Medal i Wykład im. Wacława Sierpińskiego

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Medal i Wykład im. Wacława Sierpińskiego"

Transkrypt

1 Strona 1 z 5

2 Medalem Sierpińskiego honorowani są związani z Polską matematycy o wybitnych osiągnięciach naukowych. Uniwersytet Warszawski i Polskie Towarzystwo Matematyczne przyznają go od 1974 roku. W dniu otrzymania medalu laureaci wygłaszają na UW wykład zwany Wykładem im. Wacława Sierpińskiego. Jury Medalu i Wykładu im. Wacława Sierpińskiego. Kadencje podane w nawiasach obejmują trzy lata akademickie. Stanisław Betley, MIM UW ( ) Strona 2 z 5

3 Mariusz Koras, MIM UW ( ) Janina Kotus, MiNI PW ( ) Witold Marciszewski, MIM UW ( ) - przewodniczący jury Adam Skalski, IM PAN ( ) Dariusz Wrzosek, MIM UW ( ) LAUREACI 2016 Adam Henryk Toruńczyk (Instytut Matematyczny PAN & Uniwersytet Warszawski) Działanie nieskończone w topologii, Jerzy Weyman (University of Connecticut, USA) Złożoność obliczeniowa, geometria i teoria reprezentacji, Maciej P. Wojtkowski (Uniwersytet Warmińsko-Mazurski w Olsztynie) Rola krzywizny w dynamice, Nicole Tomczak-Jaegermann (University of Alberta, Edmonton, Kanada) Random matrices and asymptotic geometric analysis, Jerzy Kaczorowski (Uniwersytet im. Adama Mickiewicza w Poznaniu) Liczby pierwsze: dwa klasyczne zagadnienia widziane z nowej perspektywy, Krzysztof Burdzy (University of Washington, USA) Nieśmiałe pary, pogoń lwa za człowiekiem i gumki aptekarskie, Stanislaw Lech Woronowicz (Uniwersytet Warszawski) Czy grupy kwantowe to grupy, Tadeusz Iwaniec (Syracuse University, USA) An invitation to quasiconformal hyperelasticity, Stanisław Kwapień (Uniwersytet Warszawski) Miary i całki stochastyczne, Krystyna Kuperberg (Auburn University, USA) Hipoteza Seiferta, Jerzy Zabczyk (Instytut Matematyczny PAN, Warszawa) Całki stochastyczne, finanse, równania różniczkowe, Benoit Mandelbrot (Yale University, USA) From fractals to chaos, Józef Siciak (Uniwersytet Jagielloński, Kraków) Wypukłość holomorficzna, Michał Misiurewicz (University of Indiana, USA) Dynamika nie całkiem holomorficzna., Andrzej Lasota (Uniwersytet Jagielloński, Kraków) Asymptotyka półgrup operatorów Markowa, Wolfgang M. Schmidt (University of Colorado, Boulder, USA), Some questions in additive number theory, Strona 3 z 5

4 2000 Zbigniew Ciesielski (Instytut Matematyczny PAN, Sopot) Bazy w przestrzeniach funkcyjnych u progu XXI wieku, Andrzej Białynicki-Birula (Uniwersytet Warszawski), Przestrzenie moduli i geometryczna teoria niezmienników, Bob Oliver (Uniwersytet Paris - Nord, Francja) Grupy symetrii acyklicznych wielościanów dwuwymiarowych, Czesław Bessaga (Uniwersytet Warszawski) Od zbiorów pierwszej kategorii Baire'a do własności Z Andersona, Henryk Iwaniec (Rutgers University, New Brunswick, New Jersey, USA) Liczby pierwsze zespolone, Jurij Michajłowicz Smirnow (Uniwersytet im. M. Łomonosowa, Moskwa, Rosja) Czy proste ciała geometryczne mogą być maksymalnymi uzwarceniami Stone'a-Cecha, Ryszard Engelking (Uniwersytet Warszawski) O przestrzeniach nieskończenie wymiarowych, Kazimierz Urbanik (Uniwersytet Wrocławski) Fellerowskie układy graniczne, Paul Erdos (Instytut Matematyki Węgierskiej Akademii Nauki, Budapest; Technion, Haifa, Izrael) Some Problems in Set Theory and Elementary Number Theory, Samuel Eilenberg (Columbia University, New York, USA) 40 lat powojennej topologii, Jan Mycielski (University of Colorado, Boulder, USA) O moich próbach kontynuacji niektórych prac Wacława Sierpińskiego, Stanisław Hartman (Uniwersytet Wrocławski) Niektóre dawne i nowe wiadomości o tansformatach Fouriera miar, Jens Erik Fenstad (University of Oslo, Norwegia) The Discrete and the Continuous in Mathematics and in the Natural Sciences, Helena Rasiowa (Uniwersytet Warszawski) Logika aproksymacyjna, Jerzy Łoś (Instytut Podstaw Informatyki PAN, Warszawa) Grafy, modele i funkcje addytywne, Jan Mikusiński (Instytut Matematyczny PAN, Warszawa) O twierdzeniu Foiasa o splocie, Stanisław Łojasiewicz (Uniwersytet Jagielloński, Kraków) O dwóch zagadnieniach prowadzących do zbiorów semi - analitycznych, Aleksander Pełczyński (Instytut Matematyczny PAN, Warszawa) Bezwarunkowa zbieżność szeregów w przestrzeniach wektorowych, Andrzej Schinzel (Instytut Matematyczny PAN, Warszawa) Związki między własnościami lokalnymi i globalnymi w teorii liczb, Strona 4 z 5

5 1979 Władysław Orlicz (Uniwersytet im Adama Mickiewicza w Poznaniu) Metoda kategorii Baire'a w pewnych zagadnieniach analizy, Stanisław Ulam (University of Colorado, Boulder USA) Combinatorical Problems Concerning Infinite Sets. Prospects and Continuation of the Polish Spirit in Mathematical Constructs, Karol Borsuk (Instytut Matematyczny PAN, Warszawa) O relatywnej teorii punktów stałych, Antoni Zygmund (University of Chicago, USA) Zagadnienie różniczkowalności funkcji, Kazimierz Kuratowski (Instytut Matematyczny PAN, Warszawa) O selektorach w topologii i teorii miary, Adres URL źródła: Strona 5 z 5 Powered by TCPDF (

Układy dynamiczne. proseminarium dla studentów III roku matematyki. Michał Krych i Anna Zdunik. rok akad. 2014/15

Układy dynamiczne. proseminarium dla studentów III roku matematyki. Michał Krych i Anna Zdunik. rok akad. 2014/15 Układy dynamiczne proseminarium dla studentów III roku matematyki Michał Krych i Anna Zdunik rok akad. 2014/15 Układy dynamiczne Układy dynamiczne Układy dynamiczne, i związana z nimi Teoria ergodyczna

Bardziej szczegółowo

ECTS Razem 30 Godz. 330

ECTS Razem 30 Godz. 330 3-letnie stacjonarne studia licencjackie kier. Matematyka profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Algebra liniowa z geometrią analityczną I 7 30 30 E Analiza matematyczna I 13 60 60 E Technologie

Bardziej szczegółowo

Osoba fizyczna Numer i seria mandatu Data nałożenia mandatu Kwota umorzenia

Osoba fizyczna Numer i seria mandatu Data nałożenia mandatu Kwota umorzenia Informacja o dokonanych umorzeniach należności Skarbu Państwa z tytułu grzywien nałożonych w formie mandatów karnych kredytowanych w I kwartale 2011 r. Umorzeń dokonano na podstawie: art. 64 ust. 1 w związku

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2017 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Analiza rzeczywista Kod

Bardziej szczegółowo

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44 Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły

Bardziej szczegółowo

SEMINARIA DYPLOMOWE - studia II stopnia kierunek: informatyka i ekonometria oraz matematyka

SEMINARIA DYPLOMOWE - studia II stopnia kierunek: informatyka i ekonometria oraz matematyka SEMINARIA DYPLOMOWE - studia II stopnia kierunek: informatyka i ekonometria oraz matematyka Seminarium: Teoria grafów (IiE+MAT) Prowadzący: prof. dr hab. Mieczysław Borowiecki (1) Grafy na sferze i na

Bardziej szczegółowo

KIEROWNICY KATEDR MATEMATYKI

KIEROWNICY KATEDR MATEMATYKI KIEROWNICY KATEDR MATEMATYKI (od momentu ich utworzenia) Imię i nazwisko Kadencja Wydział Inżynierii AGH Prof. nadzw. dr Władysław NIKLIBORC Dr Jacek SZARSKI (doc. UJ) Prof. zw. dr Antoni PLAMITZER Z-ca

Bardziej szczegółowo

ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO

ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO Na egzaminie magisterskim student powinien: 1) omówić wyniki zawarte w pracy magisterskiej posługując się swobodnie pojęciami i twierdzeniami zamieszczonymi w pracy

Bardziej szczegółowo

Nagrody Fundacji Jurzykowskiego w matematyce

Nagrody Fundacji Jurzykowskiego w matematyce ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Seria II: WIADOMOŚCI MATEMATYCZNE XXXVI(2000) Jerzy Krzywicki(New York, NY) Jan Mycielski(Boulder, CO) Czesław Ryll-Nardzewski(Wrocław) Adam Sobiczewski(Warszawa)

Bardziej szczegółowo

PW Wydział Elektryczny Rok akad / Podstawowe Informacje dla studentów

PW Wydział Elektryczny Rok akad / Podstawowe Informacje dla studentów PW Wydział Elektryczny Rok akad. 2017 / 2018 Podstawowe Informacje dla studentów Piotr Multarzyński, e-mail: multarynka@op.pl, konsultacje: Zob isod. Przedmiot: Matematyka 1 Cel przedmiotu: Zapoznanie

Bardziej szczegółowo

Przedmiot Typ egzaminu Grupa Godz od Godz do Sala Prowadzący. Egzamin pisemny 1WA 08:30 10:30 Aula A Aula B

Przedmiot Typ egzaminu Grupa Godz od Godz do Sala Prowadzący. Egzamin pisemny 1WA 08:30 10:30 Aula A Aula B 2017-06-19 06-DAPRLM0 Algorytmy i programowanie pisemny 1WA 08:30 10:30 Aula A prof. UAM dr hab. Zbigniew Palka 06-DALGUM0 Algebra pisemny 1WA 09:00 11:00 A2-23 prof. dr hab. Jerzy Kaczorowski 06-DALGUMA

Bardziej szczegółowo

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2016/2017 Język wykładowy: Polski

Bardziej szczegółowo

KIERUNEK STUDIÓW: ELEKTROTECHNIKA

KIERUNEK STUDIÓW: ELEKTROTECHNIKA 1. PROGRAM NAUCZANIA KIERUNEK STUDIÓW: ELEKTROTECHNIKA PRZEDMIOT: MATEMATYKA (Stacjonarne: 105 h wykład, 120 h ćwiczenia rachunkowe) S t u d i a I s t o p n i a semestr: W Ć L P S I 2 E 2 II 3 E 4 III

Bardziej szczegółowo

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu Kod przedmiotu TR.SIK103 Nazwa przedmiotu Matematyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne

Bardziej szczegółowo

3. Plan studiów PLAN STUDIÓW. Faculty of Fundamental Problems of Technology Field of study: MATHEMATICS

3. Plan studiów PLAN STUDIÓW. Faculty of Fundamental Problems of Technology Field of study: MATHEMATICS 148 3. Plan studiów PLAN STUDIÓW 3.1. MATEMATYKA 3.1. MATHEMATICS - MSc studies - dzienne studia magisterskie - day studies WYDZIAŁ: PPT KIERUNEK: MATEMATYKA SPECJALNOŚCI: Faculty of Fundamental Problems

Bardziej szczegółowo

Terminy egzaminów dla I roku MATEMATYKI - studia licencjackie semestr zimowy 2015/2016, wszystkie specjalności

Terminy egzaminów dla I roku MATEMATYKI - studia licencjackie semestr zimowy 2015/2016, wszystkie specjalności semestr zimowy 2015/2016 - terminy egzaminów w sesji zasadniczej Terminy egzaminów dla I roku MATEMATYKI - studia licencjackie wszystkie specjalności Analiza matematyczna 1 x 26.01 9-12 D202 D203 x prof.

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 201/15 (1) Nazwa Rachunek różniczkowy i całkowy I (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)

Bardziej szczegółowo

KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO

KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO NA ROK AKADEMICKI 2015/2016 Politechnika Wrocławska Katalog kursów przedmiotów kształcenia ogólnego Oferta Ogólnouczelniana 2015/2016 Politechnika Wrocławska

Bardziej szczegółowo

OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI

OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI KATALOG KURSÓW OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI 2012/2013 Politechnika Wrocławska Katalog kursów Oferta Ogólnouczelniana 2012/2013 Politechnika Wrocławska Dział Nauczania Wybrzeże Wyspiańskiego

Bardziej szczegółowo

Wyniki kolejnych edycji Konkursu im. A. Z. Krygowskiej na najlepszą pracę studencką z dydaktyki matematyki

Wyniki kolejnych edycji Konkursu im. A. Z. Krygowskiej na najlepszą pracę studencką z dydaktyki matematyki Wyniki kolejnych edycji Konkursu im. A. Z. Krygowskiej na najlepszą pracę studencką z dydaktyki matematyki Edycja 2014 Wyróżnienia - ex aequo Dorota Kędroń, absolwentka Uniwersytetu Jagiellońskiego w Krakowie,

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Analiza zespolona (03-MO2S-12-AZes) 1. Informacje ogólne koordynator modułu rok akademicki

Bardziej szczegółowo

Koordynator przedmiotu dr Artur Bryk, wykł., Wydział Transportu Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu

Koordynator przedmiotu dr Artur Bryk, wykł., Wydział Transportu Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu Kod przedmiotu TR.NIK102 Nazwa przedmiotu Matematyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: MATEMATYKA STOSOWANA II 2. Kod przedmiotu: Ma2 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechatronika 5. Specjalność: Zastosowanie informatyki

Bardziej szczegółowo

Paul Erdős i Dowody z Księgi

Paul Erdős i Dowody z Księgi Paul Erdős i Dowody z Księgi Antoni Kijowski, Michał Król, Krzysztof Kwiatkowski Faculty of Mathematics and Information Science Warsaw University of Technology Warsaw, 9 January 013 (Krótki kurs historii

Bardziej szczegółowo

Krótkie informacje. Profesor Kazimierz Urbanik otrzymał w 1998 roku Nagrodę Prezesa Rady Ministrów za wybitne osiągnięcia naukowe.

Krótkie informacje. Profesor Kazimierz Urbanik otrzymał w 1998 roku Nagrodę Prezesa Rady Ministrów za wybitne osiągnięcia naukowe. ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Seria II: WIADOMOŚCI MATEMATYCZNE XXXV(1999) Tytuł naukowy profesora otrzymali: 15 kwietnia 1998 r.: Władysław Szczotka(UWr.); 20 maja 1998 r.: Józef Banaś(PRz.),

Bardziej szczegółowo

Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Analiza rzeczywista (03-MO2S-12-ARze)

Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Analiza rzeczywista (03-MO2S-12-ARze) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia II stopnia, rok 1 Sylabus modułu: Analiza rzeczywista (03-MO2S-12-ARze) 1. Informacje ogólne koordynator modułu prof.

Bardziej szczegółowo

http://bip.umtychy.pl/index.php?action=pobierzplik&id=36195

http://bip.umtychy.pl/index.php?action=pobierzplik&id=36195 Ą ć ż Ę Ę Ś Ą ż Ę Ś Ą Ą ż Ą Ą Ą Ń Ó Ś ć ż Ó Ś Ś Ę http://bip.umtychy.pl/index.php?action=pobierzplik&id=36195 ż Ą Ó ż Ą Ś Ą Ę Ó Ś Ą Ą Ń ż Ę Ą Ą ż ż Ą Ś ć Ó Ó Ó Ó Ó Ę Ę Ą ć Ó Ó Ó Ź Ń ć ć Ą ć Ń Ń ż Ę ż

Bardziej szczegółowo

ALFABETYCZNA LISTA CZŁONKÓW RADY KURATORÓW ZNiO WSZYSTKICH KADENCJI

ALFABETYCZNA LISTA CZŁONKÓW RADY KURATORÓW ZNiO WSZYSTKICH KADENCJI ALFABETYCZNA LISTA CZŁONKÓW RADY KURATORÓW ZNiO WSZYSTKICH KADENCJI L.p. Imię i nazwisko, stopień naukowy 1. Prof. dr hab. Andrzej Baborski 2. Prof. Władysław Bartoszewski 3. Prof. dr hab. Marek Bojarski

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Nazwa Algebra liniowa z geometrią Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot Kod Studia Kierunek

Bardziej szczegółowo

KAROL BORSUK ( )

KAROL BORSUK ( ) KAROL BORSUK (1905 1982) AUTORZY: Justyna Piekarska Marlena Trokowicz Tomasz Wacowski Krótki kurs historii matematyki Rok akademicki: 2014/2015 Semestr IV KAROL BORSUK Karol Borsuk urodził się 8 maja 1905

Bardziej szczegółowo

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;

Bardziej szczegółowo

Narodowe Centrum Nauki - nowy system grantów w Polsce

Narodowe Centrum Nauki - nowy system grantów w Polsce Narodowe Centrum Nauki - nowy system grantów w Polsce Zbigniew Błocki (Uniwersytet Jagielloński) http://gamma.im.uj.edu.pl/ blocki XL Konferencja Zastosowań Matematyki Zakopane, 30 sierpnia 2011 Ustawa

Bardziej szczegółowo

Alfabetyczna lista członków Rady Kuratorów ZNiO wszystkich kadencji

Alfabetyczna lista członków Rady Kuratorów ZNiO wszystkich kadencji Alfabetyczna lista członków Rady ZNiO wszystkich L.p. Imię i nazwisko, stopień naukowy 1. Prof. dr hab. Andrzej Baborski 2. Prof. Władysław Bartoszewski 3. Prof. dr hab. Marek Bojarski 4. Prof. dr hab.

Bardziej szczegółowo

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26 Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne

Bardziej szczegółowo

Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, Spis treści

Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, Spis treści Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, 2012 Spis treści Przedmowa 5 Oznaczenia i konwencje 7 Rozdział I Rozkład wykładniczy i rozkład jednostajny 1. Wprowadzenie

Bardziej szczegółowo

ANALIZA MATEMATYCZNA DLA FIZYKÓW

ANALIZA MATEMATYCZNA DLA FIZYKÓW Lech Górniewicz Roman Stanisław Ingarden ANALIZA MATEMATYCZNA DLA FIZYKÓW Wydanie piąte Toruń 2012 SPIS TREŚCI WSPOMNIENIE O PROFESORZE ROMANIE STANISŁAWIE INGARDENIE (Miłosz Michalski)... ix PRZEDMOWA

Bardziej szczegółowo

Polska Wszechnica Informatyczna otwarty portal wiedzy. Dariusz Majka menadżer główny projektu Informatyka+

Polska Wszechnica Informatyczna otwarty portal wiedzy. Dariusz Majka menadżer główny projektu Informatyka+ Polska Wszechnica Informatyczna otwarty portal wiedzy Dariusz Majka menadżer główny projektu Informatyka+ Cel projektu PWI Stworzenie portalu dydaktyczno informacyjnego dla studentów oraz wykładowców kierunku

Bardziej szczegółowo

510 Contributors. of Cracow, Poland.

510 Contributors. of Cracow, Poland. Autorzy tomu BŁASZCZYK Piotr, dr hab., profesor Uniwersytetu Pedagogicznego w Krakowie, kierownik Katedry Dydaktyki i Podstaw Matematyki, Instytut Matematyki UP. E-mail: pb@up.krakow.pl BOŻEK Hubert, doktorant

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 4

KARTA KURSU. Kod Punktacja ECTS* 4 Załącznik nr 4 do Zarządzenia Nr.. KARTA KURSU Nazwa Analiza matematyczna 3 Nazwa w j. ang. Mathematical Analysis 3 Kod Punktacja ECTS* 4 Koordynator Prof. M. C. Zdun Zespół dydaktyczny dr Z. Powązka,

Bardziej szczegółowo

Uniwersytet Rzeszowski

Uniwersytet Rzeszowski Seminarium z Równań Różniczkowych 21 marca 2017 r., godz. 12:15, sala 270 (B2): mgr Grzegorz Głowa, mgr Jarosław Napora, wykorzystaniem języka R, cz.2 Analizy statystyczne z 7 marca 2017 r., godz. 12:15,

Bardziej szczegółowo

[WYCIĄG] OBWIESZCZENIE

[WYCIĄG] OBWIESZCZENIE [WYCIĄG] OBWIESZCZENIE KOMISARZA WYBORCZEGO W RZESZOWIE z dnia 22 listopada 2014 r. o wynikach wyborów do rad na obszarze województwa podkarpackiego. Na podstawie art. 168 1 ustawy z dnia 5 stycznia 2011

Bardziej szczegółowo

HARMONOGRAM - MATEMATYKA sem.letni 2015/16

HARMONOGRAM - MATEMATYKA sem.letni 2015/16 HARMONOGRAM - MATEMATYKA sem.letni 2015/16 przedmiot kod typu prowadzący zajęc termin lokalizacja Algebry funkcyjne WYK dr hab. Marek Kosiek CZWARTEK 14:0-16:0 s. 0101 Interpolacja wielomianowa i jej zastosowania

Bardziej szczegółowo

OBWIESZCZENIE / WYCIĄG /

OBWIESZCZENIE / WYCIĄG / OBWIESZCZENIE / WYCIĄG / KOMISARZA WYBORCZEGO W RZESZOWIE z dnia 22 listopada 2014 r. o wynikach wyborów do rad na obszarze województwa podkarpackiego. Na podstawie art. 168 1 ustawy z dnia 5 stycznia

Bardziej szczegółowo

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW NAUCZANIE MATEMATYKI I INFORMATYKI

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW NAUCZANIE MATEMATYKI I INFORMATYKI EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW NAUCZANIE MATEMATYKI I INFORMATYKI poziom kształcenia profil kształcenia tytuł zawodowy uzyskiwany przez absolwenta studia drugiego stopnia ogólnoakademicki magister

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza matematyczna III (ANA023) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza matematyczna III (ANA023) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Analiza matematyczna III (ANA023) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/3 5. LICZBA PUNKTÓW ECTS: 11 6. LICZBA GODZIN: 60

Bardziej szczegółowo

X kadencja lata 2010-2013

X kadencja lata 2010-2013 X kadencja lata 2010-2013 X kadencja lata 2010-2013 Przewodniczący RG prof. dr hab. inż. Józef Lubacz Politechnika Warszawska Wiceprzewodniczący RG prof. dr hab. Jan Madey Uniwersytet Warszawski prof.

Bardziej szczegółowo

Sławni Polscy Fizycy i Matematycy. Matematycy Fizycy Najważniejsi

Sławni Polscy Fizycy i Matematycy. Matematycy Fizycy Najważniejsi Sławni Polscy Fizycy i Matematycy Matematycy Fizycy Najważniejsi Matematycy Mikołaj Kopernik Stefan Banach Jan Śniadecki Stanicław Saks Leon Chwistek Władysław Ślebodziński Mikołaj Kopernik 19 lutego 1473-24

Bardziej szczegółowo

Wyciąg z OBWIESZCZENIA KOMISARZA WYBORCZEGO W RZESZOWIE z dnia 22 listopada 2014 r. o wynikach wyborów do rad na obszarze województwa podkarpackiego.

Wyciąg z OBWIESZCZENIA KOMISARZA WYBORCZEGO W RZESZOWIE z dnia 22 listopada 2014 r. o wynikach wyborów do rad na obszarze województwa podkarpackiego. Wyciąg z OBWIESZCZENIA KOMISARZA WYBORCZEGO W RZESZOWIE z dnia 22 listopada 2014 r. o wynikach wyborów do rad na obszarze województwa podkarpackiego. Na podstawie art. 168 1 ustawy z dnia 5 stycznia 2011

Bardziej szczegółowo

Kierunek MATEMATYKA, Specjalność MATEMATYKA STOSOWANA

Kierunek MATEMATYKA, Specjalność MATEMATYKA STOSOWANA Załącznik nr 11 do Uchwały nr 236 Rady WMiI z dnia 31 marca 2015 roku Kierunek MATEMATYKA, Specjalność MATEMATYKA STOSOWANA Profil kształcenia: ogólnoakademicki Forma studiów: stacjonarne Forma kształcenia/poziom

Bardziej szczegółowo

SEMINARIA DYPLOMOWE DLA KIERUNKU

SEMINARIA DYPLOMOWE DLA KIERUNKU SEMINARIA DYPLOMOWE DLA KIERUNKU M A T E M A T Y K A UWAGA: Wybieramy dwa seminaria dyplomowe (w planie semestru II na studiach drugiego stopnia znajduje się seminarium 1A oraz seminarium 1B). Jedno z

Bardziej szczegółowo

CZŁONKOWIE KOMITETU MECHANIKI PAN, KTÓRZY OTRZYMALI IMIENNIE ZAADRESOWANY LIST I ICH REAKCJA

CZŁONKOWIE KOMITETU MECHANIKI PAN, KTÓRZY OTRZYMALI IMIENNIE ZAADRESOWANY LIST I ICH REAKCJA CZŁONKOWIE KOMITETU MECHANIKI PAN, KTÓRZY OTRZYMALI IMIENNIE ZAADRESOWANY LIST I ICH REAKCJA Lp. Adresat 1. Prof. dr hab. inż. Jan AWREJCEWICZ Kierownik Katedry Automatyki i Biomechaniki Wydział Mechaniczny

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M dr hab. inż. Stanisław Cudziło, prof. WAT Dziekan Wydziału Nowych Technologii i Chemii Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: MATEMATYKA Wersja anglojęzyczna:

Bardziej szczegółowo

Wykładowcy Lata z Helem

Wykładowcy Lata z Helem Bartłomiej Andrzejewski - Instytut Fizyki Molekularnej PAN Józef Barnaś Instytut Fizyki Molekularnej PAN Uniwersytet im. Adama Mickiewicza Janusz Baszyński - Instytut Fizyki Molekularnej PAN Krzysztof

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017 Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2018 realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu

Bardziej szczegółowo

Witaj Biologio! Matematyka dla Wydziału Biologii 2015/2016

Witaj Biologio! Matematyka dla Wydziału Biologii 2015/2016 Matematyka dla Wydziału Biologii 2015/2016 Witaj Biologio! Mirosław Lachowicz Wydział Matematyki, Informatyki i Mechaniki p. 4650, lachowic@mimuw.edu.pl Konsultacje: wtorki, 10-12 Motto: Na Biologię wchodzimy

Bardziej szczegółowo

Spis treści. O autorach 13. Wstęp 15. Przedmowa do wydania szóstego 19

Spis treści. O autorach 13. Wstęp 15. Przedmowa do wydania szóstego 19 Matematyka dla kierunków ekonomicznych : przykłady i zadania wraz z repetytorium ze szkoły średniej / Henryk Gurgul, Marcin Suder. wyd. 6 uzup. i popr., uwzględniające podstawowy program matematyki również

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Tarnowie Instytut Matematyczno-Przyrodniczy Zakład Matematyki

Państwowa Wyższa Szkoła Zawodowa w Tarnowie Instytut Matematyczno-Przyrodniczy Zakład Matematyki Program studiów na kierunku matematyka (studia I stopnia o profilu ogólnoakademickim, stacjonarne) dotyczy osób zarekrutowanych w roku 2013/14 i w latach następnych Państwowa Wyższa Szkoła Zawodowa w Tarnowie

Bardziej szczegółowo

Sprawozdanie z działalności Polskiego Konsorcjum Narodowego Mathematical Reviews w 2014 roku

Sprawozdanie z działalności Polskiego Konsorcjum Narodowego Mathematical Reviews w 2014 roku Toruń, 17 lutego 2015 roku Sprawozdanie z działalności Polskiego Konsorcjum Narodowego Mathematical Reviews w 2014 roku dla Rady Wydziału Matematyki i Informatyki Uniwersytetu Mikołaja Kopernika w Toruniu

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Analiza matematyczna 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

SPIS TREŚCI PRZEDMOWA... 13

SPIS TREŚCI PRZEDMOWA... 13 SPIS TREŚCI PRZEDMOWA... 13 CZĘŚĆ I. ALGEBRA ZBIORÓW... 15 ROZDZIAŁ 1. ZBIORY... 15 1.1. Oznaczenia i określenia... 15 1.2. Działania na zbiorach... 17 1.3. Klasa zbiorów. Iloczyn kartezjański zbiorów...

Bardziej szczegółowo

KOŁO NAUKOWE MATEMATYKÓW UNIWERSYTETU MIKOŁAJA KOPERNI- KA W TORUNIU KRZYSZTOF RYKACZEWSKI. KNM Toruń

KOŁO NAUKOWE MATEMATYKÓW UNIWERSYTETU MIKOŁAJA KOPERNI- KA W TORUNIU KRZYSZTOF RYKACZEWSKI. KNM Toruń KOŁO NAUKOWE MATEMATYKÓW UNIWERSYTETU MIKOŁAJA KOPERNI- KA W TORUNIU KRZYSZTOF RYKACZEWSKI Spis treści 1 Historia 3 2 Referaty na konferencjach i warsztatach 5 3 Udział członków KNM w konferencjach i warsztatach

Bardziej szczegółowo

ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI

ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI Budownictwo 18 Mariusz Poński ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI 1. Metody transformacji całkowych Najczęściej spotykaną metodą rozwiązywania

Bardziej szczegółowo

Ks. prof. Michał Heller otrzymał prestiżową nagrodę Tempeltona (1,6 mln.$) za przerzucanie pomostów między nauką a religią.

Ks. prof. Michał Heller otrzymał prestiżową nagrodę Tempeltona (1,6 mln.$) za przerzucanie pomostów między nauką a religią. ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Seria II: WIADOMOŚCI MATEMATYCZNE XLIV (2008) Krótkie informacje Postanowieniem Prezydenta RP nominacje na tytuł naukowy profesora nauk matematycznych otrzymali:

Bardziej szczegółowo

Zagadnienia na egzamin dyplomowy Matematyka

Zagadnienia na egzamin dyplomowy Matematyka INSTYTUT MATEMATYKI UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Zagadnienia na egzamin dyplomowy Matematyka Pytania kierunkowe Wstęp do matematyki 1. Relacja równoważności, przykłady relacji równoważności.

Bardziej szczegółowo

Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 3W E, 3C PRZEWODNIK PO PRZEDMIOCIE

Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 3W E, 3C PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Teoria miary i całki Measure and Integration Theory Kod przedmiotu: Poziom

Bardziej szczegółowo

DOKTOR HONORIS CAUSA UNIWERSYTETU ZIELONOGÓRSKIEGO. Profesor dr hab. Lech Górniewicz

DOKTOR HONORIS CAUSA UNIWERSYTETU ZIELONOGÓRSKIEGO. Profesor dr hab. Lech Górniewicz DOKTOR HONORIS CAUSA UNIWERSYTETU ZIELONOGÓRSKIEGO Profesor dr hab. Lech Górniewicz CZŁONKOSTWO W TOWARZYSTWACH I KOMITETACH NAUKOWYCH ŻYCIORYS NAUKOWY SPECJALNOŚĆ NAUKOWA MATEMATYKA topologia; analiza

Bardziej szczegółowo

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol) KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Geometria analityczna (GAN010) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 8 6. LICZBA GODZIN: 30 / 30

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki ze szkoły średniej

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki ze szkoły średniej KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 WY + 30

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Załącznik nr do Uchwały Senatu nr 30/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2019 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Rachunek różniczkowy i całkowy

Bardziej szczegółowo

Sprawozdanie z działalności Komitetu Nauk Psychologicznych PAN w roku 2006

Sprawozdanie z działalności Komitetu Nauk Psychologicznych PAN w roku 2006 Sprawozdanie z działalności Komitetu Nauk Psychologicznych PAN w roku 2006 I. SKŁAD KOMITETU W roku sprawozdawczym nie nastąpiły zmiany w składzie Komitetu. Komitet Nauk Psychologicznych liczył 35 członków.

Bardziej szczegółowo

KARTA MODUŁU. 17. Efekty kształcenia: 2. Nr Opis efektu kształcenia Metoda sprawdzenia efektu kształcenia 1 potrafi wykorzystać

KARTA MODUŁU. 17. Efekty kształcenia: 2. Nr Opis efektu kształcenia Metoda sprawdzenia efektu kształcenia 1 potrafi wykorzystać (pieczęć wydziału) KARTA MODUŁU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa modułu: MATEMATYKA 2. Kod przedmiotu: 3 3. Karta modułu ważna od roku akademickiego: 2013/2014 4. Forma kształcenia: studia pierwszego

Bardziej szczegółowo

WYKONALI: ANNA KUREK KONRAD KISIEL TOMASZ KOSTRZEWA PIOTR WIŚNIEWSKI KRÓTKI KURS HISTORII MATEMATYKI

WYKONALI: ANNA KUREK KONRAD KISIEL TOMASZ KOSTRZEWA PIOTR WIŚNIEWSKI KRÓTKI KURS HISTORII MATEMATYKI WYKONALI: ANNA KUREK KONRAD KISIEL TOMASZ KOSTRZEWA PIOTR WIŚNIEWSKI KRÓTKI KURS HISTORII MATEMATYKI Kawiarnia Szkocka jako miejsce spotkań słynnych matematyków Miejsce tworzenia nowych teorii Zapisywanie

Bardziej szczegółowo

1. GRAND PRIX POLSKI Weteranów, Przeworsk r.

1. GRAND PRIX POLSKI Weteranów, Przeworsk r. . GRAND PRIX POLSKI Weteranów, Przeworsk -.9. r. gra pojedyncza mężczyzn - kategoria - lat - lista startowa nr lic. nazwisko i imię rok ur. miejscowość województwo ranking. MADEJ Bogusław 9 WĘGIERSKA GÓRKA

Bardziej szczegółowo

Analiza matematyczna / Witold Kołodziej. wyd Warszawa, Spis treści

Analiza matematyczna / Witold Kołodziej. wyd Warszawa, Spis treści Analiza matematyczna / Witold Kołodziej. wyd. 5. - Warszawa, 2010 Spis treści Wstęp 1. Podstawowe pojęcia mnogościowe 13 1. Zbiory 13 2. Działania na zbiorach 14 3. Produkty kartezjańskie 15 4. Relacje

Bardziej szczegółowo

Nowe nominacje profesorskie

Nowe nominacje profesorskie Nowe nominacje profesorskie Prezydent Bronisław Komorowski wręczył nowe nominacje profesorskie. Akty nominacyjne otrzymało 59 profesorów: 1. Joanna BARŁOWSKA profesor nauk rolniczych, Uniwersytet Przyrodniczy

Bardziej szczegółowo

Terminy egzaminów dla I roku MATEMATYKI - studia stacjonarne I stopnia

Terminy egzaminów dla I roku MATEMATYKI - studia stacjonarne I stopnia studia stacjonarne - zasadnicza i poprawkowa sesja letnia 2016/2017 Terminy egzaminów dla I roku MATEMATYKI - studia stacjonarne I stopnia spec. Nauczanie matematyki i Informatyki oraz Nauczanie matematyki

Bardziej szczegółowo

Wykłady dla doktorantów Środowiskowych Studiów Doktoranckich w zakresie informatyki w roku akademickim 2011/2012

Wykłady dla doktorantów Środowiskowych Studiów Doktoranckich w zakresie informatyki w roku akademickim 2011/2012 Wykłady dla doktorantów Środowiskowych Studiów Doktoranckich w zakresie informatyki w roku akademickim 2011/2012 - prof. dr hab. Wojciech Rytter: Algorytmika kombinatoryczno-grafowa (30 g. semestr zimowy

Bardziej szczegółowo

Fraktale wokół nas. Leszek Rudak Uniwersytet Warszawski. informatyka +

Fraktale wokół nas. Leszek Rudak Uniwersytet Warszawski. informatyka + Fraktale wokół nas Leszek Rudak Uniwersytet Warszawski informatyka + 1 Podobieństwo figur informatyka + 2 Figury podobne Figury są podobne gdy proporcjonalnie zwiększając lub zmniejszając jedną z nich

Bardziej szczegółowo

Polskie Towarzystwo Statystyczne 1912 2012

Polskie Towarzystwo Statystyczne 1912 2012 Polskie Towarzystwo Statystyczne 1912 2012 KONGRES STATYSTYKI POLSKIEJ Z OKAZJI JUBILEUSZU 100 LECIA POLSKIEGO TOWARZYSTWA STATYSTYCZNEGO Poznań 18 20 kwietnia 2012 roku Honorowy Patronat Prezydenta Rzeczypospolitej

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Teoria mnogości Set theory Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba godzin/tydzień:

Bardziej szczegółowo

Fraktale. i Rachunek Prawdopodobieństwa

Fraktale. i Rachunek Prawdopodobieństwa Fraktale i Rachunek Prawdopodobieństwa Przyjrzyjmy się poniższemu rysunkowi, przedstawiającemu coś,, co kształtem tem przypomina drzewo o bardzo regularnej strukturze W jaki sposób b najłatwiej atwiej

Bardziej szczegółowo

SEMINARIA DYPLOMOWE - studia II stopnia kierunek: informatyka i ekonometria oraz matematyka

SEMINARIA DYPLOMOWE - studia II stopnia kierunek: informatyka i ekonometria oraz matematyka SEMINARIA DYPLOMOWE - studia II stopnia kierunek: informatyka i ekonometria oraz matematyka Seminarium: Matematyka dyskretna (IiE+MAT) Prowadzący: prof. dr hab. Mieczysław Borowiecki Teoria grafów, hipergrafów

Bardziej szczegółowo

PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA MATEMATYKA. od roku akademickiego 2015/2016

PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA MATEMATYKA. od roku akademickiego 2015/2016 PLAN STUDIÓ STACJONARNYCH PIRSZGO STOPNIA MATMATYKA od roku akademickiego 20/2016 Semestr 1 stęp do logiki i teorii mnogości 45 75 1 7 Analiza matematyczna 1 1) 60 90 8 Algebra liniowa 1 60 90 7 Geometria

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki z semestru 1

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki z semestru 1 KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 WY + 30

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 7

KARTA KURSU. Kod Punktacja ECTS* 7 KARTA KURSU Nazwa Nazwa w j. ang. Wstęp do logiki i teorii mnogości Introduction to Logic and Set Theory Kod Punktacja ECTS* 7 Koordynator Dr hab. prof. UP Piotr Błaszczyk Zespół dydaktyczny: Dr hab. prof.

Bardziej szczegółowo

Co ma piekarz do matematyki?

Co ma piekarz do matematyki? Instytut Matematyki i Informatyki Politechnika Wrocławska Dolnośląski Festiwal Nauki Wrzesień 2009 x x (x 1, x 2 ) x (x 1, x 2 ) (x 1, x 2, x 3 ) x (x 1, x 2 ) (x 1, x 2, x 3 ) (x 1, x 2, x 3, x 4 ). x

Bardziej szczegółowo

Wydział Matematyki i Nauk Informacyjnych. Politechnika Warszawska

Wydział Matematyki i Nauk Informacyjnych. Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Historia Katedry Matematyki na wydziałach PW 1963 1966 Instytut Matematyki Studium Matematyczno-Techniczne 1971 Studium Podstawowych Problemów

Bardziej szczegółowo

Lp. Laureat Nagroda 1 Jarozlaw G. I stopnia 2 Jacek K. I stopnia 3 Przemysław B. I stopnia 4 Damian K. I stopnia 5 Tadeusz G. I stopnia 6 Bogumiła Ł.

Lp. Laureat Nagroda 1 Jarozlaw G. I stopnia 2 Jacek K. I stopnia 3 Przemysław B. I stopnia 4 Damian K. I stopnia 5 Tadeusz G. I stopnia 6 Bogumiła Ł. Lp. Laureat Nagroda 1 Jarozlaw G. I stopnia 2 Jacek K. I stopnia 3 Przemysław B. I stopnia 4 Damian K. I stopnia 5 Tadeusz G. I stopnia 6 Bogumiła Ł. II stopnia 7 Marek C. II stopnia 8 Agnieszka K. II

Bardziej szczegółowo

Uchwała Rady wydziału Matematyki, Fizyki i Informatyki Uniwersytetu Gdańskiego w Gdańsku nr 2/07/07/2016

Uchwała Rady wydziału Matematyki, Fizyki i Informatyki Uniwersytetu Gdańskiego w Gdańsku nr 2/07/07/2016 Ad. 2 Gdańskiego w Gdańsku nr 2/07/07/2016 Rada Wydziału MFiI UG (działając na podstawie 10 rozporządzenia Ministra Nauki i Szkolnictwa Wyższego z dnia 30 października 2015) r. w sprawie szczegółowego

Bardziej szczegółowo

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017)

Funkcje analityczne. Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Funkcje analityczne Wykład 1. Co to są i do czego służą funkcje analityczne? Funkcje analityczne (rok akademicki 2016/2017) Paweł Mleczko Uniwersytet im. Adama Mickiewicza w Poznaniu 1. Sprawy organizacyjne

Bardziej szczegółowo

ALFRED TARSKI. Życie i logika Kalendarium. Joanna Golińska-Pilarek. Marian Srebrny.

ALFRED TARSKI. Życie i logika Kalendarium. Joanna Golińska-Pilarek. Marian Srebrny. ALFRED TARSKI Życie i logika Kalendarium Joanna Golińska-Pilarek j.golinska@uw.edu.pl Marian Srebrny marians@ipipan.waw.pl KRAKÓW 28 maja 2009 Początek 14 stycznia 1901 rok Miejsce: Warszawa Rodzice: Róża

Bardziej szczegółowo

Witaj Biologio! Matematyka dla Wydziału Biologii 2015/2016

Witaj Biologio! Matematyka dla Wydziału Biologii 2015/2016 Matematyka dla Wydziału Biologii 2015/2016 Witaj Biologio! Mirosław Lachowicz Wydział Matematyki, Informatyki i Mechaniki p. 4650, lachowic@mimuw.edu.pl Konsultacje: wtorki, 10-12 Motto: Na Biologię wchodzimy

Bardziej szczegółowo

Lista Honorowych Obywateli m.st. Warszawy:

Lista Honorowych Obywateli m.st. Warszawy: Lista Honorowych Obywateli m.st. Warszawy: 1. Józef Piłsudski (ur. 1867 r. - zm. 1935 r.) Honorowy Obywatel m. st. Warszawy od lipca 1918 r. 2. Ignacy Jan Paderewski (ur. 1860 r. - zm. 1941 r.) Honorowy

Bardziej szczegółowo

Matematyka Stosowana na Politechnice Wrocławskiej. Komitet Matematyki PAN, luty 2017 r.

Matematyka Stosowana na Politechnice Wrocławskiej. Komitet Matematyki PAN, luty 2017 r. Matematyka Stosowana na Politechnice Wrocławskiej Komitet Matematyki PAN, luty 2017 r. Historia kierunku Matematyka Stosowana utworzona w 2012 r. na WPPT (zespół z Centrum im. Hugona Steinhausa) studia

Bardziej szczegółowo

Lista zwycięzców 30 zł na start z BZWBK24 mobile

Lista zwycięzców 30 zł na start z BZWBK24 mobile Lista zwycięzców 30 zł na start z BZWBK24 mobile KRYSTYNA S. KRYSTYNA C. EDWARD F. KAROLINA C. WOJCIECH T. JANINA F. FRANCISZKA G. HENRYK H. MIROSŁAW W. JULI BARBARA H. CELINA Ł. STANISŁAW K. HELENA S.

Bardziej szczegółowo

Opis przedmiotu: Matematyka I

Opis przedmiotu: Matematyka I 24.09.2013 Karta - Matematyka I Opis : Matematyka I Kod Nazwa Wersja TR.NIK102 Matematyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność

Bardziej szczegółowo

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Zał. nr 4 do ZW 33/01 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim: Analiza matematyczna 1.1 A Nazwa w języku angielskim: Mathematical Analysis 1.1

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: ANALIZA MATEMATYCZNA M3 Nazwa w języku angielskim: MATHEMATICAL ANALYSIS M3 Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Warszawa, dnia 28 maja 2013 r. Poz. 465 P O S T A N O W I E N I E PREZYDENTA RZECZYPOSPOLITEJ POLSKIEJ. z dnia 7 marca 2013 r. o nadaniu odznaczeń

Warszawa, dnia 28 maja 2013 r. Poz. 465 P O S T A N O W I E N I E PREZYDENTA RZECZYPOSPOLITEJ POLSKIEJ. z dnia 7 marca 2013 r. o nadaniu odznaczeń MONITOR POLSKI DZIENNIK URZĘDOWY RZECZYPOSPOLITEJ POLSKIEJ Warszawa, dnia 28 maja 2013 r. Poz. 465 Rej. 84/2013 P O S T A N O W I E N I E PREZYDENTA RZECZYPOSPOLITEJ POLSKIEJ z dnia 7 marca 2013 r. o nadaniu

Bardziej szczegółowo