Analizatory impedancji

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analizatory impedancji"

Transkrypt

1 Analizatory impedancji Sprzęt pomiarowy analizatory impedancji Agilent 494A, Agilent E4980 i Solartron 80 wzmacniacz prądowy Keithley 48 analizatory własnej konstrukcji Możliwości pomiarowe: częstotliwość: μhz 0 MHz impedancja: 0 mω 00 TΩ

2 element R L C Z R jωl j ωc impedancja Z R ωl ωc π arg (Z) 0 = 90 π = 90 Y j jωc R ωl admitancja Y ωl R ωl arg (Y) 0 π = 90 π = 90 Szczegóły łącznie z przykładowymi widmami impedancji podstawowych połączeń elementów RLC instrukcja do ćwiczenia Analiza właściwości zmiennoprądowych materiałów i elementów elektronicznych laboratorium PDM

3 R C R C R C R C

4 Elektryczny model zastępczy reprezentujący proces relaksacji debajowskiej C R C jε ε ε * dielektryk ) ( ) ( * o C j C j R C j Y C R R C j C C C C o o ) ( * j s s ) ( ) ( * o o s C C C C C ; Polaryzacja relaksacyjna - Debye

5 Polaryzacja relaksacyjna Maxwell - Wagner C C R R z ' R R ( CC R R ) z '' człon relaksacyjny człon przewodnościowy Zależność rzeczywistej przenikalności ( ) oraz urojonej ( ) składowej elektrycznej od częstotliwości zmian pola elektrycznego

6 CPE element stałofazowy Z( CPE ) Y o ( j ) n, Y ( CPE ) Y o ( j ) n Y Y o ( j ) n n Y o cos( n ) j sin( n ) gdzie : j, Y o,n parametry, pulsacja -ImZ CPE R CPE n/ ( n) / ReZ

7 Zastosowania

8 Dielektryki i Magnetyki Rs C Ls Kondensatory Ru Z (ohm) arg(z) ( ) M 00k 0k k m 0m MLCC uf ceramiczny 00nF styrofleksowy 330nF Element Freedom Value Er Rs Free(+) 0, N/ C Free(+) 7,5808E-07 N/ Ru Free(+) 4,5774E05 N/ Ls Free(+),536E-08 N/ ateriały do wykładu ceramik u - C.mdl 00 k 0k Data 00k File: M 0M 00M Circuit Model File: E:\Dokumenty\Dyd Mode: Run Fitting / Select Maximum Iterations: 00 Optimization Iterations: 0 Type of Fitting: Complex Type of Weighting: Data-Modulus 00 k 0k 00k M 0M 00M Frequency (Hz)

9 Dielektryki i Magnetyki Rs C Ls Kondensatory Ru Z (ohm) arg(z) ( ) 0k k m pomiar model Element Freedom Value E Rs Free(+) 0, N C Free(+) 7,5808E-07 N Ru Free(+) 4,5774E05 N Ls Free(+),536E-08 N 00 k 0k 00k M 0M 00M Data File: Circuit Model File: E:\Dokumenty\Dyd ateriały do wykładu ceramik u - C.mdl Run Fitting / Select Mode: Maximum Iterations: 00 Optimization Iterations: 0 Type of Fitting: Complex Frequency Type (Hz) of Weighting: Data-Modulus 00 k 0k 00k M 0M 00M kondensator Rs (mω) C (nf) Ru (MΩ) Ls (nh) MLCC 44 ± 0,7% 758 ± 0.% 0,46 ± 55% 5 ± 0,% ceramiczny 37 ±,8% 00 ± 0,4% 5 ± 650% 4 ± 0,5% styrofleksowy 69 ± 3% 36 ± 0,9% 444 ± 4000% 3 ±,3%

10 Dielektryki i Magnetyki Kondensatory Rs C Ls Z (ohm) arg(z) ( ) 0 00m elektrolityczny Element elektrolityczny Rs Freedom Free(+) Value 0, Error 0,00 elektrolityczny C uszkodzonyfree(+) 7,5808E-07,0 Ls Free(+),536E-08,68 Chi-Squared: 0, Weighted Sum of Squares: 0,0508 ateriały do wykładu\wi ateriały do wykładu\wi 00 k 0k 00k M Data File: 0M 00M E:\Dokumenty\Dydakt ceramik u.z Circuit Model File: E:\Dokumenty\Dydakt ceramik u - C.mdl Mode: Run Fitting / Selected Maximum Iterations: k 0k 00k M 0M kondensator Optimization Rs (Ω) Iterations: 00M C (μf) 0 Ls (nh) Frequency Type (Hz) of Fitting: Complex # Type of Weighting: 0,4 ±,7% 34 ± % Data-Modulus 37 ± % #, ± % 84,3 ±,5% 5 ± % # uszkodzony 3,4 ±,4% 63 ± 3% ± 4%

11 Dielektryki i Magnetyki Kondensatory Rs CPE CPE Ls Z (ohm) arg(z) ( ) 0 00m elektrolityczny elektrolityczny elektrolityczny uszkodzony Data File: 00 k 0k 00kCircuit Model M File: 0M 00M 00 k 0k 00k M 0M 00M Frequency (Hz) Element Freedom Value Error Rs Free(+) 3,9 N/A CPE-T Free(+) 0, N/A CPE-P Free(+) 0,84984 N/A CPE-T Fixed(X) 0 N/A CPE-P Fixed(X) N/A Ls Free(+),0343E-08 N/A E:\Dokumenty\Dydaktyka\pdm ateriały do wykładu\widma kon elko przed.mdl Mode: Run Fitting / Selected Points (0 Maximum Iterations: 00 Optimization Iterations: 0 Type of Fitting: Complex Type of Weighting: Data-Modulus

12 Nanoceramika BaTiO 3 próbka BaTiO 3 nanoproszek BaTiO 3 przełom nanoceramiki Rs Rdc CPE CPE C C R R T. Piasecki, K. Nitsch, R. Pązik, W. Stręk, J. Phys. Conference Series 46 (009) 0009

13 Nanoceramika T. Piasecki, K. Nitsch, R. Pązik, W. Stręk, J. Phys. Conference Series 46 (009) 0009

14 Nanoceramika - model Rs Rdc CPE CPE C C R R T. Piasecki, K. Nitsch, R. Pązik, W. Stręk, J. Phys. Conference Series 46 (009) 0009

15 Nanoceramika BaTiO 3 Najważniejsze wnioski: za przewodnictwo elektryczne odpowiada faza amorficzna wykryto relaksacje dielektryczne potwierdzono ferroelektryczne właściwości fazy krystalicznej 5 T. Piasecki, K. Nitsch, R. Pązik, W. Stręk, J. Phys. Conference Series 46 (009) 0009

16 Tytan pokrywany warstwą hydroksyapatytu Hydroksyapatyt (HA) Ca 0 (PO 4 ) 6 (OH) Warstwy otrzymywane technika natryskiwania plazmowego z zawiesiny 6 Piasecki T. et al., Surface & Coatings Technology, 05 (00) Piasecki T. et al., Optica Applicata 39 (009) 95-9

17 Tytan pokrywany warstwą hydroksyapatytu W badaniach elektrycznych wykryto fazę amorficzną, której nie wykazały badania XRD Zaproponowano metodę na porównanie porowatości opartą na obserwacji zmian właściwości elektrycznych w trakcie odparowania wody z nasączonej nią próbki 7 Piasecki T. et al., Surface & Coatings Technology, 05 (00) Piasecki T. et al., Optica Applicata 39 (009) 95-9

18 Struktury cienkowarstwowe Al x O y 8 Tadaszak K., et al., Microelectronics Realiability, 5 (0) 5-9 Tadaszak K., et al., Materials Science Poland, 30 (0) 33-38

19 Czujniki impedancyjne Van Gerwen P. et al. Sensors and Actuators B 49 (998) 73-80

20 Granica metal - elektrolit Czujnik z elektrodami palczastymi wykonany na utlenionym krzemie

21 Rs CPEc Rc CPEdl Rct Elektryczny model równoważny, gdzie Rs rezystancja elektrolitu, CPEc pojemność wynikająca z chropowatości Element Freedom Value Error Error % próbki, Rc rezystancja warstwy porowatej, Rct Rs Free(+) 50 N/A N/A rezystancja transportu elektronów, CPEdl pojemność CPEc-T Free(+) 8E-09 N/A N/A elektrycznej warstwy podwójnej CPEc-P Free(+) 0,9 N/A N/A Rc Free(+) 4000 N/A N/A CPEdl-T Free(+) E-06 N/A N/A CPEdl-P Free(+) 0,7 N/A N/A Rct Free(+) 0000 N/A N/A Data File: Circuit Model File: C:\Users\Paulinka\Desktop\modele\korozja.mdl Mode: Run Fitting / All Data Points ( - )

22 Z theta Częstotliwość (Hz) bazowa próba nr próba nr próba nr Częstotliwość (Hz) Zestawienie widm impedancyjnych w zależności od stopnia napigmentowania próbki: próba nr 0,%, próba nr 3 0,5%, próba nr 4 % Z theta Porównanie widm impedancyjnych po tygodniowej i dwutygodniowej inkubacji w 3% roztworze NaCl próba nr - na początku próba nr - po tygodniu próba nr - po dwóch tygodniach Częstotliwość (Hz) Częstotliwość (Hz)

23 Czujniki impedancyjne Bakterie na powierzchni czujnika BSA BSA BSA BSA BSA Escherichia coli. Białka, przeciwciała (systemy immunologiczne) grubość warstwy < 00 nm. Bakterie, komórki 00 nm < grubość warstwy < 00 µm S. M. Radke, E. C. Alocilja, IEEE SENSORS JOURNAL VOL. 4, NO. 4, AUGUST 004 Staphylococcus aureus 3. Biofilm 00 µm < grubość warstwy X. Tang et al., Sensors and Actuators B 56 (0)

24 Granica metal elektrolit a biologia Fe(CN 6 ) 3-/4- zablokowana wymiana el. ΔC dl znormalizowana R ct T. Kim, J. Kang, J-H Lee, J. Yoon, Water Res 45 (0) X. Guo, A. Kulkarni, A. Doepke et. al., Anal. Chem. 84 (0) 4-46 P. Van Gerwen, W. Layreyn et. al., Sensor. Actuator. B 49 (998) 73-80

25 Badania wzrostu biofilmu Pseudomonas aeruginosa CDC, Public Health Image Library Szczep P. aeruginosa PAO (ATCC 569) oraz ATCC 7853, stężenie 0 5 CFU/ml w bulionie Muellera Hintona Inkubacja w temperaturze 37 C Sterylizacja termiczna układu pomiarowego Ograniczenie odparowania wody w trakcie inkubacji Jednoczesny pomiar impedancji 8 czujników

26 Kamerton jako czujnik masy biofilmu H-C Flemming, J. Wingender Nat. Rev. Microbiol 8 (0) 63 T. Piasecki, G. Guła et al., Sensors & Actuators B. Chemical, 89 (03) 60-65

27 T. Piasecki et al. Evaluation of Pseudomonas aeruiginosa biofilm formation using Quartz Tuning Forks as impedance sensors, Sensors and Actuators B (Chemical), w recenzji Badania wzrostu biofilmu konduktywność medium powierzchnia czujnika

28 Badania wzrostu biofilmu T. Piasecki et al. Evaluation of Pseudomonas aeruiginosa biofilm formation using Quartz Tuning Forks as impedance sensors, Sensors and Actuators B (Chemical), w recenzji

29 T. Piasecki et al. Evaluation of Pseudomonas aeruiginosa biofilm formation using Quartz Tuning Forks as impedance sensors, Sensors and Actuators B (Chemical), w recenzji Badania wzrostu biofilmu konduktancja medium zjawiska na powierzchni czujnika Wniosek: Wykryto elektrycznie rozwój mikroorganizmów oraz jeden z etapów ewolucji biofilmu. Możliwe jest skonstruowanie systemu pomiarowego łączącego metodę masową i impedancyjną

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8 Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 8 Analiza właściwości zmiennoprądowych materiałów i elementów elektronicznych I. Zagadnienia do przygotowania:. Wykonanie i przedstawienie

Bardziej szczegółowo

Spektroskopia impedancyjna. Układy cienkowarstwowe

Spektroskopia impedancyjna. Układy cienkowarstwowe Spis treści Model matematyczny obiektu i układ zastępczy Analiza właściwości dynamicznych mierzonego obiektu Podstawowe wielkości stosowane w spektroskopii impedancyjnej Wyznaczanie parametrów materiałowych

Bardziej szczegółowo

Dielektryki i Magnetyki

Dielektryki i Magnetyki Dielektryki i Magnetyki Zbiór zdań rachunkowych dr inż. Tomasz Piasecki tomasz.piasecki@pwr.edu.pl Wydanie 2 - poprawione ponownie 1 marca 2018 Spis treści 1 Zadania 3 1 Elektrotechnika....................................

Bardziej szczegółowo

Ćwiczenie 2: Elektrochemiczny pomiar szybkości korozji metali. Wpływ inhibitorów korozji

Ćwiczenie 2: Elektrochemiczny pomiar szybkości korozji metali. Wpływ inhibitorów korozji Ćwiczenie 2: Elektrochemiczny pomiar szybkości korozji metali. Wpływ inhibitorów korozji Wymagane wiadomości Podstawy korozji elektrochemicznej, podstawy kinetyki procesów elektrodowych, równanie Tafela,

Bardziej szczegółowo

Obwody prądu zmiennego

Obwody prądu zmiennego Obwody prądu zmiennego Prąd stały ( ) ( ) i t u t const const ( ) u( t) i t Prąd zmienny, dowolne funkcje czasu i( t) t t u ( t) t t Natężenie prądu i umowny kierunek prądu Prąd stały Q t Kierunek poruszania

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 7 Badanie materiałów metodą spektroskopii impedancyjnej

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 7 Badanie materiałów metodą spektroskopii impedancyjnej Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 7 Badanie materiałów metodą spektroskopii impedancyjnej. Zagadnienia do przygotowania:. Metody badań materiałów w dziedzinie czasu i częstotliwości

Bardziej szczegółowo

odwrotność d/s S/d odwrotność odwrotność S/d d/s odwrotność

odwrotność d/s S/d odwrotność odwrotność S/d d/s odwrotność . SPEKTROSKOPIA IMPEDANCYJNA Spektroskopia impedancyjna oznacza pomiar liniowej, elektrycznej odpowiedzi badanego materiału na pobudzenie małym sygnałem elektromagnetycznym w szerokim pasmie częstotliwości

Bardziej szczegółowo

Spektroskopia impedancyjna

Spektroskopia impedancyjna Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki II p. Michał Marzantowicz Do użytku wewnętrznego Spektroskopia impedancyjna Właściwości elektryczne większości materiałów zależą od częstotliwości,

Bardziej szczegółowo

Zastosowanie metod dielektrycznych do badania właściwości żywności

Zastosowanie metod dielektrycznych do badania właściwości żywności Zastosowanie metod dielektrycznych do badania właściwości żywności Ze względu na właściwości elektryczne materiały możemy podzielić na: Przewodniki (dobrze przewodzące prąd elektryczny) Półprzewodniki

Bardziej szczegółowo

Podstawy elektrochemii i korozji. Ćwiczenie 6

Podstawy elektrochemii i korozji. Ćwiczenie 6 Podstawy elektrochemii i korozji Ćwiczenie 6 Elektrochemiczna spektroskopia impedancyjna (EIS) Wyznaczanie parametrów impedancji z krzywych Nyquist a Impedancja jest to wielkość charakteryzująca zależność

Bardziej szczegółowo

Spektroskopia impedancyjna. Układy cienkowarstwowe

Spektroskopia impedancyjna. Układy cienkowarstwowe Katedra Elektroniki AGH Kraków 2004 Spis treści Model matematyczny obiektu i układ zastępczy Spektroskopia impedancyjna Analiza właściwości dynamicznych mierzonego obiektu Podstawowe wielkości stosowane

Bardziej szczegółowo

Systemy liniowe i stacjonarne

Systemy liniowe i stacjonarne Systemy liniowe i stacjonarne Układ (np.: dwójnik) jest liniowy wtedy i tylko wtedy gdy: Spełnia własność skalowania (jednorodność): T [a x (t )]=a T [ x (t)]=a y (t ) Jeśli wymuszenie zostanie przeskalowane

Bardziej szczegółowo

ĆWICZENIE nr 5. Pomiary rezystancji, pojemności, indukcyjności, impedancji

ĆWICZENIE nr 5. Pomiary rezystancji, pojemności, indukcyjności, impedancji Politechnika Łódzka Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych WWW.DSOD.PL LABORATORIUM METROLOGII ELEKTRONICZNEJ ĆWICZENIE nr 5 Pomiary rezystancji, pojemności, indukcyjności, impedancji

Bardziej szczegółowo

Główne zadania Laboratorium Wzorców Wielkości Elektrycznych

Główne zadania Laboratorium Wzorców Wielkości Elektrycznych ZAKŁAD ELEKTRYCZNY Laboratorium Wzorców Wielkości Elektrycznych Kierownik Edyta Dudek tel.: (22) 581 94 62 (22) 581 93 02 faks: (22) 581 94 99 e-mail: electricity@gum.gov.pl e-mail: dc.standards@gum.gov.pl

Bardziej szczegółowo

gdzie względna oznacza normalizację względem stałej dielektrycznej próżni ε 0 = F/m. Straty dielektryczne:

gdzie względna oznacza normalizację względem stałej dielektrycznej próżni ε 0 = F/m. Straty dielektryczne: PROTOKÓŁ 6/218 Badania absorpcji dielektrycznej w temperaturze pokojowej w zakresie częstości -1 Hz 7 Hz dla Kompozytów Klej/Matryca ADR Technology Klient: Autorzy: Protokół autoryzował: ADR Technology

Bardziej szczegółowo

Wydział Elektroniki Mikrosystemów i Fotoniki. Laboratorium Nowoczesna Diagnostyka Materiałowa

Wydział Elektroniki Mikrosystemów i Fotoniki. Laboratorium Nowoczesna Diagnostyka Materiałowa Laboratorium Nowoczesna Diagnostyka Materiałowa Spektroskopia impedancyjna: pomiar i analiza widm impedancyjnych materiałów i przyrządów I. Zagadnienia do przygotowania:. Znajomość pojęć: impedancja, admitancja,

Bardziej szczegółowo

WYJAŚNIENIE TREŚCI SPECYFIKACJI ISTOTNYCH WARUNKÓW ZAMÓWIENIA

WYJAŚNIENIE TREŚCI SPECYFIKACJI ISTOTNYCH WARUNKÓW ZAMÓWIENIA 2 REGIONALNA BAZA LOGISTYCZNA 04-470 Warszawa, ul. Marsa 110 Warszawa, dnia 07.02.2019 r. WYJAŚNIENIE TREŚCI SPECYFIKACJI ISTOTNYCH WARUNKÓW ZAMÓWIENIA Dotyczy: numer postępowania: D/198/2018. Na podstawie

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 12 Pomiary dielektryków i magnetyków metodami klasycznymi

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 12 Pomiary dielektryków i magnetyków metodami klasycznymi Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 1 Pomiary dielektryków i magnetyków metodami klasycznymi I. Zagadnienia do przygotowania: 1. definicje parametrów materiałowych i ich jednostki:

Bardziej szczegółowo

Zastosowanie sondy wejściowej w komputerowym systemie pomiarowym do spektroskopii wysokoimpedancyjnej

Zastosowanie sondy wejściowej w komputerowym systemie pomiarowym do spektroskopii wysokoimpedancyjnej Zastosowanie sondy wejściowej w komputerowym systemie pomiarowym do spektroskopii wysokoimpedancyjnej Jerzy Hoja, Grzegorz Lentka * W pracy przedstawiono komputerowy system pomiarowy do spektroskopii wysokoimpedancyjnej,

Bardziej szczegółowo

Podstawy elektrochemii i korozji

Podstawy elektrochemii i korozji Podstawy elektrochemii i korozji wykład dla III roku kierunków chemicznych Wykład VII Dr Paweł Krzyczmonik Pracownia Elektrochemii i Korozji Uniwersytet Łódzki Kwiecień 2015 1 Elektrochemiczne metody pomiarowe

Bardziej szczegółowo

WŁAŚCIWOŚCI DIELEKTRYCZNE WYBRANYCH ODMIAN MIODU

WŁAŚCIWOŚCI DIELEKTRYCZNE WYBRANYCH ODMIAN MIODU Inżynieria Rolnicza 5(123)/2010 WŁAŚCIWOŚCI DIELEKTRYCZNE WYBRANYCH ODMIAN MIODU Deta Łuczycka Instytut Inżynierii Rolniczej, Uniwersytet Przyrodniczy we Wrocławiu Streszczenie. Celem pracy było sprawdzenie

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH ZAKŁAD WYSOKICH NAPIĘĆ I KOMPATYBILNOŚCI ELEKTROMAGNETYCZNEJ PRACOWNIA MATERIAŁOZNAWSTWA

Bardziej szczegółowo

SPEKTROSKOPIA IMPEDANCYJNA

SPEKTROSKOPIA IMPEDANCYJNA SPEKTROSKOPIA IMPEDANCYJNA dr inŝ. Leszek Niedzicki Spektroskopia impedancyjna (EIS Electrochemical Impedance Spectroscopy) jest powszechnie stosowaną metodą do badań elektrochemicznych i korozyjnych.

Bardziej szczegółowo

E dec. Obwód zastępczy. Napięcie rozkładowe

E dec. Obwód zastępczy. Napięcie rozkładowe Obwód zastępczy Obwód zastępczy schematyczny obwód elektryczny, ilustrujący zachowanie się badanego obiektu w polu elektrycznym. Elementy obwodu zastępczego (oporniki, kondensatory, indukcyjności,...)

Bardziej szczegółowo

AUTOREFERAT ROZPRAWY DOKTORSKIEJ NA TEMAT: Czujniki impedancyjne w pomiarach warstw mikrobiologicznych. AUTOR Konrad Andrzej Chabowski

AUTOREFERAT ROZPRAWY DOKTORSKIEJ NA TEMAT: Czujniki impedancyjne w pomiarach warstw mikrobiologicznych. AUTOR Konrad Andrzej Chabowski Wydział Elektroniki Mikrosystemów i Fotoniki AUTOREFERAT ROZPRAWY DOKTORSKIEJ NA TEMAT: Czujniki impedancyjne w pomiarach warstw mikrobiologicznych AUTOR Konrad Andrzej Chabowski PROMOTOR prof. dr hab.

Bardziej szczegółowo

ATLAS 0441 HIGH IMPEDANCE ANALYSER

ATLAS 0441 HIGH IMPEDANCE ANALYSER ZAKŁAD SYSTEMÓW ELEKTRONICZNYCH ATLAS - SOLLICH ul. Mjr. M. Słabego 2, 80-298 Gdańsk, Polska tel/fax +48 58 349 66 77 www.atlas-sollich.pl e-mail: sollich@atlas-sollich.pl ATLAS 0441 HIGH IMPEDANCE ANALYSER

Bardziej szczegółowo

LABORATORYJNY MIERNIK RLC ELC 3133A DANE TECHNICZNE

LABORATORYJNY MIERNIK RLC ELC 3133A DANE TECHNICZNE LABORATORYJNY MIERNIK RLC ELC 3133A DANE TECHNICZNE 1 OGÓLNE DANE TECHNICZNE Mierzone parametry Typ układu pomiarowego L/C/R/D/Q/θ Indukcyjność (L) Tryb domyślny układ szeregowy Pojemność / rezystancja

Bardziej szczegółowo

Kondensator. Kondensator jest to układ dwóch przewodników przedzielonych

Kondensator. Kondensator jest to układ dwóch przewodników przedzielonych Kondensatory Kondensator Kondensator jest to układ dwóch przewodników przedzielonych dielektrykiem, na których zgromadzone są ładunki elektryczne jednakowej wartości ale o przeciwnych znakach. Budowa Najprostsze

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. ĆWICZENIE Nr 2. Badanie własności ferroelektrycznych soli Seignette a

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. ĆWICZENIE Nr 2. Badanie własności ferroelektrycznych soli Seignette a POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 2 Badanie własności ferroelektrycznych soli Seignette a Celem ćwiczenia jest wyznaczenie zależności temperaturowej

Bardziej szczegółowo

Laboratorium Inżynierii Materiałowej / Fizyki 2. Ćwiczenie nr 2. Materiały elektroizolacyjne i kondensatory

Laboratorium Inżynierii Materiałowej / Fizyki 2. Ćwiczenie nr 2. Materiały elektroizolacyjne i kondensatory Laboratorium Inżynierii Materiałowej / Fizyki Ćwiczenie nr Materiały elektroizolacyjne i kondensatory 1. Cel ćwiczenia: Celem ćwiczenia jest poznanie podstawowych zjawisk zachodzących w dielektrykach.

Bardziej szczegółowo

Ćwiczenie 6: Lokalizacja usterek we wzmacniaczu napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 6: Lokalizacja usterek we wzmacniaczu napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 6: Lokalizacja usterek we wzmacniaczu napięcia Opracował

Bardziej szczegółowo

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0.

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0. Obwody RC t = 0, V C = 0 V 0 IR 0 V C C I II prawo Kirchhoffa: " po całym obwodzie zamkniętym E d l = 0 IR +V C V 0 = 0 R dq dt + Q C V 0 = 0 V 0 R t = RC (stała czasowa) Czas, po którym prąd spadnie do

Bardziej szczegółowo

Siła elektromotoryczna

Siła elektromotoryczna Wykład 5 Siła elektromotoryczna Urządzenie, które wykonuje pracę nad nośnikami ładunku ale różnica potencjałów między jego końcami pozostaje stała, nazywa się źródłem siły elektromotorycznej. Energia zamieniana

Bardziej szczegółowo

Generator. R a. 2. Wyznaczenie reaktancji pojemnościowej kondensatora C. 2.1 Schemat układu pomiarowego. Rys Schemat ideowy układu pomiarowego

Generator. R a. 2. Wyznaczenie reaktancji pojemnościowej kondensatora C. 2.1 Schemat układu pomiarowego. Rys Schemat ideowy układu pomiarowego PROTOKÓŁ POMAROWY LABORATORUM OBWODÓW SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia 3 Nazwisko i imię Data wykonania ćwiczenia Prowadzący ćwiczenie Podpis Data oddania sprawozdania Temat BADANA

Bardziej szczegółowo

Ćwiczenie 6 BADANIE STABILNOŚCI TEMPERATUROWEJ KONDENSATORÓW I CEWEK. Laboratorium Inżynierii Materiałowej

Ćwiczenie 6 BADANIE STABILNOŚCI TEMPERATUROWEJ KONDENSATORÓW I CEWEK. Laboratorium Inżynierii Materiałowej Ćwiczenie 6 BADANIE STABILNOŚCI TEMPERATUROWEJ KONDENSATORÓW I CEWEK Laboratorium Inżynierii Materiałowej 1. CEL ĆWICZENIA Celem ćwiczenia jest zbadanie stabilności cieplnej indukcyjnych oraz doświadczalne

Bardziej szczegółowo

29 PRĄD PRZEMIENNY. CZĘŚĆ 2

29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Włodzimierz Wolczyński 29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Opory bierne Indukcyjny L - indukcyjność = Szeregowy obwód RLC Pojemnościowy C pojemność = = ( + ) = = = = Z X L Impedancja (zawada) = + ( ) φ R X C =

Bardziej szczegółowo

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza

Bardziej szczegółowo

Przyrządy pomiarowe w elektronice multimetr

Przyrządy pomiarowe w elektronice multimetr Przyrządy pomiarowe w elektronice multimetr Miernik uniwersalny służy do pomiaru istotnych parametrów elementów elektronicznych: rezystancji pojemności napięć, prądów stałych i zmiennych (50Hz) na elementach

Bardziej szczegółowo

2.Rezonans w obwodach elektrycznych

2.Rezonans w obwodach elektrycznych 2.Rezonans w obwodach elektrycznych Celem ćwiczenia jest doświadczalne sprawdzenie podstawowych właściwości szeregowych i równoległych rezonansowych obwodów elektrycznych. 2.1. Wiadomości ogólne 2.1.1

Bardziej szczegółowo

Ćwiczenie nr 74. Pomiary mostkami RLC. Celem ćwiczenia jest pomiar rezystancji, indukcyjności i pojemności automatycznym mostkiem RLC.

Ćwiczenie nr 74. Pomiary mostkami RLC. Celem ćwiczenia jest pomiar rezystancji, indukcyjności i pojemności automatycznym mostkiem RLC. Ćwiczenie nr 74 Pomiary mostkami RLC Cel ćwiczenia Celem ćwiczenia jest pomiar rezystancji, indukcyjności i pojemności automatycznym mostkiem RLC. Dane znamionowe Przed przystąpieniem do wykonywania ćwiczenia

Bardziej szczegółowo

Wytwarzanie i charakterystyka porowatych powłok zawierających miedź na podłożu tytanowym, z wykorzystaniem plazmowego utleniania elektrolitycznego

Wytwarzanie i charakterystyka porowatych powłok zawierających miedź na podłożu tytanowym, z wykorzystaniem plazmowego utleniania elektrolitycznego Wytwarzanie i charakterystyka porowatych powłok zawierających miedź na podłożu tytanowym, z wykorzystaniem plazmowego utleniania elektrolitycznego ŁUKASZ DUDEK Zespół Badawczo-Dydaktyczny Bioinżynierii

Bardziej szczegółowo

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.

Bardziej szczegółowo

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH Ćwiczenie nr 2 Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy Wykonując pomiary PRZESTRZEGAJ przepisów BHP związanych z obsługą urządzeń

Bardziej szczegółowo

Ćwiczenie 3 Obwody rezonansowe

Ćwiczenie 3 Obwody rezonansowe Ćwiczenie 3 Obwody rezonansowe Opracowali dr inż. Krzysztof Świtkowski oraz mgr inż. Adam Czerwiński Pierwotne wersje ćwiczenia i instrukcji są dziełem mgr inż. Leszka Widomskiego Celem ćwiczenia jest

Bardziej szczegółowo

Recenzja rozprawy doktorskiej mgra inż. Konrada Andrzeja Chabowskiego

Recenzja rozprawy doktorskiej mgra inż. Konrada Andrzeja Chabowskiego dr hab. inż. Karol Malecha - recenzja rozprawy doktorskiej mgra inż. Konrada Chabowskiego 1 Wrocław, 4 grudnia 2017 r. dr hab. inż. Karol Malecha Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych Studia... Kierunek... Grupa dziekańska... Zespół... Nazwisko i Imię 1.... 2.... 3.... 4.... Laboratorium...... Ćwiczenie

Bardziej szczegółowo

Temat: Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Temat: Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych INSTYTUT SYSTEMÓW INŻYNIERII ELEKTRYCZNEJ POLITECHNIKI ŁÓDZKIEJ WYDZIAŁ: KIERUNEK: ROK AKADEMICKI: SEMESTR: NR. GRUPY LAB: SPRAWOZDANIE Z ĆWICZEŃ W LABORATORIUM METROLOGII ELEKTRYCZNEJ I ELEKTRONICZNEJ

Bardziej szczegółowo

Pomiar indukcyjności.

Pomiar indukcyjności. Pomiar indukcyjności.. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z metodami pomiaru indukcyjności, ich wadami i zaletami, wynikającymi z nich błędami pomiarowymi, oraz umiejętnością ich właściwego

Bardziej szczegółowo

u (0) = 0 i(0) = 0 Obwód RLC Odpowiadający mu schemat operatorowy E s 1 sc t = 0 i(t) w u R (t) E u C (t) C

u (0) = 0 i(0) = 0 Obwód RLC Odpowiadający mu schemat operatorowy E s 1 sc t = 0 i(t) w u R (t) E u C (t) C Obwód RLC t = 0 i(t) R L w u R (t) u L (t) E u C (t) C Odpowiadający mu schemat operatorowy R I Dla zerowych warunków początkowych na cewce i kondensatorze 1 sc sl u (0) = 0 C E s i(0) = 0 Prąd I w obwodzie

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

Fizyka i inżynieria materiałów Prowadzący: Ryszard Pawlak, Ewa Korzeniewska, Jacek Rymaszewski, Marcin Lebioda, Mariusz Tomczyk, Maria Walczak

Fizyka i inżynieria materiałów Prowadzący: Ryszard Pawlak, Ewa Korzeniewska, Jacek Rymaszewski, Marcin Lebioda, Mariusz Tomczyk, Maria Walczak Fizyka i inżynieria materiałów Prowadzący: Ryszard Pawlak, Ewa Korzeniewska, Jacek Rymaszewski, Marcin Lebioda, Mariusz Tomczyk, Maria Walczak Instytut Systemów Inżynierii Elektrycznej Politechnika Łódzka

Bardziej szczegółowo

Laboratorium. Techniki ultradźwiękowej w diagnostyce medycznej. Ćwiczenie 4. Badanie właściwości przetworników ultradźwiękowych

Laboratorium. Techniki ultradźwiękowej w diagnostyce medycznej. Ćwiczenie 4. Badanie właściwości przetworników ultradźwiękowych TUD laboratorium Laboratorium Techniki ultradźwiękowej w diagnostyce medycznej Ćwiczenie 4 Badanie właściwości przetworników ultradźwiękowych Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński

Bardziej szczegółowo

Metody pomiarowe spinowego efektu Halla w nanourządzeniach elektroniki spinowej

Metody pomiarowe spinowego efektu Halla w nanourządzeniach elektroniki spinowej Metody pomiarowe spinowego efektu Halla w nanourządzeniach elektroniki spinowej Monika Cecot, Witold Skowroński, Sławomir Ziętek, Tomasz Stobiecki Wisła, 13.09.2016 Plan prezentacji Spinowy efekt Halla

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół

Bardziej szczegółowo

Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik

Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik 1 Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik Znajdź usterkę oraz wskaż sposób jej usunięcia w zasilaczu napięcia stałego 12V/4A, wykonanym w oparciu o układ scalony

Bardziej szczegółowo

BADANIE ELEMENTÓW RLC

BADANIE ELEMENTÓW RLC KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE BADANIE ELEMENTÓW RLC REV. 1.0 1. CEL ĆWICZENIA - zapoznanie się z systemem laboratoryjnym NI ELVIS II, - zapoznanie się z podstawowymi

Bardziej szczegółowo

ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym

ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym 4. PRZEBIE ĆWICZENIA 4.1. Wyznaczanie parametrów wzmacniacza z tranzystorem unipolarnym złączowym w

Bardziej szczegółowo

Natężenie prądu elektrycznego

Natężenie prądu elektrycznego Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam kierunek jak przepływ ładunków

Bardziej szczegółowo

PROFESJONALNY MULTIMETR CYFROWY ESCORT-99 DANE TECHNICZNE ELEKTRYCZNE

PROFESJONALNY MULTIMETR CYFROWY ESCORT-99 DANE TECHNICZNE ELEKTRYCZNE PROFESJONALNY MULTIMETR CYFROWY ESCORT-99 DANE TECHNICZNE ELEKTRYCZNE Format podanej dokładności: ±(% w.w. + liczba najmniej cyfr) przy 23 C ± 5 C, przy wilgotności względnej nie większej niż 80%. Napięcie

Bardziej szczegółowo

Kondensatory. Konstrukcja i właściwości

Kondensatory. Konstrukcja i właściwości Kondensatory Konstrukcja i właściwości Zbigniew Usarek, 2018 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Podstawowe techniczne parametry

Bardziej szczegółowo

Elektryczność i Magnetyzm

Elektryczność i Magnetyzm Elektryczność i Magnetyzm Wykład: Piotr Kossacki Pokazy: Kacper Oreszczuk, Magda Grzeszczyk, Paweł Trautman Wykład szósty 14 marca 019 Z ostatniego wykładu Doświadczenie Millikana Potencjał i pole od dipola

Bardziej szczegółowo

Analiza ustalonego punktu pracy dla układu zamkniętego

Analiza ustalonego punktu pracy dla układu zamkniętego Analiza ustalonego punktu pracy dla układu zamkniętego W tym przypadku oznacza stałą odchyłkę od ustalonego punktu pracy element SUM element DIFF napięcie odniesienia V ref napięcie uchybu V e V ref HV

Bardziej szczegółowo

Szkła specjalne Wykład 16 Przewodnictwo elektryczne Część 3 Przewodnictwo jonowe i mieszane w szkłach tlenkowych

Szkła specjalne Wykład 16 Przewodnictwo elektryczne Część 3 Przewodnictwo jonowe i mieszane w szkłach tlenkowych Szkła specjalne Wykład 16 Przewodnictwo elektryczne Część 3 Przewodnictwo jonowe i mieszane w szkłach tlenkowych Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Przewodnictwo jonowe

Bardziej szczegółowo

Prąd d zmienny. prąd zmienny -(ang.:alternating current, AC) prąd elektryczny, którego natężenie zmienia się w czasie.

Prąd d zmienny. prąd zmienny -(ang.:alternating current, AC) prąd elektryczny, którego natężenie zmienia się w czasie. Prąd d zmienny prąd zmienny -(ang.:alternating current, AC) prąd elektryczny, którego natężenie zmienia się w czasie. 1 Oś wartości natężenia prądu Oś czasu 2 Definicja natężenia prądu zmiennego i dq =

Bardziej szczegółowo

MULTIMETR CYFROWY TES 2360 #02970 INSTRUKCJA OBSŁUGI

MULTIMETR CYFROWY TES 2360 #02970 INSTRUKCJA OBSŁUGI MULTIMETR CYFROWY TES 2360 #02970 INSTRUKCJA OBSŁUGI 1. SPECYFIKACJE 1.1. Specyfikacje ogólne. Zasada pomiaru: przetwornik z podwójnym całkowaniem; Wyświetlacz: LCD, 3 3 / 4 cyfry; Maksymalny odczyt: 3999;

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

Wykresy do badań nad oddziaůywaniem nanoczŕsteczek srebra (@Ag) na zahamowanie wzrostu: bakterii Gram-ujemnych, Gram-dodatnich, droýdýy i grzybów.

Wykresy do badań nad oddziaůywaniem nanoczŕsteczek srebra (@Ag) na zahamowanie wzrostu: bakterii Gram-ujemnych, Gram-dodatnich, droýdýy i grzybów. Wykresy do badań nad oddziaůywaniem nanoczŕsteczek srebra (@Ag) na zahamowanie wzrostu: bakterii Gram-ujemnych, Gram-dodatnich, droýdýy i grzybów. 3 3 3 3 3 3ppm 25 2ppm 2 5 5 8min. 3min.,3333 2,3333 2ppm

Bardziej szczegółowo

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie generatorów sinusoidalnych (2h)

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie generatorów sinusoidalnych (2h) ĆWICZENIE LABORATORYJNE TEMAT: Badanie generatorów sinusoidalnych (2h) 1. WPROWADZENIE Przedmiotem ćwiczenia jest zapoznanie się z budową i zasadą działania podstawowych typów generatorów sinusoidalnych.

Bardziej szczegółowo

KONDENSATOR WZORCOWY 10 nf, Z DIELEKTRYKIEM CERAMICZNYM

KONDENSATOR WZORCOWY 10 nf, Z DIELEKTRYKIEM CERAMICZNYM PROBLEMS AND PROGRESS IN METROLOGY PPM 18 Conference Digest Maciej KOSZARNY, Jolanta JURSZA, Jerzy SZUTKOWSKI, Robert JASIŃSKI Główny Urząd Miar Samodzielne Laboratorium Elektryczności i Magnetyzmu Piotr

Bardziej szczegółowo

14 Modulatory FM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE Podstawy modulacji częstotliwości Dioda pojemnościowa (waraktor)

14 Modulatory FM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE Podstawy modulacji częstotliwości Dioda pojemnościowa (waraktor) 14 Modulatory FM CELE ĆWICZEŃ Poznanie zasady działania i charakterystyk diody waraktorowej. Zrozumienie zasady działania oscylatora sterowanego napięciem. Poznanie budowy modulatora częstotliwości z oscylatorem

Bardziej szczegółowo

GENERATOR WIELKIEJ CZĘSTOTLIWOŚCI BADANIE ZJAWISK TOWARZYSZĄCYCH NAGRZEWANIU DIELEKTRYKÓW

GENERATOR WIELKIEJ CZĘSTOTLIWOŚCI BADANIE ZJAWISK TOWARZYSZĄCYCH NAGRZEWANIU DIELEKTRYKÓW GENERATOR WIELKIEJ CZĘSTOTLIWOŚCI BADANIE ZJAWISK TOWARZYSZĄCYCH NAGRZEWANIU DIELEKTRYKÓW Nagrzewanie pojemnościowe jest nagrzewaniem elektrycznym związanym z efektami polaryzacji i przewodnictwa w ośrodkach

Bardziej szczegółowo

Elektroniczne przyrządy pomiarowe Kod przedmiotu

Elektroniczne przyrządy pomiarowe Kod przedmiotu Elektroniczne przyrządy pomiarowe - opis przedmiotu Informacje ogólne Nazwa przedmiotu Elektroniczne przyrządy pomiarowe Kod przedmiotu 06.5-WE-EP-EPP Wydział Kierunek Wydział Informatyki, Elektrotechniki

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1138

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1138 PCA Zakres akredytacji Nr AB 1138 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1138 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa, ul. Szczotkarska 42 Wydanie nr 11, Data wydania: 19 czerwca

Bardziej szczegółowo

LABORATORIUM URZĄDZEŃ ELEKTRYCZNYCH

LABORATORIUM URZĄDZEŃ ELEKTRYCZNYCH Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM URZĄDZEŃ ELEKTRYCZNYCH Podstawy

Bardziej szczegółowo

ZAŁĄCZNIK I DO SIWZ. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Rozwoju Regionalnego

ZAŁĄCZNIK I DO SIWZ. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Rozwoju Regionalnego ZAŁĄCZNIK I DO SIWZ Lp. Urządzenie Ilość szt/ komp Wymagania min. stawiane urządzeniu KATEDRA INŻYNIERII BIOMEDYCZNEJ. Zestaw edukacyjny do pomiarów biomedycznych - Zestaw edukacyjny przedstawiający zasady

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Podstawy

Bardziej szczegółowo

WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego

WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego Pracownia Wstępna - - WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego Układy złożone z elementów biernych Bierne elementy elektroniczne to : opór R: u ( = Ri( indukcyjność L: di( u( = L i pojemność

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół

Bardziej szczegółowo

Ćwiczenie 25. Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia

Ćwiczenie 25. Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia Temat: Obwód prądu przemiennego RC i RL. Cel ćwiczenia Ćwiczenie 25 Poznanie własności obwodu szeregowego RC w układzie. Zrozumienie znaczenia reaktancji pojemnościowej, impedancji kąta fazowego. Poznanie

Bardziej szczegółowo

WIECZOROWE STUDIA NIESTACJONARNE LABORATORIUM UKŁADÓW ELEKTRONICZNYCH

WIECZOROWE STUDIA NIESTACJONARNE LABORATORIUM UKŁADÓW ELEKTRONICZNYCH POLITECHNIKA WARSZAWSKA Instytut Radioelektroniki Zakład Radiokomunikacji WIECZOROWE STUDIA NIESTACJONARNE Semestr III LABORATORIUM UKŁADÓW ELEKTRONICZNYCH Ćwiczenie Temat: Badanie wzmacniacza operacyjnego

Bardziej szczegółowo

Laboratorium Półprzewodniki, Dielektryki i Magnetyki

Laboratorium Półprzewodniki, Dielektryki i Magnetyki Laboratorium Półprzewodniki, Dielektryki i Magnetyki Ćwiczenie 12 Pomiary dielektryków i magnetyków metodami klasycznymi Zagadnienia do przygotowania 1. Definicje parametrów materiałowych i ich jednostki:

Bardziej szczegółowo

Podstawowe układy elektroniczne

Podstawowe układy elektroniczne Podstawowe układy elektroniczne Nanodiagnostyka 16.11.2018, Wrocław MACIEJ RUDEK Podstawowe elementy Podstawowe elementy elektroniczne Podstawowe elementy elektroniczne Rezystor Kondensator Cewka 3 Podział

Bardziej szczegółowo

Pytania z przedmiotu Inżynieria materiałowa

Pytania z przedmiotu Inżynieria materiałowa Pytania z przedmiotu Inżynieria materiałowa 1.Podział materiałów elektrotechnicznych 2. Potencjał elektryczny, różnica potencjałów 3. Związek pomiędzy potencjałem i natężeniem pola elektrycznego 4. Przewodzenie

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE

ELEMENTY ELEKTRONICZNE KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE UKŁADY RC REV. 1.2 1. CEL ĆWICZENIA - praktyczna weryfikacja teoretycznych własności układów RC przy pobudzeniu przebiegami sinusoidalnymi,

Bardziej szczegółowo

SAMOCHODOWY MULTIMETR DIAGNOSTYCZNY AT-9945 DANE TECHNICZNE

SAMOCHODOWY MULTIMETR DIAGNOSTYCZNY AT-9945 DANE TECHNICZNE SAMOCHODOWY MULTIMETR DIAGNOSTYCZNY AT-9945 DANE TECHNICZNE Przyrząd spełnia wymagania norm bezpieczeństwa: IEC 10101-1 i EN-PN 61010-1. Izolacja: podwójna, druga klasa ochronności. Kategoria przepięciowa:

Bardziej szczegółowo

Ć wiczenie 2 POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI

Ć wiczenie 2 POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI 37 Ć wiczenie POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI 1. Wiadomości ogólne 1.1. Rezystancja Zasadniczą rolę w obwodach elektrycznych odgrywają przewodniki metalowe, z których wykonuje się przesyłowe

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.02. Woltomierz RMS oraz Analizator Widma 1. Woltomierz RMS oraz Analizator Widma Ćwiczenie to ma na celu poznanie

Bardziej szczegółowo

AUTOREFERAT ROZPRAWY DOKTORSKIEJ NA TEMAT:

AUTOREFERAT ROZPRAWY DOKTORSKIEJ NA TEMAT: Wydział Elektroniki Mikrosystemów i Fotoniki AUTOREFERAT ROZPRAWY DOKTORSKIEJ NA TEMAT: Metrologia i sterowanie kamertonów piezoelektrycznych w roli czujników mikrobiologicznych i biochemicznych AUTOR

Bardziej szczegółowo

Badanie oleju izolacyjnego

Badanie oleju izolacyjnego POLITECHNIKA LUBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA URZĄDZEŃ ELEKTRYCZNYCH I TWN LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr 7 Badanie oleju izolacyjnego Grupa dziekańska... Data wykonania

Bardziej szczegółowo

Formalizm liczb zespolonych

Formalizm liczb zespolonych Część III Elementy bierne: rezystor, kondesator, cewka Wymuszenie, odpowiedź układu Systemy liniowe i stacjonarne Prądy sinusoidalne, impedancja Dwójniki bierne: rezystancja, pojemność, indukcyjność Rezonans

Bardziej szczegółowo

Pytania przykładowe na kolokwium zaliczeniowe z Podstaw Elektrochemii i Korozji

Pytania przykładowe na kolokwium zaliczeniowe z Podstaw Elektrochemii i Korozji Pytania przykładowe na kolokwium zaliczeniowe z Podstaw Elektrochemii i Korozji Kolokwium obejmuje zakres materiału z wykładów oraz konwersatorium. Pytania na kolokwium mogą się różnić od pytań przedstawionych

Bardziej szczegółowo

Kompensator PID. 1 sω z 1 ω. G cm. aby nie zmienić częstotliwości odcięcia f L. =G c0. s =G cm. G c. f c. /10=500 Hz aby nie zmniejszyć zapasu fazy

Kompensator PID. 1 sω z 1 ω. G cm. aby nie zmienić częstotliwości odcięcia f L. =G c0. s =G cm. G c. f c. /10=500 Hz aby nie zmniejszyć zapasu fazy Kompensator PID G c s =G cm sω z ω L s s ω p G cm =G c0 aby nie zmienić częstotliwości odcięcia f L f c /0=500 Hz aby nie zmniejszyć zapasu fazy Łukasz Starzak, Sterowanie przekształtników elektronicznych,

Bardziej szczegółowo

Zjawiska dyspersyjne i przewodnictwo elektryczne w relaksorach, multiferroikach i strukturach wielowarstwowych

Zjawiska dyspersyjne i przewodnictwo elektryczne w relaksorach, multiferroikach i strukturach wielowarstwowych Zjawiska dyspersyjne i przewodnictwo elektryczne w relaksorach, multiferroikach i strukturach wielowarstwowych Ryszard Skulski Zjawiska dyspersyjne i przewodnictwo elektryczne w relaksorach, multiferroikach

Bardziej szczegółowo

MBNF-BDS. Analiza właściwości dielektrycznych materiału ceramicznego przy użyciu szerokopasmowej spektroskopii dielektrycznej.

MBNF-BDS. Analiza właściwości dielektrycznych materiału ceramicznego przy użyciu szerokopasmowej spektroskopii dielektrycznej. MBNF-BDS Analiza właściwości dielektrycznych materiału ceramicznego przy użyciu szerokopasmowej spektroskopii dielektrycznej Łódź 2011 90-924 Łódź, ul. Żeromskiego 116, budynek A27 tel. +4842 631 32 05,

Bardziej szczegółowo

Charakterystyki częstotliwościowe elementów pasywnych

Charakterystyki częstotliwościowe elementów pasywnych Charakterystyki częstotliwościowe elementów pasywnych Parametry elementów pasywnych; reaktancji indukcyjnej (XLωL) oraz pojemnościowej (XC1/ωC) zależą od częstotliwości. Ma to istotne znaczenie w wielu

Bardziej szczegółowo

Własności dynamiczne przetworników pierwszego rzędu

Własności dynamiczne przetworników pierwszego rzędu 1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości

Bardziej szczegółowo

Zasady redagowania prac dyplomowych

Zasady redagowania prac dyplomowych Zasady redagowania prac dyplomowych realizowanych na Wydziale Fizyki Technicznej Politechniki Poznańskiej Poniższe zasady opracowano na podstawie materiałów źródłowych: Vademecum autora - Wydawnictwo Politechniki

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 2 Badanie złącz Schottky'ego metodą C-V

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 2 Badanie złącz Schottky'ego metodą C-V Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 2 Badanie złącz Schottky'ego metodą C-V I. Zagadnienia do przygotowania: 1. Pojęcia: obszar zubożony bariera Schottky'ego 2. Modele pasmowe

Bardziej szczegółowo

Metody lokalizacji i redukcji zaburzeń elektromagnetycznych w obwodzie przetwornicy step-down z wykorzystaniem skanera EMC oraz oscyloskopu cz. I.

Metody lokalizacji i redukcji zaburzeń elektromagnetycznych w obwodzie przetwornicy step-down z wykorzystaniem skanera EMC oraz oscyloskopu cz. I. Patryk Barański, W2 Włodzimierz Wyrzykowski Metody lokalizacji i redukcji zaburzeń elektromagnetycznych w obwodzie przetwornicy step-down z wykorzystaniem skanera EMC oraz oscyloskopu cz. I. Przy projektowaniu

Bardziej szczegółowo