Zastosowanie metod dielektrycznych do badania właściwości żywności

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zastosowanie metod dielektrycznych do badania właściwości żywności"

Transkrypt

1 Zastosowanie metod dielektrycznych do badania właściwości żywności

2 Ze względu na właściwości elektryczne materiały możemy podzielić na: Przewodniki (dobrze przewodzące prąd elektryczny) Półprzewodniki (to najczęściej ciała stałe, których zdolność do przewodzenia prądu jest niewielka) Nadprzewodniki (m in. w pewnych warunkach zanika u nich opór elektryczny) Izolatory (w ogóle nie przewodzą prądu) dielektryki Zdolność do przewodzenia prądu jest związana z budową wewnętrzną materiału: z obecnością elektronów swobodnych. Ciecze mogą przewodzić prąd elektryczny w przypadku obecności jonów, które posiadają możliwość transportowania ładunku elektrycznego. Takie roztwory nazywamy elektrolitami. Pojęcie elektrolitu jest szersze i obejmuje również materiały usieciowane w których mogą przemieszczać się swobodnie ładunki, substancje krystaliczne oraz materiały porowate nasączone roztworami jonowymi.

3 Jakie mogą być skutki oddziaływanie pola elektromagnetycznego na próbkę? E r próbka Przepływ prądu Namagnesowanie Polaryzacja

4 Czym są dielektryki? Dielektrykami nazywa się układy (ciała stałe, ciecze, roztwory, gazy), w których nie występują swobodne nośniki ładunku elektrycznego (takie jak np. jony). W dielektryku ładunki nie mogą się swobodnie przesuwać, ale może dojść do przesunięcia się ładunków elektrycznych dodatnich względem ujemnych (powstaną dipole elektryczne). Makroskopowo postrzegamy to zjawisko jako gromadzenie się ładunków na powierzchni dielektryka (obojętnego jako całość). Umieszczenie takiego układu w polu elektromagnetycznym powoduje powstanie w nim pola elektrycznego. Powodem takiego zachowania układów, które w normalnych warunkach są izolatorami, jest indukcja zjawiska polaryzacji.

5 Jeżeli na dielektryk nie działa zewnętrzne pole to każdy jego obszar pozostaje elektrycznie obojętny. V

6 Polaryzacja elektronowa: E r = 0 E r + + Pod wpływem zewnętrznego pola następuje przemieszczenie ładunków elektrycznych i wygenerowanie momentu dipolowego. Taki przypadek polaryzacji nazywa się polaryzacją elektronową.

7 Polaryzacja atomowa: E r = 0 E r Polaryzacja atomowa jest rezultatem zaburzeń geometrii cząsteczek lub przesunięcia atomów czy też jonów w sieci pod wpływem pola elektromagnetycznego

8 Polaryzacja dipolowa (orientacyjna): E r = 0 E r polarny niepolarny Jeżeli mamy do czynienia z cząsteczkami polarnymi to przyłożone, zewnętrzne pole powoduje częściową orientację cząsteczek wzdłuż linii pola. Mówimy wtedy o polaryzacji orientacyjnej (dipolowej).

9 Symetryczne cząsteczki dielektryka H H W przypadku, gdy cząsteczki dielektryka są symetryczne ich moment dipolowy jest równy zero. Środki ciężkości ładunków dodatnich i ujemnych pokrywają się ze środkiem symetrii cząsteczki. E r = 0 E r polaryzacja elektronowa

10 Niesymetryczne cząsteczki dielektryka H H Jeżeli cząsteczki dielektryka nie mają środka symetrii i środki ciężkości ładunków jąder i elektronów są rozsunięte na pewną odległość to moment dipolowy cząsteczki jest różny od zera nawet gdy pole elektromagnetyczne jest nieobecne. E r = 0 E r - O polaryzacja orientacyjna

11 Pod wpływem pola, w wyniku oddziaływania z innymi atomami/cząsteczkami dielektryka, analizowana objętość V tego układu zyskuje określony moment dipolowy P. Jest on wypadkową elementarnych dipoli wszystkich cząsteczek/atomów dielektryka znajdujących się w analizowanej objętości. E r p ei r P = 1 V i p ei V Schematyczne przedstawienie zjawiska polaryzacji.

12 Związek pomiędzy zewnętrznym polem E a momentem dipolowym P przedstawia się następująco: P ε 0 = χ E χ podatność dielektryczna badanego układu ε 0 przenikalność dielektryczna próżni. Podatność dielektryczna χ definiowana jest jako: ε χ = ε 0 1

13 przy czym ε oznacza przenikalność dielektryczną badanego układu. Iloraz nazywa się często przenikalnością względną, odniesioną do wartości przenikalności próżni. ε ε 0 Spośród wszystkich ośrodków, najmniejszą przenikalność dielektryczną wykazuje próżnia. Wielkość ta, oznaczana 0, jest stałą fizyczną, której wartość, wynosi w układzie SI: ε 12 0= 8, F m

14 W przypadku dielektryków jonowych (cieczy, roztworów, sieci krystalicznych z wadami krystalograficznymi) przyłożone pole elektryczne wywołuje spontaniczne przemieszczanie się jonów. Powoduje to powstanie dipolowej polaryzacji relaksacyjnej. Narastanie tego zjawiska w czasie, pod wpływem przyłożonego pola, a także jego zanik po odjęciu pola odbywa się ze skończoną szybkością, co można zobrazować następującą zależnością: P(t) P( t) = P 0 t τ ( ) e P(0) t gdzie P(0) to wartość wektora polaryzacji dla t=0 (t- oznacza czas w sensie doświadczalnym), natomiast τ oznacza czas relaksacji układu po odjęciu pola.

15 Przemiany fazowe a pomiary dielektryczne ε Dielektyk polarny: duże wartości przenikalności dielektrycznej a znaczny spadek wartości podczas krzepnięcia można tłumaczyć zamrożeniem orientacji dipolowej T Dielektryk niepolarny: niewielki wzrost przenikalności dielektrycznej w temperaturze krzepnięcia (ochładzanie) jest związany ze wzrostem gęstości T krzep

16 Pole elektryczne sinusoidalnie zmienne w czasie

17 Przenikalność dielektryczna wyznaczana w warunkach zmiennego sinusoidalnie pola elektrycznego jest wielkością zespoloną: ε* = ε ' + j ε" Część rzeczywista zespolonego modułu przenikalności dielektrycznej jest interpretowana jako względna przenikalność badanego układu. Część urojona zespolonych wielkości fizycznych jest najczęściej miarą rozpraszania energii przez badany układ. W tym przypadku nazywa się ją często współczynnikiem strat wynikającym z przewodnictwa i efektów relaksacji polaryzacyjnej.

18 Zależność polaryzacji od częstości pola elektromagnetycznego P efekt relaksacyjny polaryzacja dipolowa polaryzacja indukowana Polarne cząsteczki są zbyt bezwładne by orientować się tak szybko jak zmienne pole. Zanika polaryzacja orientacyjna rezonans ν fale radiowe mikrofale podczerwień światło widzialne nadfiolet Hz

19 Po zaniknięciu pola polaryzacja indukowana zanika natychmiast, natomiast orientacyjna maleje w czasie, tak jak to zaznaczono wcześniej. Czas relaksacji τ jest wielkością charakterystyczną dla danego dielektryka i zależy od rodzaju cząsteczki (budowy) i właściwości rozpuszczalnika (np. lepkości w przypadku roztworów) i oddziaływanie cząsteczka-rozpuszczalnik. Czas relaksacji rośnie ze wzrostem lepkości roztworu i maleje ze wzrostem temperatury. Skala czasu relaksacji jest związana ściśle z właściwościami substancji dielektrycznej i może być traktowana jako skala zachowania materiałowego.

20 W przypadku, gdy badany układ tworzą cząsteczki monodyspersyjne charakteryzuje je jeden czas relaksacji. Oznacza to, że cząsteczki o tej samej budowie mają jeden mechanizm relaksacji, co jest oczywiście związane z ich budową i właściwościami rozpuszczalnika (w przypadku roztworów). W ogólności jednak, a przede wszystkim w przypadku niektórych biopolimerów i polimerów syntetycznych, należy rozpatrywać całe rozkład (widmo) czasów relaksacji. Fakt istnienia takiego rozkładu czasów związany jest z polidyspersyjnością badanego materiału biologicznego. Pomiary dielektryczne umożliwiają określenie momentów dipolowych cząsteczek a co za tym idzie niosą informacje o geometrii cząsteczek i rozkładzie gęstości ładunku elektronowego

21 Ciekawych informacji o zachowaniu cząsteczek dostarczają wyniki badań dielektrycznych prowadzonych w różnych temperaturach. Najczęściej bada się wpływ temperatury na czas relaksacji dielektrycznej. Opracowanie wyników pomiarów związane jest z określeniem bariery energetycznej, jaką musi pokonać dipol podczas ruchu rotacyjnego wywołanego przyłożonym polem. Pojęcie to jest analogiczne do ogólnie pojętej energii aktywacji i na jego podstawie można określić zależność częstotliwości krytycznej ν max od temperatury. Oznacza to, że można wyznaczyć taki obszar temperatur i częstotliwości, w którym straty energii będą najmniejsze.

22 Zastosowanie badań dielektrycznych pomiary tzw. wody związanej i wody swobodnej w żywności ważne ze względu na stosowanie w dużej ilości środków wiążących wodę w żywności W badaniach nad obróbką mikrofalową żywności (ogrzewanie) pomiary dielektryczne dają wgląd w jej efektywność. Największa efektywność działania mikrofal obserwowana jest wtedy gdy częstotliwość generatora mikrofal pokrywa się z maksymalnym ich pochłanianiem przez materiał ogrzewany Badania relaksacji dielektrycznej znajdują też zastosowanie przy badaniu żywności mrożonej. Na podstawie tych wyników uzyskuje się informacje o procesach starzenia i zmianach zachodzących podczas przechowywania żywności mrożonej.

23 Zastosowanie badań dielektrycznych do badania emulsji Dużym obszarem zastosowania badań dielektrycznych są wszelkiego rodzaju emulsje typu W/O i O/W. Zmiany wartości parametrów dielektrycznych w czasie pozwalają śledzić stabilność takich układów w trakcie np. produkcji czy przechowywania. zmiany geometrii kropli fazy rozproszonej Z dużym powodzeniem obserwowane są też zjawiska inwersji faz zachodzące w tych układach

24 Zastosowanie badań dielektrycznych Kolejnym obszarem zastosowania pomiarów dielektrycznych jest śledzenie postępu reakcji. Dokonuje się pomiarów w czasie w odpowiednio dobranych warunkach częstotliwości i temperatury. Zebrane w ten sposób dane umożliwiają w kilku temperaturach dane doświadczalne stanowią typowy zestaw kinetyczny na podstawie którego wyznaczyć można stałe czasowe badanej reakcji. Jako typowy przykład takich pomiarów można wyróżnić procesy nieezymatycznego brunatnienia żywności.

25 Jako aparaturę pomiarową wykorzystuje się precyzyjne mierniki RLC, mostki RLC lub analizatory sieci. Mierniki RLC stosowane są w zakresie częstotliwości od 1Hz do 1MHz. Mostki RLC pracują w zakresie od około 1mHz do 1GHz. Natomiast analizatory sieci obejmują zakres około 100kHz do 100GHz. Przedstawione granice częstotliwości należy traktować orientacyjnie. Do poprawnego przeprowadzenia pomiaru należy dobrać celę pomiarową. Jest to odpowiednio skonstruowany kondensator pomiędzy okładkami którego umieszcza się badany materiał. Dobór kondensatora pomiarowego uzależniony jest od stanu skupienia materiału badanego, zakresu częstotliwości i zakresu temperatur.

26 Konduktometria czyli pomiar przewodnictwa roztworu elektrolitu Przewodnictwo zależy od: stężenia, temperatury, ale przede wszystkim od charakteru chemicznego substancji rozpuszczonej i rozpuszczalnika κ przewodnictwo właściwe, Ω -1 m -1 Muszą być obecne jony mające możliwość przemieszczania się

27 konduktywność czyli przewodnictwo elektryczne właściwe admitancja drożność, czyli całkowite przewodnictwo G konduktancja czyli przewodność czynna B susceptancja czyli przewodność bierna (podatność) σ* = σ ' + j σ" Y* = G' + j B"

GENERATOR WIELKIEJ CZĘSTOTLIWOŚCI BADANIE ZJAWISK TOWARZYSZĄCYCH NAGRZEWANIU DIELEKTRYKÓW

GENERATOR WIELKIEJ CZĘSTOTLIWOŚCI BADANIE ZJAWISK TOWARZYSZĄCYCH NAGRZEWANIU DIELEKTRYKÓW GENERATOR WIELKIEJ CZĘSTOTLIWOŚCI BADANIE ZJAWISK TOWARZYSZĄCYCH NAGRZEWANIU DIELEKTRYKÓW Nagrzewanie pojemnościowe jest nagrzewaniem elektrycznym związanym z efektami polaryzacji i przewodnictwa w ośrodkach

Bardziej szczegółowo

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Dielektryki właściwości makroskopowe Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przewodniki i izolatory Przewodniki i izolatory Pojemność i kondensatory Podatność dielektryczna

Bardziej szczegółowo

Właściwości materii. Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. 18 listopada 2014 Biophysics 1

Właściwości materii. Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. 18 listopada 2014 Biophysics 1 Wykład 8 Właściwości materii Bogdan Walkowiak Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka 18 listopada 2014 Biophysics 1 Właściwości elektryczne Właściwości elektryczne zależą

Bardziej szczegółowo

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych Dielektryki Dielektryk- ciało gazowe, ciekłe lub stałe niebędące przewodnikiem prądu elektrycznego (ładunki elektryczne wchodzące w skład każdego ciała są w dielektryku związane ze sobą) Jeżeli do dielektryka

Bardziej szczegółowo

Pole elektryczne w ośrodku materialnym

Pole elektryczne w ośrodku materialnym Pole elektryczne w ośrodku materialnym Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Stała dielektryczna Stała

Bardziej szczegółowo

Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność.

Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność. Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność. Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 21 marca 2016 Maciej J. Mrowiński (IF PW) Wykład 4 i 5 21

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

Wykład 18 Dielektryk w polu elektrycznym

Wykład 18 Dielektryk w polu elektrycznym Wykład 8 Dielektryk w polu elektrycznym Polaryzacja dielektryka Dielektryk (izolator), w odróżnieniu od przewodnika, nie posiada ładunków swobodnych zdolnych do przemieszczenia się na duże odległości.

Bardziej szczegółowo

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2

PODSTAWY CHEMII INŻYNIERIA BIOMEDYCZNA. Wykład 2 PODSTAWY CEMII INŻYNIERIA BIOMEDYCZNA Wykład Plan wykładu II,III Woda jako rozpuszczalnik Zjawisko dysocjacji Równowaga w roztworach elektrolitów i co z tego wynika Bufory ydroliza soli Roztwory (wodne)-

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Podstawy

Bardziej szczegółowo

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości: 1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika

Bardziej szczegółowo

r. akad. 2012/2013 Podstawy Procesów i wykład XIII - XIV Zakład Biofizyki

r. akad. 2012/2013 Podstawy Procesów i wykład XIII - XIV Zakład Biofizyki r. akad. 2012/2013 wykład XIII - XIV Podstawy Procesów i Konstrukcji InŜynierskich Elementy fizyki ciała stałego Zakład Biofizyki Stany skupienia materii A -R MALDI-NCD PLAZMA ES -CON http://www.szkolnictwo.pl/

Bardziej szczegółowo

D2. WYZNACZANIE WZGLĘDNYCH PRZENIKALNOŚCI ELEKTRYCZNYCH I STRAT

D2. WYZNACZANIE WZGLĘDNYCH PRZENIKALNOŚCI ELEKTRYCZNYCH I STRAT D. WYZNACZANIE WZGLĘDNYCH PRZENIKALNOŚCI ELEKTRYCZNYCH I STRAT Jadwiga Szydłowska i Marek Pękała Dielektrykami nazywa się substancje, w których elektrony są zlokalizowane na cząsteczkach. W idealnych dielektrykach

Bardziej szczegółowo

Wykład 8 ELEKTROMAGNETYZM

Wykład 8 ELEKTROMAGNETYZM Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Fizyczny charakter wiązań w cząsteczkach. 2. Elektryczne momenty dipolowe cząsteczek.

Bardziej szczegółowo

Natężenie prądu elektrycznego

Natężenie prądu elektrycznego Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam kierunek jak przepływ ładunków

Bardziej szczegółowo

D2. WYZNACZANIE WZGLĘDNYCH PRZENIKALNOŚCI ELEKTRYCZNYCH I STRAT

D2. WYZNACZANIE WZGLĘDNYCH PRZENIKALNOŚCI ELEKTRYCZNYCH I STRAT D. WYZNACZANIE WZGLĘDNYC PZENIKALNOŚCI ELEKTYCZNYC I STAT Jadwiga Szydłowska i Marek Pękała Dielektrykami nazywa się substancje, w których elektrony są zlokalizowane na cząsteczkach. W idealnych dielektrykach

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH ZAKŁAD WYSOKICH NAPIĘĆ I KOMPATYBILNOŚCI ELEKTROMAGNETYCZNEJ PRACOWNIA MATERIAŁOZNAWSTWA

Bardziej szczegółowo

Pytania z przedmiotu Inżynieria materiałowa

Pytania z przedmiotu Inżynieria materiałowa Pytania z przedmiotu Inżynieria materiałowa 1.Podział materiałów elektrotechnicznych 2. Potencjał elektryczny, różnica potencjałów 3. Związek pomiędzy potencjałem i natężeniem pola elektrycznego 4. Przewodzenie

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

Elektrostatyka dielektryki

Elektrostatyka dielektryki Rozdział 2 Elektrostatyka dielektryki 2.1 Stała dielektryczna. Ładunki polaryzacyjne W rozdziale tym będziemy rozważać wpływ izolujących ośrodków dielektryków na oddziaływanie ładunków elektrycznych i

Bardziej szczegółowo

Różne dziwne przewodniki

Różne dziwne przewodniki Różne dziwne przewodniki czyli trzy po trzy o mechanizmach przewodzenia prądu elektrycznego Przewodniki elektronowe Metale Metale (zwane również przewodnikami) charakteryzują się tym, że elektrony ich

Bardziej szczegółowo

Prąd elektryczny - przepływ ładunku

Prąd elektryczny - przepływ ładunku Prąd elektryczny - przepływ ładunku I Q t Natężenie prądu jest to ilość ładunku Q przepływającego przez dowolny przekrój przewodnika w ciągu jednostki czasu t. Dla prądu stałego natężenie prądu I jest

Bardziej szczegółowo

Dielektryki i Magnetyki

Dielektryki i Magnetyki Dielektryki i Magnetyki Zbiór zdań rachunkowych dr inż. Tomasz Piasecki tomasz.piasecki@pwr.edu.pl Wydanie 2 - poprawione ponownie 1 marca 2018 Spis treści 1 Zadania 3 1 Elektrotechnika....................................

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 2 Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 2 Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya. LABOATOIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya.. Wprowadzenie Proces rozpadu drobin związków chemicznych

Bardziej szczegółowo

Temat XXI. Pole Elektryczne w Materii

Temat XXI. Pole Elektryczne w Materii Temat XXI Pole Elektryczne w Materii Dipol elektryczny Proste podejście do dipola E E k r 2 Q 2 l 4 E cos E E cos + - cos 2 2 r l 2 l 4 r l Ql E k k r p r 3 3 p = Ql moment dipolowy Moment dipolowy jako

Bardziej szczegółowo

Pojemność elektryczna, Kondensatory Energia elektryczna

Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna 1 Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych

Bardziej szczegółowo

Rys.1 Rozkład mocy wnikającej do dielektryka przy padaniu fali płaskiej Natężenie pola wewnątrz dielektryka maleje wykładniczo. Określa to wzór: (1)

Rys.1 Rozkład mocy wnikającej do dielektryka przy padaniu fali płaskiej Natężenie pola wewnątrz dielektryka maleje wykładniczo. Określa to wzór: (1) Temat nr 22: Badanie kuchenki mikrofalowej 1.Wiadomości podstawowe Metoda elektrotermiczna mikrofalowa polega na wytworzeniu ciepła we wsadzie głównie na skutek przepływu prądu przesunięcia (polaryzacji)

Bardziej szczegółowo

Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą

Bardziej szczegółowo

Wymagania edukacyjne: Elektrotechnika i elektronika. Klasa: 1Tc TECHNIK MECHATRONIK. Ilość godzin: 4. Wykonała: Beata Sedivy

Wymagania edukacyjne: Elektrotechnika i elektronika. Klasa: 1Tc TECHNIK MECHATRONIK. Ilość godzin: 4. Wykonała: Beata Sedivy Wymagania edukacyjne: Elektrotechnika i elektronika Klasa: 1Tc TECHNIK MECHATRONIK Ilość godzin: 4 Wykonała: Beata Sedivy Ocena Ocenę niedostateczną uczeń który Ocenę dopuszczającą Wymagania edukacyjne

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Potencjał pola elektrycznego U ab ΔV W q b a F dx q b a F q dx b a (x)dx U gradv ab ΔV b a dv dv dv x,y,z i j k (x)dx dx dy dz Natężenie pola wskazuje kierunek w którym potencjał

Bardziej szczegółowo

ELEKTRONIKA ELM001551W

ELEKTRONIKA ELM001551W ELEKTRONIKA ELM001551W Podstawy elektrotechniki i elektroniki Definicje prądu elektrycznego i wielkości go opisujących: natężenia, gęstości, napięcia. Zakres: Oznaczenia wielkości fizycznych i ich jednostek,

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 3 Janusz Andrzejewski Prąd elektryczny Prąd elektryczny to uporządkowany ruch swobodnych ładunków. Ruchowi chaotycznemu nie towarzyszy przepływ prądu. Strzałki szare - to nieuporządkowany(chaotyczny)

Bardziej szczegółowo

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Siła Coulomba. F q q = k r 1 = 1 4πεε 0 q q r 1. Pole elektrostatyczne. To przestrzeń, w której na ładunek

Bardziej szczegółowo

Własności magnetyczne materii

Własności magnetyczne materii Własności magnetyczne materii Dipole magnetyczne Najprostszą strukturą magnetyczną są magnetyczne dipole. Fe 3 O 4 Kompas, Chiny 220 p.n.e Kołowy obwód z prądem dipol magnetyczny! Wartość B w środku kołowego

Bardziej szczegółowo

E dec. Obwód zastępczy. Napięcie rozkładowe

E dec. Obwód zastępczy. Napięcie rozkładowe Obwód zastępczy Obwód zastępczy schematyczny obwód elektryczny, ilustrujący zachowanie się badanego obiektu w polu elektrycznym. Elementy obwodu zastępczego (oporniki, kondensatory, indukcyjności,...)

Bardziej szczegółowo

Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna

Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych

Bardziej szczegółowo

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego W5. Energia molekuł Przemieszczanie się całych molekuł w przestrzeni - Ruch translacyjny - Odbywa się w fazie gazowej i ciekłej, w fazie stałej

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo

Bardziej szczegółowo

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,

Bardziej szczegółowo

POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW

POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW Ćwiczenie 65 POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW 65.1. Wiadomości ogólne Pole magnetyczne można opisać za pomocą wektora indukcji magnetycznej B lub natężenia pola magnetycznego H. W jednorodnym ośrodku

Bardziej szczegółowo

Badanie pętli histerezy magnetycznej ferromagnetyków, przy użyciu oscyloskopu (E1)

Badanie pętli histerezy magnetycznej ferromagnetyków, przy użyciu oscyloskopu (E1) Badanie pętli histerezy magnetycznej ferromagnetyków, przy użyciu oscyloskopu (E1) 1. Wymagane zagadnienia - klasyfikacja rodzajów magnetyzmu - własności magnetyczne ciał stałych, wpływ temperatury - atomistyczna

Bardziej szczegółowo

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra

Bardziej szczegółowo

Wykład FIZYKA II. 5. Magnetyzm. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 5. Magnetyzm.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 5. Magnetyzm Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html MAGNESY Pierwszymi poznanym magnesem był magnetyt

Bardziej szczegółowo

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11 Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19

Bardziej szczegółowo

Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne

Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Zadania elektroniki: Urządzenia elektroniczne

Bardziej szczegółowo

Strumień pola elektrycznego

Strumień pola elektrycznego Powierzchnia Gaussa Właściwości : - jest to powierzchnia hipotetyczna matematyczna konstrukcja myślowa, - jest dowolną powierzchnią zamkniętą w praktyce powinna mieć kształt związany z symetrią pola, -

Bardziej szczegółowo

Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium

Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium Kolokwium 2 Środa 14 czerwca Zasady takie jak na pierwszym kolokwium 1 w poprzednim odcinku 2 Ramka z prądem F 1 n Moment sił działających na ramkę b/2 b/2 b M 2( F1 ) 2 b 2 F sin(θ ) 2 M 1 F 1 iab F 1

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział

Bardziej szczegółowo

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa) 37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd

Bardziej szczegółowo

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni

Bardziej szczegółowo

Stany skupienia materii

Stany skupienia materii Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię

Bardziej szczegółowo

Seminarium 3 Pola i promieniowanie elektromagnetyczne Pole elektryczne E

Seminarium 3 Pola i promieniowanie elektromagnetyczne Pole elektryczne E Seminarium 3 Pola i promieniowanie elektromagnetyczne Pole elektromagnetyczne stanowi układ dwóch, wzjamenie powiązanych pól: pola elektrycznego (o natężeniu E) i pola magnetycznego (o indukcji magnetycznej

Bardziej szczegółowo

Dielektryki Opis w domenie częstotliwości

Dielektryki Opis w domenie częstotliwości Dielektryki Opis w domenie częstotliwości Ryszard J. Barczyński, 2013 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Opis w domenie częstotliwości

Bardziej szczegółowo

ZASADY ZALICZENIA PRZEDMIOTU MBS

ZASADY ZALICZENIA PRZEDMIOTU MBS ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll

Bardziej szczegółowo

MBNF-BDS. Analiza właściwości dielektrycznych materiału ceramicznego przy użyciu szerokopasmowej spektroskopii dielektrycznej.

MBNF-BDS. Analiza właściwości dielektrycznych materiału ceramicznego przy użyciu szerokopasmowej spektroskopii dielektrycznej. MBNF-BDS Analiza właściwości dielektrycznych materiału ceramicznego przy użyciu szerokopasmowej spektroskopii dielektrycznej Łódź 2011 90-924 Łódź, ul. Żeromskiego 116, budynek A27 tel. +4842 631 32 05,

Bardziej szczegółowo

Model oscylatorów tłumionych

Model oscylatorów tłumionych Inna nazwa: model klasyczny, Lorentza Założenia: - ośrodek jest zbiorem naładowanych oscylatorów oddziałujących z falą elektromagnetyczną - wszystkie występujące siły są izotropowe - wartość siły tłumienia

Bardziej szczegółowo

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0.

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0. Obwody RC t = 0, V C = 0 V 0 IR 0 V C C I II prawo Kirchhoffa: " po całym obwodzie zamkniętym E d l = 0 IR +V C V 0 = 0 R dq dt + Q C V 0 = 0 V 0 R t = RC (stała czasowa) Czas, po którym prąd spadnie do

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 4 v.16 Wiązanie metaliczne Wiązanie metaliczne Zajmujemy się tylko metalami dlatego w zasadzie interesuje nas tylko wiązanie metaliczne.

Bardziej szczegółowo

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.

Bardziej szczegółowo

Zadanie 106 a, c WYZNACZANIE PRZEWODNICTWA WŁAŚCIWEGO I STAŁEJ HALLA DLA PÓŁPRZEWODNIKÓW. WYZNACZANIE RUCHLIWOŚCI I KONCENTRACJI NOŚNIKÓW.

Zadanie 106 a, c WYZNACZANIE PRZEWODNICTWA WŁAŚCIWEGO I STAŁEJ HALLA DLA PÓŁPRZEWODNIKÓW. WYZNACZANIE RUCHLIWOŚCI I KONCENTRACJI NOŚNIKÓW. Zadanie 106 a, c WYZNACZANIE PRZEWODNICTWA WŁAŚCIWEGO I STAŁEJ HALLA DLA PÓŁPRZEWODNIKÓW. WYZNACZANIE RUCHLIWOŚCI I KONCENTRACJI NOŚNIKÓW. 1. Elektromagnes 2. Zasilacz stabilizowany do elektromagnesu 3.

Bardziej szczegółowo

Podstawy fizyki ciała stałego półprzewodniki domieszkowane

Podstawy fizyki ciała stałego półprzewodniki domieszkowane Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,

Bardziej szczegółowo

Atomy w zewnętrznym polu magnetycznym i elektrycznym

Atomy w zewnętrznym polu magnetycznym i elektrycznym Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka

Bardziej szczegółowo

Oddziaływanie pola elektrycznego z materią

Oddziaływanie pola elektrycznego z materią Oddziaływanie pola elektrycznego z materią (jak działa kuchenka mikrofalowa) dr hab. inż. Paweł Perkowski pawel.perkowski@wat.edu.pl Instytut Fizyki Technicznej, Wydział Nowych Technologii i Chemii Wojskowa

Bardziej szczegółowo

Elektryczne właściwości materii. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.

Elektryczne właściwości materii. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Elektryczne właściwości materii Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Podział materii ze względu na jej właściwości Przewodniki elektryczne: Przewodniki I

Bardziej szczegółowo

KRYTERIA OCEN Z FIZYKI DLA KLASY II GIMNAZJUM. ENERGIA I. NIEDOSTATECZNY - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce.

KRYTERIA OCEN Z FIZYKI DLA KLASY II GIMNAZJUM. ENERGIA I. NIEDOSTATECZNY - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. KRYTERIA OCEN Z FIZYKI DLA KLASY II GIMNAZJUM ENERGIA - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. - Wie, kiedy jest wykonywana praca mechaniczna. - Wie, że każde urządzenie

Bardziej szczegółowo

Pasmowa teoria przewodnictwa. Anna Pietnoczka

Pasmowa teoria przewodnictwa. Anna Pietnoczka Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki

Bardziej szczegółowo

TEORIA PASMOWA CIAŁ STAŁYCH

TEORIA PASMOWA CIAŁ STAŁYCH TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s

Bardziej szczegółowo

Własności magnetyczne materii

Własności magnetyczne materii Własności magnetyczne materii Ośrodek materialny wypełniający solenoid (lub cewkę) wpływa na wartość indukcji magnetycznej, strumienia, a także współczynnika indukcji własnej solenoidu. Trzy rodzaje materiałów:

Bardziej szczegółowo

Zaburzenia periodyczności sieci krystalicznej

Zaburzenia periodyczności sieci krystalicznej Zaburzenia periodyczności sieci krystalicznej Defekty liniowe dyslokacja krawędziowa dyslokacja śrubowa dyslokacja mieszana Defekty punktowe obcy atom w węźle luka w sieci (defekt Schottky ego) obcy atom

Bardziej szczegółowo

Wykład Pole elektryczne na powierzchniach granicznych 8.10 Gęstość energii pola elektrycznego

Wykład Pole elektryczne na powierzchniach granicznych 8.10 Gęstość energii pola elektrycznego Wykład 7 8.9 Pole elektryczne na powierzchniach granicznych 8.0 Gęstość energii pola elektrycznego 9. Prąd elektryczny 9. Natężenie prądu, wektor gęstości prądu 9. Prawo zachowania ładunku 9.3 Model przewodnictwa

Bardziej szczegółowo

Ćwiczenie 2: Elektrochemiczny pomiar szybkości korozji metali. Wpływ inhibitorów korozji

Ćwiczenie 2: Elektrochemiczny pomiar szybkości korozji metali. Wpływ inhibitorów korozji Ćwiczenie 2: Elektrochemiczny pomiar szybkości korozji metali. Wpływ inhibitorów korozji Wymagane wiadomości Podstawy korozji elektrochemicznej, podstawy kinetyki procesów elektrodowych, równanie Tafela,

Bardziej szczegółowo

gdzie względna oznacza normalizację względem stałej dielektrycznej próżni ε 0 = F/m. Straty dielektryczne:

gdzie względna oznacza normalizację względem stałej dielektrycznej próżni ε 0 = F/m. Straty dielektryczne: PROTOKÓŁ 6/218 Badania absorpcji dielektrycznej w temperaturze pokojowej w zakresie częstości -1 Hz 7 Hz dla Kompozytów Klej/Matryca ADR Technology Klient: Autorzy: Protokół autoryzował: ADR Technology

Bardziej szczegółowo

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki Klasa II Wymagania na poszczególne oceny przy realizacji i podręcznika Świat fizyki 6. Praca. Moc. Energia 6.1. Praca mechaniczna podaje przykłady wykonania pracy w sensie fizycznym podaje jednostkę pracy

Bardziej szczegółowo

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 3 Janusz Andrzejewski Prawo Coulomba a prawo Newtona Janusz Andrzejewski 2 Natężenie i potencjał pola elektrycznego A q A B q A D q A C q A q 0 D B C A E E E E r r r r 0 0 + + + + + + D

Bardziej szczegółowo

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne

Bardziej szczegółowo

Pole przepływowe prądu stałego

Pole przepływowe prądu stałego Podstawy elektromagnetyzmu Wykład 5 Pole przepływowe prądu stałego Czym jest prąd elektryczny? Prąd elektryczny: uporządkowany ruch ładunku. Prąd elektryczny w metalach Lity metalowy przewodnik zawiera

Bardziej szczegółowo

ĆWICZENIE 2 KONDUKTOMETRIA

ĆWICZENIE 2 KONDUKTOMETRIA ĆWICZENIE 2 KONDUKTOMETRIA 1. Oznaczanie słabych kwasów w sokach i syropach owocowych metodą miareczkowania konduktometrycznego Celem ćwiczenia jest ilościowe oznaczenie zawartości słabych kwasów w sokach

Bardziej szczegółowo

P R A C O W N I A

P R A C O W N I A P R A C O W N I A www.tremolo.pl M E T O D Y B A D A Ń M A T E R I A Ł Ó W (WŁAŚCIWOŚCI ELEKTRYCZNE, MAGNETYCZNE I AKUSTYCZNE) Ewelina Broda Robert Gabor ĆWICZENIE NR 3 WYZNACZANIE ENERGII AKTYWACJI I

Bardziej szczegółowo

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu. Elektrodynamika Część 5 Pola magnetyczne w materii yszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.......................

Bardziej szczegółowo

ZJAWISKO PIROELEKTRYCZNE

ZJAWISKO PIROELEKTRYCZNE opr. Bernard Ziętek, 05.04.05 1. Wstęp Dielektryk w polu elektrycznym jest polaryzowany. Całkowita polaryzacja jest suma polaryzacji wynikajacej z następujacych trzech możliwych mechanizmów polaryzacji:

Bardziej szczegółowo

Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2.

Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2. Nadprzewodniki Pewna klasa materiałów wykazuje prawie zerową oporność (R=0) poniżej pewnej temperatury zwanej temperaturą krytyczną T c Większość przewodników wykazuje nadprzewodnictwo dopiero w temperaturze

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 1 SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 2 Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

Laboratorium Inżynierii Materiałowej / Fizyki 2. Ćwiczenie nr 2. Materiały elektroizolacyjne i kondensatory

Laboratorium Inżynierii Materiałowej / Fizyki 2. Ćwiczenie nr 2. Materiały elektroizolacyjne i kondensatory Laboratorium Inżynierii Materiałowej / Fizyki Ćwiczenie nr Materiały elektroizolacyjne i kondensatory 1. Cel ćwiczenia: Celem ćwiczenia jest poznanie podstawowych zjawisk zachodzących w dielektrykach.

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo

SPEKTROSKOPIA NMR. No. 0

SPEKTROSKOPIA NMR. No. 0 No. 0 Spektroskopia magnetycznego rezonansu jądrowego, spektroskopia MRJ, spektroskopia NMR jedna z najczęściej stosowanych obecnie technik spektroskopowych w chemii i medycynie. Spektroskopia ta polega

Bardziej szczegółowo

WŁASNOŚCI MAGNETYCZNE CIAŁA STAŁEGO

WŁASNOŚCI MAGNETYCZNE CIAŁA STAŁEGO WŁASNOŚCI MAGNETYCZNE CIAŁA STAŁEGO Moment magnetyczny atomu Polaryzacja magnetyczna Podatność magnetyczna i namagnesowanie Klasyfikacja materiałów magnetycznych Diamagnetyzm, paramagnetyzm, ferromagnetyzm

Bardziej szczegółowo

cz.3 dr inż. Zbigniew Szklarski

cz.3 dr inż. Zbigniew Szklarski Wykład : lektrostatyka cz.3 dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Przykłady Jaka musiałaby być powierzchnia okładki kondensatora płaskiego, aby, przy odległości

Bardziej szczegółowo

3. Równania pola elektromagnetycznego

3. Równania pola elektromagnetycznego 3. Równania pola elektromagnetycznego Oddziaływanie pola elektromagnetycznego z materią Pole elektromagnetyczne jest opisywane zazwyczaj za pomocą następujących 5 pól wektorowych: gęstości prądu J, natężenia

Bardziej szczegółowo

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

Badanie własności hallotronu, wyznaczenie stałej Halla (E2) Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie

Bardziej szczegółowo

POLE ELEKTRYCZNE PRAWO COULOMBA

POLE ELEKTRYCZNE PRAWO COULOMBA POLE ELEKTRYCZNE PRAWO COULOMBA gdzie: Q, q ładunki elektryczne wyrażone w kulombach [C] r - odległość między ładunkami Q i q wyrażona w [m] ε - przenikalność elektryczna bezwzględna środowiska, w jakim

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

Obwodem elektrycznym nazywamy zespół połączonych ze sobą elementów, umożliwiający zamknięty obieg prądu.

Obwodem elektrycznym nazywamy zespół połączonych ze sobą elementów, umożliwiający zamknięty obieg prądu. Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl Obwód elektryczny i jego schemat. Obwodem elektrycznym nazywamy zespół połączonych ze sobą elementów, umożliwiający zamknięty obieg prądu. Schemat

Bardziej szczegółowo

1 Płaska fala elektromagnetyczna

1 Płaska fala elektromagnetyczna 1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej

Bardziej szczegółowo