x). 1 R F(x) X x 36
37 Pobieranie próbek z rozkładów Rozkład prostokątny w przedziale [a, b] f(x) 1/(b-a) 0 a b x P = a+(b-a) * R ma rozkład prostokątny w [a, b]. 37
38 Pobieranie próbek z rozkładów Liczby losowe o rozkładzie wykładniczym F(x) = 1-e -lx (x>=0, wartość oczekiwana 1/l) Weź liczbę losową R o rozkładzie jednostajnym w przedziale [0, 1] i oblicz X = -ln(r)/l. Dowód F(X) = 1-R 1-e -lx = 1-R e -lx = R -lx = ln(r) X = -ln(r)/l 38
39 Pobieranie próbek z rozkładów Liczby losowe o rozkładzie normalnym Przy użyciu dwóch niezależnych liczb losowych R 1 i R 2 o rozkładzie jednostajnym w [0, 1] można otrzymać dwie niezależne liczby losowe o rozkładzie normalnym N(0,1). Jest to tzw. przekształcenie Boxa-Müllera: N 1 = (-2 ln(r 1 )) 1/2 cos(2pr 2 ) N 2 = (-2 ln(r 1 )) 1/2 sin(2pr 2 ) Tworząc liczby m+s N 1 i m+s N 2 otrzymujemy zmienne losowe o rozkładzie N(m,s). 39
40 Przykład symulacji jednokanałowej kolejki Załóżmy, że czas przybycia klienta i czas obsługi są opisane następującymi rozkładami empirycznymi: Czas przybycia Prawd. Dystrybuanta Czas obsługi Prawd. Dystrybuanta 1 0,10 0,10 1 0,30 0,30 2 0,20 0,30 2 0,20 0,50 3 0,25 0,55 3 0,20 0,70 4 0,20 0,75 4 0,15 0,85 5 0,15 0,90 5 0,10 0,95 6 0,10 1,00 7 0,05 1,00 3,40 1,00 2,75 1,00 40
41 Przykład symulacji jednokanałowej kolejki Model: Klient nr. L.los. Czas przybycia Wejście do systemu CLOCK1 Początek obsługi CLOCK2 L.los. Czas obsługi T Koniec obsługi CLOCK3 Czas oczekiwania klienta Czas bezczynności kanału , , , , , , , , , , , , , , , , , , , ,89 3,00 2,20 0,10 Czas przybycia Prawd. Dystrybuanta Czas obsługi Prawd. Dystrybuanta 1 0,10 0,10 1 0,30 0,30 2 0,20 0,30 2 0,20 0,50 3 0,25 0,55 3 0,20 0,70 4 0,20 0,75 4 0,15 0,85 5 0,15 0,90 5 0,10 0,95 6 0,10 1,00 7 0,05 1,00 3,40 1,00 2,75 1,00 41
42 Symulacja wydatków inwestycyjnych Spółka planuje budowę linii odlewniczej; oczekiwane nakłady są zestawione w poniższej tabeli : Kategoria Wydatki [tys. zł] Projekt 510 Urządzenia Posadowienie 830 Infrastruktura Płace 610 Inne 650 Razem Jakie jest prawdopodobieństwo, że nakłady na projekt wyniosą dokładnie ,00 zł? 42
43 Symulacja wydatków inwestycyjnych Potrzebne są dokładniejsze dane: Kategoria Wydatki [tys. zł] Najbardz. prawd. Optymistyczne Pesymistyczne Oczekiwane Projekt Urządzenia Posadowienie Infrastruktura Płace Inne Razem Jakie jest prawdopodobieństwo, że nakłady na projekt wyniosą dokładnie ,00 zł? Zbuduj prosty model i wykonaj symulację Monte Carlo. 43
44 Symulacja wydatków inwestycyjnych Jeśli na wejściu masz rozkłady, to na wyjściu otrzymasz również rozkład: C z ę s t o ś ć Oczekiwane = 9100 Nie są równe średniej.. ani najbardziej prawd. 44
45 Symulacja wydatków inwestycyjnych Dystrybuanta: 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 45
46 Symulacja systemu konserwacji W budynku zainstalowano 1000 żarówek. Każda żarówka ma trwałość co najwyżej 12 miesięcy. Firma konserwująca budynek stara się zdecydować, czy warto stosować politykę grupowej wymiany". W ramach tej polityki wszystkie żarówki są wymieniane co m miesięcy (gdzie m jest do ustalenia). Żarówki są również wymieniane pojedynczo, kiedy się spalą. Załóżmy, że wymiana jednej żarówki kosztuje 0,15 zł w przypadku wymiany grupowej i 0,80 zł, jeśli wymieniana jest spalona żarówka. Jak można użyć symulacji w celu ustalenia, czy warto stosować politykę wymiany grupowej? Źródło: Winston W., Albright S.: Practical management science. Duxbury,
Metody symulacji komputerowej
Wydział Odlewnictwa AGH Wirtualizacja technologii odlewniczych Metody symulacji Projektowanie informatycznych systemów zarządzania Treść wykładu Co to jest symulacja Zalety i wady symulacji Przebieg symulacji
Prawdopodobieństwo i statystyka
Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:
W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe
Sterowanie wielkością zamówienia w Excelu - cz. 3
Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
Modelowanie komputerowe
Modelowanie komputerowe wykład 1- Generatory liczb losowych i ich wykorzystanie dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 5,12 października 2016 r.
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
Biostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
Mikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 6 Mikołaj Czajkowski Wiktor Budziński Metody symulacyjne Monte Carlo Metoda Monte-Carlo Wykorzystanie mocy obliczeniowej komputerów, aby poznać charakterystyki zmiennych losowych poprzez
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe
Rozkłady zmiennych losowych
Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli
Wykład 3 Hipotezy statystyczne
Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza
AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA
AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej KATEDRA MATEMATYKI TEMAT PRACY: ROZKŁAD NORMALNY ROZKŁAD GAUSSA AUTOR: BARBARA MARDOSZ Kraków, styczeń 2008 Spis treści 1 Wprowadzenie 2 2 Definicja
Statystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
Niezawodność i diagnostyka projekt. Jacek Jarnicki
Niezawodność i diagnostyka projekt Jacek Jarnicki Zajęcia wprowadzające 1. Cel zajęć projektowych 2. Etapy realizacji projektu 3. Tematy zadań do rozwiązania 4. Podział na grupy, wybór tematów, organizacja
Zmienne losowe ciągłe i ich rozkłady
Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Metody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Niezawodność i diagnostyka projekt
Niezawodność i diagnostyka projekt Jacek Jarnicki Henryk Maciejewski Zajęcia wprowadzające 1. Cel zajęć projektowych 2. Etapy realizacji projektu 3. Tematy zadań do rozwiązania 4. Podział na grupy, wybór
Algorytmy zrandomizowane
Algorytmy zrandomizowane http://zajecia.jakubw.pl/nai ALGORYTMY ZRANDOMIZOWANE Algorytmy, których działanie uzależnione jest od czynników losowych. Algorytmy typu Monte Carlo: dają (po pewnym czasie) wynik
Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.
Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )
Ważne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU
Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów
Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu
Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)
Całkowanie metodą Monte Carlo
Całkowanie metodą Monte Carlo Plan wykładu: 1. Podstawowa metoda Monte Carlo 2. Metody MC o zwiększonej efektywności a) losowania ważonego b) zmiennej kontrolnej c) losowania warstwowego d) obniżania krotności
Zawartość. Zawartość
Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami
Z poprzedniego wykładu
PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne
Podejmowanie decyzji w warunkach ryzyka. Tomasz Brzęczek Wydział Inżynierii Zarządzania PP
Podejmowanie decyzji w warunkach ryzyka Tomasz Brzęczek Wydział Inżynierii Zarządzania PP Ryzyko decyzyjne. Przez ryzyko decyzyjne rozumiemy zmienność wyniku decyzji przedsiębiorstwa spowodowaną losowością
Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 5 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.medexp3.dta przygotuj model regresji kwantylowej 1. Przygotuj model regresji kwantylowej w którym logarytm wydatków
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów
Układy stochastyczne
Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.
Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1
Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie
Inżynieria Środowiska. II stopień ogólnoakademicki. przedmiot podstawowy obowiązkowy polski drugi. semestr zimowy
Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 STATYSTYKA
Wybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład
6. Zmienne losowe typu ciagłego ( ) Pole trapezu krzywoliniowego
6. Zmienne losowe typu ciagłego (2.04.2007) Pole trapezu krzywoliniowego Przypomnienie: figurę ograniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją ciągłą; proste x = a, x = b, a < b, oś OX
Prawdopodobieństwo geometryczne
Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo
Opis przedmiotu. Karta przedmiotu - Probabilistyka I Katalog ECTS Politechniki Warszawskiej
Kod przedmiotu TR.NIK304 Nazwa przedmiotu Probabilistyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne
Prawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,
Wykład 4. Rozkłady i ich dystrybuanty 6 marca 2007 Jak opisać cały rozkład jedną funkcją? Aby znać rozkład zmiennej X, musimy umieć obliczyć P (a < X < b) dla dowolnych a < b. W tym celu wystarczy znać
166 Wstęp do statystyki matematycznej
166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej
Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych
Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych Autorzy: Marta Rotkiel, Anna Konik, Bartłomiej Parowicz, Robert Rudak, Piotr Otręba Spis treści: Wstęp Cel
dr Jerzy Pusz, st. wykładowca, Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu
Kod przedmiotu TR.SIK303 Nazwa przedmiotu Probabilistyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne
Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
Rachunek Prawdopodobieństwa i Statystyka
Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
Modelowanie rynków finansowych z wykorzystaniem pakietu R
Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie
Wydział Matematyki. Testy zgodności. Wykład 03
Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy
Zmienne losowe ciągłe i ich rozkłady
Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu
III. ZMIENNE LOSOWE JEDNOWYMIAROWE
III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta
Opis przedmiotu: Probabilistyka I
Opis : Probabilistyka I Kod Nazwa Wersja TR.SIK303 Probabilistyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka prowadząca
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO
Zał. nr 4 do ZW WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA STOSOWANA Nazwa w języku angielskim APPLIED STATISTICS Kierunek studiów (jeśli dotyczy): Specjalność
Metody Obliczeniowe w Nauce i Technice
Metody Obliczeniowe w Nauce i Technice 15. Obliczanie całek metodami Monte Carlo Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport
Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport Michał Krzemiński Streszczenie Projekt dotyczy metod generowania oraz badania własności statystycznych ciągów liczb pseudolosowych.
Szczegółowy rozkład materiału dla klasy 3b poziom rozszerzny cz. 1 - liceum
Szczegółowy rozkład materiału dla klasy b poziom rozszerzny cz. - liceum WYDAWNICTWO PAZDRO GODZINY Lp. Tematyka zajęć Liczba godzin I. Funkcja wykładnicza i funkcja logarytmiczna. Potęga o wykładniku
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa
przedmiot podstawowy obowiązkowy polski drugi
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 07/08 IN--008 STATYSTYKA W INŻYNIERII ŚRODOWISKA Statistics in environmental engineering
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka
Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej
Prawdopodobieństwo i statystyka
Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.
Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych
Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych Plan laboratorium Generatory liczb pseudolosowych dla rozkładów dyskretnych: Generator liczb o rozkładzie równomiernym Generator
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: przedmiot obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU
WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena
Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ
Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Zadanie 1. Zmienna losowa przyjmuje wartości -1, 0, 1 z prawdopodobieństwami równymi odpowiednio: ¼, ½, ¼. Należy: a. Wyznaczyć rozkład prawdopodobieństwa
Wybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1
W4 Eksperyment niezawodnościowy
W4 Eksperyment niezawodnościowy Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Badania niezawodnościowe i analiza statystyczna wyników 1. Co to są badania niezawodnościowe i
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
Sylabus do programu kształcenia obowiązującego od roku akademickiego 0/5 () Nazwa Rachunek prawdopodobieństwa i statystyka () Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot ()
Rozkłady prawdopodobieństwa zmiennych losowych
Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.
zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.
Rachunek prawdopodobieństwa Podstawowym celem rachunku prawdopodobieństwa jest określanie szans zajścia pewnych zdarzeń. Pojęcie podstawowe rachunku prawdopodobieństwa to: zdarzenie losowe - zdarzenie
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD
Modelowanie i obliczenia techniczne. dr inż. Paweł Pełczyński
Modelowanie i obliczenia techniczne dr inż. Paweł Pełczyński ppelczynski@swspiz.pl Literatura Z. Fortuna, B. Macukow, J. Wąsowski: Metody numeryczne, WNT Warszawa, 2005. J. Awrejcewicz: Matematyczne modelowanie
12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych
(pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: Rachunek prawdopodobieństwa i statystyka matematyczna 2. Kod przedmiotu: RPiS 3. Karta przedmiotu ważna od roku akademickiego:
Podstawy symulacji komputerowej
Podstawy symulacji komputerowej Wykład 3 Generatory liczb losowych Wojciech Kordecki wojciech.kordecki@pwsz-legnica.eu Państwowa Wyższa Szkoła Zawodowa im. Witelona w Legnicy Wydział Nauk Technicznych
Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2
Metody matematyczne w analizie danych eksperymentalnych - sygnały, cz. 2 Dr hab. inż. Agnieszka Wyłomańska Faculty of Pure and Applied Mathematics Hugo Steinhaus Center Wrocław University of Science and
Ważne rozkłady i twierdzenia
Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne
Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne
Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład
12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych
(pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: Rachunek prawdopodobieństwa i statystyka matematyczna 2. Kod przedmiotu: RPiS 3. Karta przedmiotu ważna od roku akademickiego:
Wykład z Technologii Informacyjnych. Piotr Mika
Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły
P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)
Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P
Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
Zadania ze statystyki, cz.6
Zadania ze statystyki, cz.6 Zad.1 Proszę wskazać, jaką część pola pod krzywą normalną wyznaczają wartości Z rozkładu dystrybuanty rozkładu normalnego: - Z > 1,25 - Z > 2,23 - Z < -1,23 - Z > -1,16 - Z
Metody probabilistyczne
Metody probabilistyczne 13. Elementy statystki matematycznej I Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 17.01.2019 1 / 30 Zagadnienia statystki Przeprowadzamy
Rozkład zajęć, statystyka matematyczna, Rok akademicki 2015/16, semestr letni, Grupy dla powtarzających (C15; C16)
Rozkład zajęć, statystyka matematyczna, Rok akademicki 05/6, semestr letni, Grupy powtarzających (C5; C6) Lp Grupa C5 Grupa C6 Liczba godzin 0046 w godz 600-000 C03 0046 w godz 600-000 B05 4 6046 w godz
ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.
Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
6.4 Podstawowe metody statystyczne
156 Wstęp do statystyki matematycznej 6.4 Podstawowe metody statystyczne Spóbujemy teraz w dopuszczalnym uproszczeniu przedstawić istotę analizy statystycznej. W szczególności udzielimy odpowiedzi na postawione
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości
Prawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści
Zadania o numerze 4 z zestawów licencjat 2014.
Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...
Monte Carlo, bootstrap, jacknife
Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział
Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Tomasz Kuszewski Poziom studiów (I lub II stopnia): II stopnia
Metody symulacji komputerowych Modelowanie systemów technicznych
Metody symulacji komputerowych Modelowanie systemów technicznych dr inż. Ryszard Myhan Katedra Inżynierii Procesów Rolniczych Program przedmiotu Lp. Temat Zakres 1. Wprowadzenie do teorii systemów Definicje