OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI"

Transkrypt

1 KATALOG KURSÓW OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI 2012/2013

2 Politechnika Wrocławska Katalog kursów Oferta Ogólnouczelniana 2012/2013 Politechnika Wrocławska Dział Nauczania Wybrzeże Wyspiańskiego Wrocław Opracowanie: mgr Magdalena Wójcik 2

3 SPIS TREŚCI 1. INFORMACJE WSTĘPNE PRZEDMIOTY KSZTAŁCENIA PODSTAWOWEGO MATEMATYKA FIZYKA CHEMIA PRZEDMIOTY KSZTAŁCENIA OGÓLNEGO TECHNOLOGIE INFORMACYJNE PRZEDMIOTY HUMANISTYCZNE NAUKI O ZARZĄDZANIU JĘZYKI OBCE ZAJĘCIA SPORTOWE SPIS KURSÓW

4 1. INFORMACJE WSTĘPNE CZYM JEST KATALOG KURSÓW? Niniejszy Katalog kursów jest adresowany do studentów wszystkich wydziałów Politechniki Wrocławskiej i obejmuje przedmioty tzw. kształcenia podstawowego oraz przedmioty tzw. kształcenia ogólnego. Są to kursy przeznaczone zarówno dla studentów studiów pierwszego stopnia jak i drugiego stopnia. Zgodnie z Pismem Okólnym JM Rektora Politechniki Wrocławskiej nr 6/2011 z dnia 18 lutego 2011 roku, każdy pracownik Politechniki Wrocławskiej może zgłosić ofertę prowadzenia kursu z w/w obszaru przedmiotów. Oferta taka jest opiniowana przez właściwe merytorycznie Rady jednostek PWr wskazanych w w/p Pismie Okólnym, a następnie kwalifikowana przez Pełnomocnika Rektora ds. Procesu Bolońskiego. W niniejszej ofercie kursów na rok akademicki 2011/2012 utrzymano podział ze względu na moment rozpoczęcia studiów: 1) rozpoczęli studia przed 1 października 2007 r. (odbywających jednolite studia magisterskie, inżynierskie lub uzupełniające studia magisterskie) 2) rozpoczęli studia 1 października 2007 r. i w latach następnych (odbywających studia I lub II stopnia). Ponadto wprowadzona została oferta kursów z matematyki, fizyki, chemii oraz informatyki dla studentów Studium Kształcenia Podstawowego. STUDIA ROZPOCZĘTE PRZED 1 PAŹDZIERNIKA 2007 r. Dla wszystkich wydziałów Politechniki Wrocławskiej (z wyłączeniem kierunków informatycznych) uzgodniono ujednolicony sposób nauczania informatyki. Uczelniana Rada Akredytacyjna przygotowała standardy nauczania w tej dziedzinie w oparciu o minima programowe zawarte w ministerialnych standardach nauczania dla kierunków prowadzonych na Politechnice Wrocławskiej. Zawartość merytoryczną programów zawarto w 3 przedmiotach: Przedmiot I: Wprowadzenie do informatyki wykład 30 h Przedmiot II: Pakiety użytkowe laboratorium 30 h Przedmiot III: Elementy programowania wykład 15 h, laboratorium 15 h Zgodnie z uchwałą Senatu Politechniki Wrocławskiej, dla przedmiotu Informatyka minimalna liczba godzin wynosi 60. W ramach tych 60 godzin nauczania, przewiduje się obowiązkową realizację Przedmiotu I oraz do wyboru Przedmiot II lub Przedmiot III. Kursy te mogą być realizowane w kolejnych semestrach lub równocześnie. Również wybór semestrów, w których mają być one realizowane pozostawia się do decyzji Wydziałów (sugeruje się I lub II semestr). Dla kierunków, dla których liczba godzin przedmiotu Informatyka jest w standardach nauczania większa niż 60 program nauczania dla tej nadwyżki pozostaje w gestii Wydziałów. Nauczanie przedmiotów humanistycznych i menedżerskich proponuje się realizować w dwóch profilach: Menedżerskim lub Podstawy cywilizacji naukowo technicznej; wybór profilu pozostawia się studentom: Profil: Menedżerski: Ekonomia 3 ECTS 30 godz/sem. Filozofia 3 ECTS 30 godz/sem., w ramach której są realizowane kursy do wyboru (jeden z poniższych): Wstęp do filozofii 3 ECTS 30 godz/sem. Historia filozofii 3 ECTS 30 godz/sem. Etyka 3 ECTS 30 godz/sem. Filozofia społeczna 3 ECTS 30 godz/sem. 4

5 Podstawy zarządzania 2 ECTS 30 godz/sem. Ekonomika przedsiębiorstwa 2 ECTS 30 godz/sem. Profil: Podstawy cywilizacji naukowo technicznej: Ekonomia 3 ECTS 30 godz/sem. Filozofia 3 ECTS 30 godz/sem., w ramach której są realizowane kursy do wyboru (jeden z poniższych): Wstęp do filozofii 3 ECTS 30 godz/sem. Historia filozofii 3 ECTS 30 godz/sem. Etyka 3 ECTS 30 godz/sem. Filozofia społeczna 3 ECTS 30 godz/sem. Antropologia filozoficzna 1 ECTS 15 godz/sem. Politologia 1 ECTS 15 godz/sem. Nauki społeczne 1 ECTS 15 godz/sem. Kursy: Ekonomia i Filozofia powinny kończyć się egzaminem. Zaleca się, aby te kursy były realizowane nie wcześniej niż od III semestru studiów. W obu profilach sumaryczna liczba godzin wynosi 105, sumaryczna liczba punktów przypisana kursom: 9. Pozostała liczba godzin i punktów w systemie punktowym wynikające z wymogów programowych w Politechnice Wrocławskiej wynoszą: 45 godz., 3 pkt. W ramach tych 45 godz. (3 pkt) mogą być realizowane dowolne kursy z oferty przedstawionej w Katalogu kursów oferta ogólnouczelniana. STUDIA ROZPOCZĘTE 1 PAŹDZIERNIKA 2007 r. I W LATACH NASTĘPNYCH Nowe programy nauczania studiów I stopnia przewidują realizację przez studenta przedmiotów kształcenia podstawowego w następującym (minimalnym) wymiarze godzin: Matematyka 180 h Fizyka 120 h oraz przedmiotów kształcenia ogólnego: Technologie informacyjne 30 h Język obcy 120 h Zajęcia sportowe 60 h Przedmioty humanistyczne 60 h Nauki o zarządzaniu 30 h Na drugim stopniu studiów przewiduje się ponadto realizację drugiego języka obcego. UWAGI PRAKTYCZNE Zawarte w katalogu opisy kursów zawierają, między innymi, informację dotyczącą liczby punktów ECTS otrzymywanych za zaliczenia danego przedmiotu. Punkty ECTS określają całkowity wkład pracy studenta w zaliczenie przedmiotu, biorąc pod uwagę nie tylko zajęcia zorganizowane, ale także pracę własną związaną z np. przygotowaniem się do kolokwium lub egzaminu, czy konieczność opracowania sprawozdania z laboratorium lub referatu na seminarium. Przyjmuje się, że 1 punkt ECTS odpowiada około 30 godzinom pracy studenta. Przypisanie poszczególnym kursom odpowiedniej liczby punktów odbywa się z obowiązkowym udziałem przedstawicieli studentów Wydziału. Obecny katalog zawiera dwujęzyczne nazwy przedmiotów. W przyszłości opisy kursów, tym razem podane wyłącznie w języku polskim, będą również w języku angielskim. Będzie to ważny krok w przygotowaniu Uczelni do wejścia na europejski rynek edukacyjny. Szereg przedmiotów może być już wykładanych nie tylko w języku polskim, ale także w języku angielskim odpowiednia informacja jest podano obok tytułu przedmiotu. 5

6 Korzystanie z katalogu ułatwiają kody przedmiotów składające się z oznaczeń literowo cyfrowych. Oznaczenia jednostek realizujących poszczególne kursy są następujące (trzecia litera w kodzie kursu): Wydział Architektury Wydział Budownictwa Lądowego i Wodnego Wydział Chemiczny Wydział Elektroniki Wydział Elektryczny Wydział Geoinżynierii Górnictwa i Geologii Wydział Inżynierii Środowiska Wydział Informatyki i Zarządzania Wydział Mechaniczno Energetyczny Wydział Mechaniczny Wydział Podstawowych Problemów Techniki Wydział Elektroniki Mikrosystemów i Fotoniki Studium Nauk Humanistycznych Studium Nauki Języków Obcych Studium Wychowania Fizycznego i Sportu A B C E F, R G S Z N M P D H L W Katalog ten zawiera krótkie opisy zawartości tematycznej kursów; ich szczegółowe opisy w języku polskim i języku angielskim dostępne są w odpowiednich jednostkach. Oznaczenia form dydaktycznych: W wykład Ć ćwiczenia L laboratorium P projekt S seminarium Opis kursu zawiera wymiar godzinowy. Na końcu katalogu umieszczono spisy kursów. 6

7 2. PRZEDMIOTY KSZTAŁCENIA PODSTAWOWEGO 2.1. MATEMATYKA MATEMATYKA STUDIA STACJONARNE ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ MAP ALGEBRA AND ANALYTIC GEOMETRY ECTS Treść kursu: Wyrażenia algebraiczne, indukcja matematyczna, geometria analityczna na płaszczyźnie i w przestrzeni, krzywe stożkowe, macierze, wyznaczniki, układy równań liniowych, liczby zespolone, wielomiany. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ A MAP ALGEBRA AND ANALYTIC GEOMETRY ECTS Treść kursu: Wyrażenia algebraiczne, indukcja matematyczna, geometria analityczna na płaszczyźnie i w przestrzeni, krzywe stożkowe, macierze, wyznaczniki, układy równań liniowych, liczby zespolone, wielomiany. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B MAP ALGEBRA AND ANALYTIC GEOMETRY B ECTS Treść kursu: Wyrażenia algebraiczne, indukcja matematyczna, geometria analityczna na płaszczyźnie i w przestrzeni, krzywe stożkowe, macierze, wyznaczniki, układy równań liniowych, liczby zespolone, wielomiany. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ALGEBRA LINIOWA 1 MAP LINEAR ALGEBRA 1 ECTS Treść kursu: Liczby zespolone. Wielomiany. Macierze i wyznaczniki. Układy równań liniowych. Geometria analityczna w R3. Kurs może być prowadzony w jęz. angielskim Wymagania wstępne: Matematyka w zakresie LO o profilu podstawowym Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki 7

8 ALGEBRA LINIOWA 2 (INF, TIN) MAP ALGEBRA AND ELEMENTS OF DIFFERENTIAL EQUATIONS ECTS Treść kursu: Baza ortonormalna, rzut ortogonalny, grupa, pierścień, ciało, arytmetyka modularna. Kurs przeznaczony dla Wydziału Elektroniki. Wymagania wstępne: Algebra z geometrią analityczną Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ALGEBRA LINIOWA 2 MAP LINEAR ALGEBRA 2 ECTS Treść kursu: Przestrzenie liniowe. Liniowa niezależność wektorów. Generatory, baza i wymiar. Związek rzędu macierzy z liniową niezależnością. Układy równań liniowych. Twierdzenie Kroneckera-Capellego. Przestrzeń rozwiązań układu jednorodnego. Przekształcenia liniowe. Macierz przekształcenia liniowego. Macierze symetrii, rzutów i obrotów w R2 i R3. Wartości i wektory własne. Przestrzenie euklidesowe. Iloczyn skalarny. Norma wektora. Ortogonalizacja Grama- Schmidta. Rzut ortogonalny. Diagonalizacja macierzy rzeczywistych symetrycznych. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Algebra z Geometrią Analityczną (MAP1015 lub MAP1016 lub MAP1022 lub MAP1023) lub Matematyka 2 (MAP 2020). Zespół realizujący: dr Teresa Jurlewicz, Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ALGEBRA LINIOWA 2 MAP LINEAR ALGEBRA 2 ECTS 3 Treść kursu: Przestrzenie liniowe, liniowa niezależność wektorów, generatory, baza i wymiar, związek rzędu macierzy z liniową niezależnością, układy równań liniowych, twierdzenie Kroneckera- Capellego, przestrzeń rozwiązań układu jednorodnego, przekształcenia liniowe, macierz przekształcenia liniowego, macierze symetrii, rzutów i obrotów w R2 i R3, wartości i wektory własne, przestrzenie euklidesowe, iloczyn skalarny, norma wektora, ortogonalizacja Grama-Schmidta, rzut ortogonalny, diagonalizacja macierzy rzeczywistych symetrycznych. Kurs może być prowadzony w jęz. angielskim. Kurs przeznaczony dla Wydziału Mechanicznego. Wymagania wstępne: Algebra z Geometrią Analityczną Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ALGEBRA 2 MAP ALGEBRA 2 ECTS Treść kursu: Kurs jest prowadzony w systemie mieszanym - oprócz tradycyjnych zajęć studenci mają dostęp do materiałów internetowych. Materiały te zawierają komplet wykładów, ćwiczeń oraz e-sprawdzianów a studenci muszą samodzielnie rozwiązać ćwiczenia. W czasie kursu studenci poznają podstawowe pojęcia algebry liniowej i algebry abstrakcyjnej: Przestrzenie liniowe. Przestrzenie rozwiązań układów równań liniowych. Przekształcenia liniowe. Przestrzenie euklidesowe. Operatory ortogonalne. Przestrzenie unitarne. Formy kwadratowe. Struktury algebraiczne. Grupy. Pierścienie i ciała. Oprócz zadań w formie elektronicznej, studenci będą mieli do przerobienia listy zadań. Na ćwiczeniach będą przerabiane przede wszystkim zadania z tych list. Wymagania wstępne: Algebra z Geometrią Analityczną 8

9 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ALGEBRA 2 MAP ALGEBRA 2 ECTS Treść kursu: Kurs jest prowadzony w systemie mieszanym - oprócz tradycyjnych zajęć studenci mają dostęp do materiałów internetowych. Materiały te zawierają komplet wykładów, ćwiczeń oraz e- sprawdzianów a studenci muszą samodzielnie rozwiązać ćwiczenia. Przestrzenie liniowe. Przestrzenie rozwiązań układów równań liniowych. Przekształcenia liniowe. Przestrzenie euklidesowe. Operatory ortogonalne. Przestrzenie unitarne. Struktury algebraiczne. Grupy. Pierścienie i ciała. Kurs przeznaczony dla kier. Fizyka. Wymagania wstępne: Algebra z geometrią analityczną Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 1 MAP MATHEMATICAL ANALYSIS 1 ECTS Treść kursu: Przegląd funkcji elementarnych. Granica i ciągłość funkcji jednej zmiennej. Pochodna funkcji jednej zmiennej. Badanie funkcji. Zastosowania rachunku różniczkowego w fizyce i technice. Całka nieoznaczona. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie rozszerzonym Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 1.1 A MAP MATHEMATICAL ANALYSIS 1.1 A ECTS Treść kursu: Przegląd funkcji elementarnych. Granica i ciągłość funkcji jednej zmiennej. Pochodna funkcji jednej zmiennej. Badanie funkcji. Zastosowania rachunku różniczkowego w fizyce i technice. Całka nieoznaczona. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie rozszerzonym Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 1.1 B MAP MATHEMATICAL ANALYSIS 1B ECTS Treść kursu: Przegląd funkcji elementarnych. Granica i ciągłość funkcji jednej zmiennej. Pochodna funkcji jednej zmiennej. Badanie funkcji. Zastosowania rachunku różniczkowego w fizyce i technice. Całka nieoznaczona. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki 9

10 ANALIZA MATEMATYCZNA 1.2 MAP MATHEMATICAL ANALYSIS ECTS Treść kursu: Granica ciąg, granica i ciągłość funkcji jednej zmiennej, pochodna funkcji jednej zmiennej, badanie funkcji, całka nieoznaczona, całka oznaczona, całka niewłaściwa, zastosowania rachunku całkowego w fizyce i technice, elementy równań różniczkowych zwyczajnych. Kurs może być prowadzony w jęz. angielskim. Kurs przeznaczony dla Wydziału Elektroniki. Wymagania wstępne: Zalecana znajomość matematyki odpowiadająca maturze na poziomie rozszerzonym. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 2 MAP MATHEMATICAL ANALYSIS 2 ECTS Treść kursu: Całki niewłaściwe. Szeregi liczbowe. Szeregi potęgowe. Granica i ciągłość funkcji dwóch i trzech zmiennych. Rachunek różniczkowy funkcji dwóch i trzech zmiennych. Zastosowania rachunku różniczkowego w fizyce i technice. Całki podwójne i potrójne. Zastosowania całek wielokrotnych w fizyce i technice. Kurs może być prowadzony w jęz. angielskim Wymagania wstępne: Analiza Matematyczna 1 (MAP1004 lub MAP1005 lub MAP1008 lub MAP1024) lub Podstawy Analizy Matematycznej (MAP1013) Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 2 MAP MATHEMATICAL ANALYSIS 2 ECTS Treść kursu: Całka oznaczona, całka niewłaściwa, rachunek różniczkowy funkcji wielu zmiennych, całki podwójne i potrójne, szeregi liczbowe i potęgowe. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Analiza Matematyczna 1 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 2.1 A MAP MATHEMATICAL ANALYSIS 2 ECTS Treść kursu: Zapoznanie studenta z podstawowymi pojęciami i twierdzeniami analizy matematycznej zgodnie z programem kursu. Przygotowanie do stosowania aparatu matematycznego do opisu i analizy obiektów i procesów technicznych. Wymagania wstępne: Analiza Matematyczna 1 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 2.2 A MAP MATHEMATICAL ANALYSIS 2 ECTS Treść kursu: Całka oznaczona, całka niewłaściwa, rachunek różniczkowy funkcji wielu zmiennych, całki podwójne i potrójne, szeregi liczbowe i potęgowe. Tematy dodatkowe wybierane przez 10

11 wydziały: całka potrójna, elementy analizy wektorowej, szeregi funkcyjne, równania różniczkowe zwyczajne. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Analiza Matematyczna 1 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 2.2 B MAP MATHEMATICAL ANALYSIS 2B ECTS Treść kursu: Całka oznaczona, całka niewłaściwa, rachunek różniczkowy funkcji wielu zmiennych, całki podwójne i potrójne, szeregi liczbowe i potęgowe. Tematy dodatkowe wybierane przez wydziały: całka potrójna, szeregi funkcyjne, równania różniczkowe zwyczajne. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Analiza Matematyczna 1 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 2.3 A MAP MATHEMATICAL ANALYSIS ECTS 5 Treść kursu: Rachunek różniczkowy i całkowy funkcji wielu zmiennych, szeregi liczbowe i potęgowe, szereg Fouriera, transformata Fouriera i Laplace'a. Kurs może być prowadzony w jęz. angielskim. Kurs przeznaczony dla Wydziału Elektroniki. Wymagania wstępne: Analiza matematyczna 1.2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 2.4A MAP MATHEMATICAL ANALYSIS 2 ECTS Treść kursu: Całka oznaczona, całka niewłaściwa, rachunek różniczkowy funkcji wielu zmiennych, szeregi liczbowe i potęgowe, podstawy równań różniczkowych zwyczajnych, przykłady struktur algebraicznych. Kurs przeznaczony dla Wydziału Informatyki i Zarządzania, kierunek Informatyka. Wymagania wstępne: Analiza Matematyczna 1 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 2 MAP MATHEMATICAL ANALYSIS 2 ECTS Treść kursu: Całka oznaczona, całka niewłaściwa, rachunek różniczkowy funkcji wielu zmiennych, całki podwójne i potrójne, szeregi liczbowe i potęgowe. Tematy dodatkowe wybierane przez wydziały: całka potrójna, elementy analizy wektorowej, szeregi funkcyjne, równania różniczkowe zwyczajne. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Analiza Matematyczna 1 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 3.1 MAP MATHEMATICAL ANALYSIS 3.1 ECTS 2 11

12 Treść kursu: Podstawowe pojęcia równań różniczkowych zwyczajnych, równania różniczkowe liniowe, układy równań różniczkowych liniowych, transformacja Laplace`a, szeregi Fouriera. Kurs może być prowadzony w jęz. angielskim. Kurs przeznaczony dla Wydziału Budownictwa. Wymagania wstępne: Analiza matematyczna 2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ELEMENTY ANALIZY WEKTOROWEJ MAP ELEMENTS OF VECTOR ANALYSIS ECTS Treść kursu: Całki krzywoliniowe niezorientowane i zorientowane, całki powierzchniowe niezorientowane i zorientowane, elementy analizy wektorowej, zastosowania całek krzywoliniowych i powierzchniowych w fizyce i technice. Kurs przeznaczony dla Wydziału Elektrycznego. Wymagania wstępne: Analiza Matematyczna 1 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki FUNKCJE ZESPOLONE I RÓWNANIA RÓŻNICZKOWE MAP COMPLEX FUNCTIONS AND DIFFERENTIAL EQUATIONS ECTS Treść kursu: Równania różniczkowe zwyczajne rzędu pierwszego, równania liniowe wyższych rzędów, układy równań różniczkowych liniowych, elementy teorii stabilności, funkcje zmiennej zespolonej, pochodne i całki funkcji zmiennej zespolonej, przekształcenie Laplace\'a, residua, zastosowania poznanych metod w zagadnieniach fizyki i techniki. Kurs przeznaczony dla kierunku Mechatronika na Wydziale Mechanicznym. Wymagania wstępne: Analiza matematyczna 2, Algebra z geometrią analityczną Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki MATEMATYKA MA00P1072 MATHEMATICS 1 FOR ECONOMISTS ECTS Treść kursu: Kurs dostarcza podstawowych informacji potrzebnych do zrozumienia i konstrukcji modeli matematycznych w ekonomii i technice. Omówione zostaną podstawowe pojęcia i metody logiki matematycznej oraz teorii mnogości. W dalszej części omówione zostanie pojęcie ciągu liczbowego i przykłady zastosowań ciągów w modelach ekonomicznych i finansach. Wprowadzone będzie pojęcie funkcji liczbowej, granica funkcji w punkcie, ciągłość funkcji, wypukłość i inne zagadnienia związane z badaniem funkcji. Omówione będą liczby zespolone, wielomiany i funkcje wymierne. Wprowadzone będzie pojęcie macierzy i wyznaczników oraz ich zastosowanie do przedstawiania i rozwiązywania układów równań liniowych. Kurs przeznaczony dla studiów licencjackich kierunku Zarządzanie Wydziału Informatyki i Zarządzania. Wymagania wstępne: Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki MATEMATYKA (EIT 2 STOPIEŃ) MAP MATHEMATICS ECTS

13 Treść kursu: Równania różniczkowe zwyczajne pierwszego i drugiego rzędu, równania różniczkowe liniowe, równania różniczkowe cząstkowe pierwszego rzędu, zastosowania równań różniczkowych zwyczajnych w zagadnieniach fizycznych i technicznych, równania całkowe. Elementy teorii procesów stochastycznych: procesy Markowa, procesy odnowy, procesy gaussowskie, przestrzeń Hilberta. Kurs przeznaczony dla Wydziału Elektroniki Mikrosystemów i Fotoniki. Wymagania wstępne: wiadomości odpowiadające kursom z I stopnia studiów na kierunku Elektronika i Telekomunikacja Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki MATEMATYKA 1 MAP MATHEMATICS 1 ECTS Treść kursu: Rachunek różniczkowy funkcji jednej zmiennej, rachunek całkowy funkcji jednej zmienne, układy równań liniowych. Kurs przeznaczony dla Wydziału Architektury. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki MATEMATYKA 2 MAP MATHEMATICS 2 ECTS Treść kursu: Geometria analityczna przestrzeni, rachunek całkowy funkcji wielu zmiennych, izometrie płaszczyzny. Kurs przeznaczony dla Wydziału Architektury. Wymagania wstępne: Matematyka 1 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki MATEMATYKA (EIT 1STOPIEŃ) MAP MATHEMATICS ECTS Treść kursu: Całki krzywoliniowe i powierzchniowe, elementy teorii pola, funkcje zmiennej zespolonej. Kurs przeznaczony dla Wydziału Elektroniki, realizowany w tygodniach od 8 do 15. Wymagania wstępne: Analiza Matematyczna 1.2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki MATEMATYKA (AIR) MAP MATHEMATICS ECTS Treść kursu: Równania różniczkowe i układy równań różniczkowych zwyczajnych, równania różnicowe, przekształcenie Z, elementy matematyki dyskretnej kombinatoryka, elementy teorii grafów, grupy, ciała i kody. Kurs przeznaczony dla Wydziału Elektroniki. Wymagania wstępne: Analiza Matematyczna 1.2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki MATEMATYKA (EIT 2 STOPIEŃ) MAP MATHEMATICS (EIT 2ND LEVEL) ECTS

14 Treść kursu: Równania różniczkowe zwyczajne pierwszego i drugiego rzędu, równania różniczkowe liniowe, równania różniczkowe cząstkowe pierwszego rzędu, zastosowania równań różniczkowych zwyczajnych w zagadnieniach fizycznych i technicznych, równania całkowe. Wymagania wstępne: Wiadomości odpowiadające kursom z I stopnia studiów na kierunku Elektronika i Telekomunikacja na Wydziale Elektroniki PWr.: Analiza Matematyczna (1 semestr), Matematyka (2 semestr) Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki MATEMATYKA (2 STOPIEŃ AIR, INF, TIN) MAP MATHEMATICS ECTS 2 Treść kursu: Liniowe przestrzenie wektorowe, odwzorowania liniowe i macierze, przestrzenie Banacha, przestrzenie Hilberta, szeregi ortogonalne, twierdzenie o rzucie ortogonalnym, zastosowanie twierdzenia o rzucie ortogonalnym do konstrukcji liniowego optymalnego średniokwadratowego predyktora. Kurs jest przeznaczony dla studiów II stopnia (magisterskich) na kierunku AiR, EiT Wydziału Elektroniki. Wymagania wstępne: wiadomości odpowiadające kursom ogólnowydziałowym z I stopnia studiów na Wydziale Elektroniki PWr.: Analiza Matematyczna, Algebra liniowa 1, Rachunek Prawdopodobieństwa Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki MATEMATYKA DYSKRETNA MAP DISCRETE MATHEMATICS ECTS Treść kursu: Funkcje, relacje, zbiory, elementy logiki matematycznej - rachunek zdań i tautologie, zastosowania aparatu logiki,techniki dowodzenia twierdzeń i indukcja matematyczna,rekurencja - algorytmy i funkcje rekurencyjne, drzewa i grafy, zastosowanie algorytmów rekurencyjnych do operacji na drzewach i grafach. Kurs przeznaczony dla Wydziału Elektroniki. Wymagania wstępne: Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki MATEMATYKA DYSKRETNA MAP DISCRETE MATHEMATICS ECTS Treść kursu: Funkcje, relacje, zbiory, elementy logiki matematycznej - rachunek zdań i tautologie, zastosowania aparatu logiki, techniki dowodzenia twierdzeń i indukcja matematyczna, rekurencja - algorytmy i funkcje rekurencyjne, drzewa i grafy, zastosowanie algorytmów rekurencyjnych do operacji na drzewach i grafach. Wymagania wstępne: Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki MATHEMATICS MAP MATHEMATICS ECTS

15 Treść kursu: Kurs dostarcza podstawowych informacji potrzebnych do zrozumienia i konstrukcji modeli matematycznych w ekonomii i technice. Omówione zostaną podstawowe pojęcia i metody logiki matematycznej oraz teorii mnogości. W dalszej części omówione zostanie pojęcie ciągu liczbowego i przykłady zastosowań ciągów w modelach ekonomicznych i finansach. Wprowadzone będzie pojęcie funkcji liczbowej, granica funkcji w punkcie, ciągłość funkcji, wypukłość i inne zagadnienia związane z badaniem funkcji. Omówione będą liczby zespolone, wielomiany i funkcje wymierne. Wprowadzone będzie pojęcie macierzy i wyznaczników oraz ich zastosowanie do przedstawiania i rozwiązywania układów równań liniowych. Kurs przeznaczony dla studiów licencjackich kierunku Zarządzanie Wydziału Informatyki i Zarządzania. Wymagania wstępne: Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki RACHUNEK PRAWDOPODOBIEŃSTWA MAP PROBABILITY THEORY ECTS Treść kursu: Prawdopodobieństwo, zmienne losowe jedno - i wielowymiarowe. rozkłady dyskretne i ciągłe, momenty, centralne twierdzenie graniczne. Kurs przeznaczony dla Wydziału Elektroniki. Wymagania wstępne: Analiza Matematyczna 1.2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki RACHUNEK PRAWDOPODOBIEŃSTWA MAP PROBABILITY THEORY ECTS 3 Treść kursu: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki Wymagania wstępne: Analiza Matematyczna 2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki RÓWNANIA RÓŻNICZKOWE I FUNKCJE ZESPOLONE MAP DIFFERENTIAL EQUATIONS AND COMPLEX FUNCTIONS ECTS Treść kursu: Równania różniczkowe zwyczajne rzędu pierwszego, równania liniowe wyższych rzędów, układy równań różniczkowych liniowych, elementy teorii stabilności, funkcje zmiennej zespolonej, pochodne i całki funkcji zmiennej zespolonej, przekształcenie Laplace`a, przekształcenie Z, zastosowania poznanych metod w zagadnieniach fizyki i techniki. Wymagania wstępne: Analiza Matematyczna 2, Algebra z Geometrią Analityczną Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A MAP ORDINARY DIFFERENTIAL EQUATIONS A ECTS 3 Treść kursu: Równania różniczkowe zwyczajne pierwszego i drugiego rzędu, równania różniczkowe liniowe, elementy teorii stabilności, zastosowania równań różniczkowych zwyczajnych w zagadnieniach fizycznych i technicznych. Kurs może być prowadzony w jęz. angielskim. Kurs przeznaczony dla Wydziału Inżynierii Środowiska oraz dla Wydziału Elektrycznego. Wymagania wstępne: Analiza Matematyczna 2 15

16 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki STATYSTYKA MATEMATYCZNA (EIT 2 STOPIEŃ) MAP MATHEMATICAL STATISTICS ECTS Treść kursu: Teoria estymacji, testowanie hipotez statystycznych, analiza korelacyjna. Kurs przeznaczony dla Wydziału Elektroniki. Wymagania wstępne: Wiadomości odpowiadające kursom z I stopnia studiów na kierunku Elektronika i Telekomunikacja na Wydziale Elektroniki PWr.: Analiza Matematyczna (1 semestr), Rachunek Prawdopodobieństwa (2 semestr) Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki STATYSTYKA STOSOWANA MAP APPLIED STATISTICS ECTS Treść kursu: Prezentacja danych eksperymentalnych statystyka opisowa, matematyczne podstawy modeli probabilistycznych: zmienne losowe, wektory losowe i ich opis, kwantyle i momenty, zależność stochastyczna i jej miary, ciągi zmiennych losowych i ich asymptotyczne zachowania, statystyczne metody analizy zjawisk losowych, estymacja punktowa i przedziałowa, regresja liniowa jednowymiarowa, testowanie hipotez statystycznych: testy istotności dla średniej rozkładu normalnego, test analizy wariancji, testy nieparametryczne. Wymagania wstępne: Analiza Matematyczna 2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki STATYSTYKA MATEMATYCZNA MAP MATHEMATICAL STATISTICS ECTS Treść kursu: Przestrzeń probabilistyczna, zmienne losowe dyskretne i ciągłe, wartość oczekiwana, wariancja, niezależność, estymacja punktowa i przedziałowa, testowanie hipotez statystycznych, regresja liniowa jednowymiarowa. Kurs przeznaczony dla Wydziału Geoinżynierii, Górnictwa i Geologii. Wymagania wstępne: Analiza Matematyczna 2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki STATYSTYKA STOSOWANA MAP APPLIED STATISTICS ECTS 2 Treść kursu: Prezentacja danych eksperymentalnych statystyka opisowa, matematyczne podstawy modeli probabilistycznych: zmienne losowe, wektory losowe i ich opis, kwantyle i momenty, zależność stochastyczna i jej miary, ciągi zmiennych losowych i ich asymptotyczne zachowania, statystyczne metody analizy zjawisk losowych, estymacja punktowa i przedziałowa, regresja liniowa jednowymiarowa, testowanie hipotez statystycznych: testy istotności dla średniej rozkładu normalnego, test analizy wariancji, testy nieparametryczne. Wymagania wstępne: Analiza Matematyczna 2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki 16

17 STATYSTYKA STOSOWANA MAP APPLIED STATISTICS ECTS 3 Treść kursu: Przestrzeń probabilistyczna, zmienne losowe dyskretne i ciągłe, wartość oczekiwana, wariancja, niezależność, estymacja punktowa i przedziałowa, testowanie hipotez statystycznych, regresja liniowa jednowymiarowa. Kurs przeznaczony dla Wydziału Elektrycznego. Wymagania wstępne: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki Zespół realizujący: Analiza Matematyczna 2 STATYSTYKA I RACHUNEK PRAWDOPODOBIEŃSTWA MAP STATISTICS AND PROBABILITY THEORY ECTS Treść kursu: Prawdopodobieństwo, prawdopodobieństwo warunkowe, niezależność, zmienne losowe i ich parametry, przykłady rozkładów dyskretnych i ciągłych, twierdzenia graniczne, estymacja punktowa i przedziałowa, testowanie hipotez statystycznych, regresja liniowa. Wymagania wstępne: Analiza matematyczna 2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki WSTĘP DO RACHUNKU PRAWDOPODOBIEŃSTWA MAP I STATYSTYKI MATEMATYCZNEJ ECTS 1+1 INTRODUCTION TO PROBABILITY THEORY AND MATHEMATICAL STATISTICS Treść kursu: Kurs zawiera wykłady o podstawowych pojęciach i twierdzeniach rachunku prawdopodobieństwa i statystyki matematycznej (przestrzeń probabilistyczna, zmienna losowa, dyskretny i ciągły rozkład prawdopodobieństwa, prawo wielkich liczb, centralne twierdzenie graniczne, próba prosta, histogram, estymacja punktowa i przedziałowa, hipoteza statystyczna, testowanie hipotez). Wymagania wstępne: Analiza matematyczna 1 Zespół realizujący: dr hab. Agnieszka Jurewicz, Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki MATEMATYKA - STUDIA NIESTACJONARNE ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ MAP ALGEBRA AND ANALYTIC GEOMETRY ECTS Treść kursu: Celem kursu jest zapoznanie studentów z podstawowymi pojęciami algebry oraz geometrii analitycznej na płaszczyźnie i w przestrzeni. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Wskazane wiadomości z matematyki odpowiadające maturze na poziomie rozszerzonym. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ (ZAO CH) MAP ALGEBRA AND ANALYTIC GEOMETRY ECTS

18 Treść kursu: Celem kursu jest zapoznanie studentów z podstawowymi pojęciami algebry oraz geometrii analitycznej na płaszczyźnie i w przestrzeni. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie podstawowym. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ (EY) MAP ALGEBRA AND ANALYTIC GEOMETRY 1 ECTS Treść kursu: Podstawy geometrii analitycznej na płaszczyźnie i w przestrzeni, liczby zespolone, macierze, wyznaczniki, układy równań liniowych. Kurs przeznaczony jest dla Wydziału Elektrycznego. Może być prowadzony w jęz. angielskim. Wymagania wstępne: Wskazane wiadomości z matematyki odpowiadające maturze na poziomie rozszerzonym. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ (IZ) MAP ALGEBRA AND ANALYTIC GEOMETRY ECTS Treść kursu: Celem kursu jest zapoznanie studentów z podstawowymi pojęciami algebry oraz geometrii analitycznej na płaszczyźnie i w przestrzeni. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Wskazane wiadomości z matematyki odpowiadające maturze na poziomie rozszerzonym. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ MAP ALGEBRA AND ANALYTIC GEOMETRY ECTS Treść kursu: Celem kursu jest zapoznanie studentów z podstawowymi pojęciami algebry oraz geometrii analitycznej na płaszczyźnie i w przestrzeni. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Wskazane wiadomości z matematyki odpowiadające maturze na poziomie rozszerzonym. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ MAP ALGEBRA AND ANALYTIC GEOMETRY ECTS Treść kursu: Geometria analityczna na płaszczyźnie i w przestrzeni, macierze, wyznaczniki, układy równań liniowych, liczby zespolone, wielomiany, przestrzenie liniowe, przekształcenia liniowe. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki 18

19 ALGEBRA LINIOWA (ZAO EA) MAP LINEAR ALGEBRA ECTS Treść kursu: Celem kursu jest zapoznanie studentów z podstawowymi pojęciami kombinatoryki i algebry liniowej. Omawiane będą następujące pojęcia i ich własności: permutacje, wariacje, kombinacje, liczby zespolone, wielomiany, macierze, wyznaczniki, układy równań liniowych, wzory Cramera, eliminacja Gaussa, przestrzeń liniowa Rn, przekształcenia liniowe przestrzeni Rn, wartości własne i wektory własne macierzy, normy wektorów i macierzy. Kurs przeznaczony dla Wydziału Elektroniki. Wymagania wstępne: Znajomość matematyki odpowiadająca maturze na poziomie podstawowym. Zespół realizujący: Komisja programowa Instytutu Matematyki i Informatyki, dr hab. Krystyna Ziętak, prof. nadzw ANALIZA MATEMATYCZNA (ZAO EA) MAP MATHEMATICAL ANALYSIS ECTS Treść kursu: Granica ciągu. Granica i ciągłość funkcji jednej zmiennej. Pochodna funkcji jednej zmiennej. Badanie funkcji. Całka nieoznaczona. Całka oznaczona, całka niewłaściwa. Zastosowania rachunku całkowego w fizyce i technice. Rachunek różniczkowy funkcji wielu zmiennych. Całka podwójna. Szeregi liczbowe i potęgowe. Kurs może być prowadzony w jęz. angielskim. Kurs przeznaczony dla Wydziału Elektroniki. Wymagania wstępne: Matura z matematyki na poziomie rozszerzonym z wynikiem co najmniej 40% punktów. Zespół realizujący: Komisja programowa Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 1 (EY) MAP MATHEMATICAL ANALYSIS 1 ECTS Treść kursu: Przegląd funkcji elementarnych. Granica i ciągłość funkcji jednej zmiennej. Pochodna funkcji jednej zmiennej. Badanie funkcji. Zastosowania rachunku różniczkowego w fizyce i technice. Całka nieoznaczona. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie rozszerzonym Zespół realizujący: dr Jolanta Sulkowska, Komisja programowa Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 1 (IZ) MAP MATHEMATICAL ANALYSIS 1 ECTS Treść kursu: Przegląd funkcji elementarnych. Granica i ciągłość funkcji jednej zmiennej. Pochodna funkcji jednej zmiennej. Badanie funkcji. Zastosowania rachunku różniczkowego w fizyce i technice. Całka nieoznaczona. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Matura z matematyki na poziomie rozszerzonym z wynikiem co najmniej 40% punktów. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 1 (ZAO CH) MAP MATHEMATICAL ANALYSIS 1 ECTS

20 Treść kursu: Przegląd funkcji elementarnych. Granica i ciągłość funkcji jednej zmiennej. Pochodna funkcji jednej zmiennej. Badanie funkcji. Zastosowania rachunku różniczkowego w fizyce i technice. Całka nieoznaczona. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie podstawowym. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 1 (ZAO BL,GGG) MAP MATHEMATICAL ANALYSIS 1 ECTS Treść kursu: Przegląd funkcji elementarnych. Granica i ciągłość funkcji jednej zmiennej. Pochodna funkcji jednej zmiennej. Badanie funkcji. Zastosowania rachunku różniczkowego w fizyce i technice. Całka nieoznaczona. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie podstawowym. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 1 MAP MATHEMATICAL ANALYSIS 1 ECTS Treść kursu: Przegląd funkcji elementarnych. Granica i ciągłość funkcji jednej zmiennej. Pochodna funkcji jednej zmiennej. Badanie funkcji. Zastosowania rachunku różniczkowego w fizyce i technice. Całka nieoznaczona. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Wskazane są wiadomości z matematyki odpowiadające maturze z matematyki na poziomie podstawowym. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 1 MAP MATHEMATICAL ANALYSIS ECTS Treść kursu: Przegląd funkcji elementarnych. Granica i ciągłość funkcji jednej zmiennej. Pochodna funkcji jednej zmiennej. Badanie funkcji. Zastosowania rachunku różniczkowego w fizyce i technice. Całka nieoznaczona. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Wskazane są wiadomości z matematyki odpowiadające maturze z matematyki na poziomie podstawowym. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 1 MAP MATHEMATICAL ANALYSIS 1 ECTS Treść kursu: Przegląd funkcji elementarnych. Granica i ciągłość funkcji jednej zmiennej. Pochodna funkcji jednej zmiennej. Badanie funkcji. Zastosowania rachunku różniczkowego w fizyce i technice. Całka nieoznaczona. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie rozszerzonym Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki 20

21 ANALIZA MATEMATYCZNA 2 (EY) MAP MATHEMATICAL ANALYSIS 2 ECTS Treść kursu: Całka oznaczona, całka niewłaściwa, rachunek różniczkowy funkcji wielu zmiennych, całki podwójne i potrójne, szeregi liczbowei potęgowe. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Analiza Matematyczna 1 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 2 (ZAO CH) MAP MATHEMATICAL ANALYSIS 2 ECTS Treść kursu: Całka oznaczona. Całka niewłaściwa. Rachunek różniczkowy funkcji wielu zmiennych. Całka podwójna. Szeregi liczbowe i potęgowe. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Analiza Matematyczna 1 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 2 (IZ) MAP MATHEMATICAL ANALYSIS 2 ECTS Treść kursu: Całka oznaczona. Całka niewłaściwa. Rachunek różniczkowy funkcji wielu zmiennych. Szeregi liczbowe i potęgowe. Podstawy równań różniczkowych zwyczajnych. Przykłady struktur algebraicznych. Kurs przeznaczony dla Wydziału Informatyki i Zarządzania, kierunek Informatyka. Wymagania wstępne: Analiza Matematyczna 1 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 2 MAP MATHEMATICAL ANALYSIS 2 ECTS Treść kursu: Całka oznaczona. Całka niewłaściwa. Rachunek różniczkowy funkcji wielu zmiennych. Całki podwójne i potrójne. Szeregi liczbowe i potęgowe. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Analiza Matematyczna 1 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki. ANALIZA MATEMATYCZNA 2 MAP MATHEMATICAL ANALYSIS 2 ECTS Treść kursu: Całka oznaczona, całka niewłaściwa, rachunek różniczkowy funkcji wielu zmiennych, całki podwójne i potrójne, szeregi liczbowe i potęgowe, równania różniczkowe zwyczajne. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Analiza Matematyczna 1 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki 21

22 ANALIZA MATEMATYCZNA 2.1 MAP MATHEMATICAL ANALYSIS 2.1 ECTS Treść kursu: Całka oznaczona, całka niewłaściwa, rachunek różniczkowy funkcji wielu zmiennych, całki podwójne i potrójne, szeregi liczbowe i potęgowe. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Analiza Matematyczna 1 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ANALIZA MATEMATYCZNA 3.1 MAP MATHEMATICAL ANALYSIS 3.1 ECTS 2 Treść kursu: Podstawowe pojęcia równań różniczkowych zwyczajnych, równania różniczkowe liniowe, układy równań różniczkowych liniowych, transformacja Laplace`a, szeregi Fouriera. Kurs może być prowadzony w jęz. angielskim. Kurs przeznaczony dla Wydziału Budownictwa (studia niestacjonarne). Wymagania wstępne: Analiza matematyczna 2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki ELEMENTY ANALIZY WEKTOROWEJ (EY) MAP ELEMENTS OF VECTOR ANALYSIS ECTS Treść kursu: Całki krzywoliniowe niezorientowanei zorientowane, całki powierzchniowe niezorientowane i zorientowane, elementy analizy wektorowej, zastosowania całek krzywoliniowych i powierzchniowych w fizyce i technice. Kurs przeznaczony dla Wydziału Elektrycznego. Wymagania wstępne: Analiza Matematyczna 1 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki. MATEMATYKA (EIT 2 STOPIEŃ) (ZAO EA) MAP MATHEMATICS ECTS Treść kursu: Równania różniczkowe zwyczajne pierwszego i drugiego rzędu. Równania różniczkowe liniowe. Równania różniczkowe cząstkowe pierwszego rzędu. Zastosowania równań różniczkowych zwyczajnych w zagadnieniach fizycznych i technicznych. Równania całkowe. Podstawowe pojęcia teorii procesów stochastycznych: procesy Markowa, procesy odnowy, procesy Gaussowskie. Przestrzeń liniowa i przestrzeń Hilberta. Wymagania wstępne: wiadomości odpowiadające kursom z I stopnia studiów na kierunku Elektronika i Telekomunikacja na Wydziale Elektroniki PWr.: Analiza Matematyczna (1 semestr), Matematyka (2 semestr) Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki MATEMATYKA (ZAO EA) MAP MATHEMATICS ECTS 6 22

23 Treść kursu: Równania różniczkowe zwyczajne. Całki wielokrotne. Całki krzywoliniowe i powierzchniowe. Elementy teorii pola. Funkcje zmiennej zespolonej. Kurs przeznaczony dla Wydziału Elektroniki. Wymagania wstępne: Analiza Matematyczna Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki MATEMATYKA 1 MAP CALCULUS 1 ECST Treść kursu: Przegląd funkcji elementarnych. Granica i ciągłość funkcji jednej zmiennej. Pochodna funkcji jednej zmiennej. Badanie funkcji. Zastosowania rachunku różniczkowego w fizyce i technice. Całka nieoznaczona. Całka oznaczona i jej zastosowania. Wymagania wstępne: Zalecana jest znajomość matematyki odpowiadająca maturze na poziomie podstawowym. Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki MATEMATYKA 2 MAP CALCULUS 2 ECTS Treść kursu: Elementy algebry liniowej: macierze, wyznaczniki, układy równań liniowych. Rachunek różniczkowy i całkowy funkcji wielu zmiennych. Szeregi liczbowe i funkcyjne. Wymagania wstępne: Matematyka I Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki MATEMATYKA 3 MAP CALCULUS 3 ECTS Treść kursu: Równania różniczkowe zwyczajne I rzędu, równania różniczkowe liniowe II rzędu. Podstawowe równania fizyki matematycznej. Wstęp do rachunku prawdopodobieństwa i statystyki matematycznej. Wymagania wstępne: Matematyka 2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A MAP ORDINARY DIFFERENTIAL EQUATIONS A ECTS 3 Treść kursu: Równania różniczkowe zwyczajne pierwszegoi drugiego rzędu. Równania różniczkowe liniowe. Elementy teorii stabilności. Zastosowania równań różniczkowych zwyczajnych w zagadnieniach fizycznych i technicznych. Kurs może być prowadzony w jęz. angielskim. Wymagania wstępne: Analiza Matematyczna 2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki STATYSTYKA MATEMATYCZNA (ZAO GGG) MAP MATHEMATICAL STATISTICS ECTS

24 Treść kursu: Przestrzeń probabilistyczna. Zmienne losowe dyskretne i ciągłe. Wartość oczekiwana, wariancja. Niezależność. Estymacja punktowa i przedziałowa. Testowanie hipotez statystycznych. Regresja liniowa jednowymiarowa. Wymagania wstępne: Analiza Matematyczna 2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki STATYSTYKA MATEMATYCZNA MAP MATHEMATICAL STATISTICS ECTS Treść kursu: Teoria estymacji. Testowanie hipotez statystycznych. Analiza korelacyjna. Kurs przeznaczony dla Wydziału Elektroniki. Wymagania wstępne: wiadomości odpowiadające kursom z I stopnia studiów na kierunku Elektronika i Telekomunikacja na Wydziale Elektroniki PWr.: Analiza Matematyczna (1 semestr), Rachunek Prawdopodobieństwa (2 semestr) Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki STATYSTYKA STOSOWANA MAP APPLIED STATISTICS ECST Treść kursu: Prezentacja danych eksperymentalnych statystyka opisowa, matematyczne podstawy modeli probabilistycznych: zmienne losowe, wektory losowe i ich opis, kwantyle i momenty, zależność stochastyczna i jej miary, ciągi zmiennych losowych i ich asymptotyczne zachowania, statystyczne metody analizy zjawisk losowych, estymacja punktowa i przedziałowa, regresja liniowa jednowymiarowa, testowanie hipotez statystycznych: testy istotności dla średniej rozkładu normalnego, test analizy wariancji, testy nieparametryczne. Wymagania wstępne: Analiza Matematyczna 2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki STATYSTYKA STOSOWANA MAP APPLIED STATISTICS ECTS 3 Treść kursu: Przestrzeń probabilistyczna. Zmienne losowe dyskretne i ciągłe. Wartość oczekiwana,wariancja. Niezależność. Estymacja punktowa i przedziałowa. Testowanie hipotez statystycznych. Regresja liniowa jednowymiarowa. Wymagania wstępne: Analiza Matematyczna 2 Zespół realizujący: Pracownicy naukowo-dydaktyczni i dydaktyczni Instytutu Matematyki i Informatyki 24

KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO

KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO NA ROK AKADEMICKI 2015/2016 Politechnika Wrocławska Katalog kursów przedmiotów kształcenia ogólnego Oferta Ogólnouczelniana 2015/2016 Politechnika Wrocławska

Bardziej szczegółowo

KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO

KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO NA ROK AKADEMICKI 2014/2015 Politechnika Wrocławska Katalog kursów przedmiotów kształcenia ogólnego Oferta Ogólnouczelniana 2014/2015 Politechnika Wrocławska

Bardziej szczegółowo

KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO

KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO f KATALOG KURSÓW PRZEDMIOTÓW KSZTACŁENIA OGÓLNEGO NA ROK AKADEMICKI 2016/2017 Politechnika Wrocławska Katalog kursów przedmiotów kształcenia ogólnego Oferta Ogólnouczelniana 2016/2017 Politechnika Wrocławska

Bardziej szczegółowo

KATALOG KURSÓW OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI

KATALOG KURSÓW OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI KATALOG KURSÓW OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI 2009/2010 Politechnika Wrocławska Katalog kursów Oferta Ogólnouczelniana 2009/2010 Politechnika Wrocławska Dział Nauczania WybrzeŜe Wyspiańskiego

Bardziej szczegółowo

KIERUNEK STUDIÓW: ELEKTROTECHNIKA

KIERUNEK STUDIÓW: ELEKTROTECHNIKA 1. PROGRAM NAUCZANIA KIERUNEK STUDIÓW: ELEKTROTECHNIKA PRZEDMIOT: MATEMATYKA (Stacjonarne: 105 h wykład, 120 h ćwiczenia rachunkowe) S t u d i a I s t o p n i a semestr: W Ć L P S I 2 E 2 II 3 E 4 III

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1 Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI

OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI KATALOG KURSÓW OFERTA OGÓLNOUCZELNIANA NA ROK AKADEMICKI 2010/2011 1 Politechnika Wrocławska Katalog kursów Oferta Ogólnouczelniana 2010/2011 Politechnika Wrocławska Dział Nauczania Wybrzeże Wyspiańskiego

Bardziej szczegółowo

Matematyka I i II - opis przedmiotu

Matematyka I i II - opis przedmiotu Matematyka I i II - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka I i II Kod przedmiotu Matematyka 02WBUD_pNadGenB11OM Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska

Bardziej szczegółowo

WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI

WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI Zał. nr do ZW WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Matematyka (Zao EA EiT stopień) Nazwa w języku angielskim: Mathematics Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu Kod przedmiotu TR.SIK103 Nazwa przedmiotu Matematyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne

Bardziej szczegółowo

MATEMATYKA MATHEMATICS. Forma studiów: studia niestacjonarne. Liczba godzin/zjazd: 3W E, 3Ćw. PRZEWODNIK PO PRZEDMIOCIE semestr 1

MATEMATYKA MATHEMATICS. Forma studiów: studia niestacjonarne. Liczba godzin/zjazd: 3W E, 3Ćw. PRZEWODNIK PO PRZEDMIOCIE semestr 1 Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: Podstawowy obowiązkowy Rodzaj zajęć: wykład, ćwiczenia Inżynieria Materiałowa Poziom studiów: studia I stopnia MATEMATYKA MATHEMATICS Forma studiów: studia

Bardziej szczegółowo

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień

Bardziej szczegółowo

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2016/2017 Język wykładowy: Polski

Bardziej szczegółowo

Zagadnienia na egzamin dyplomowy Matematyka

Zagadnienia na egzamin dyplomowy Matematyka INSTYTUT MATEMATYKI UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Zagadnienia na egzamin dyplomowy Matematyka Pytania kierunkowe Wstęp do matematyki 1. Relacja równoważności, przykłady relacji równoważności.

Bardziej szczegółowo

Wykład Ćwiczeni a 15 30

Wykład Ćwiczeni a 15 30 Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA AiR Nazwa w języku angielskim Mathematics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA MATEMATYCZNA Nazwa w języku angielskim Mathematical Statistics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

Opis przedmiotu: Matematyka I

Opis przedmiotu: Matematyka I 24.09.2013 Karta - Matematyka I Opis : Matematyka I Kod Nazwa Wersja TR.NIK102 Matematyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Załącznik nr 1 do procedury nr W_PR_12 Nazwa przedmiotu: Matematyka II Mathematics II Kierunek: inżynieria środowiska Rodzaj przedmiotu: Poziom kształcenia: nauk ścisłych, moduł 1 I stopnia Rodzaj zajęć:

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: ALGEBRA LINIOWA I GEOMETRIA ANALITYCZNA Kierunek: Mechatronika Linear algebra and analytical geometry Kod przedmiotu: A01 Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Poziom

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017 Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2018 realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1 Student ma wiedzę z matematyki wyższej Kolokwium Wykład, ćwiczenia L_K01(+) doskonalącą profesjonalny L_K03(+) warsztat logistyka.

KARTA PRZEDMIOTU. 1 Student ma wiedzę z matematyki wyższej Kolokwium Wykład, ćwiczenia L_K01(+) doskonalącą profesjonalny L_K03(+) warsztat logistyka. (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: MATEMATYKA 2. Kod przedmiotu: ROZ-L1-3 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma kształcenia: studia pierwszego stopnia

Bardziej szczegółowo

Zaliczenie na ocenę 1 0,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

Zaliczenie na ocenę 1 0,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ ****** KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE I FUNKCJE ZESPOLONE Nazwa w języku angielskim Differential equations and complex functions Kierunek studiów (jeśli

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI WYDZIAŁ GEOINŻYNIERII, GÓRNICTWA I GEOLOGII KARTA PRZEDMIOTU Nazwa w języku polskim: Statystyka matematyczna Nazwa w języku angielskim: Mathematical Statistics Kierunek studiów (jeśli dotyczy): Górnictwo

Bardziej szczegółowo

ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO

ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO Na egzaminie magisterskim student powinien: 1) omówić wyniki zawarte w pracy magisterskiej posługując się swobodnie pojęciami i twierdzeniami zamieszczonymi w pracy

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30 WYDZIAŁ ARCHITEKTURY KARTA PRZEDMIOTU Nazwa w języku polskim Matematyka 1 Nazwa w języku angielskim Mathematics 1 Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów i forma:

Bardziej szczegółowo

Koordynator przedmiotu dr Artur Bryk, wykł., Wydział Transportu Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu

Koordynator przedmiotu dr Artur Bryk, wykł., Wydział Transportu Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu Kod przedmiotu TR.NIK102 Nazwa przedmiotu Matematyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: ALGEBRA LINIOWA I GEOMETRIA ANALITYCZNA Kierunek: Inżynieria biomedyczna Linear algebra and analytical geometry forma studiów: studia stacjonarne Kod przedmiotu: IB_mp_ Rodzaj przedmiotu:

Bardziej szczegółowo

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jarosław Kotowicz, dr

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jarosław Kotowicz, dr SYLLABUS na rok akademicki 009/010 Tryb studiów Studia stacjonarne Kierunek studiów Ekonomia Poziom studiów Pierwszego stopnia Rok studiów/ semestr Rok I/ I i II semestr Specjalność Bez specjalności Kod

Bardziej szczegółowo

WYDZIAŁ ***** KARTA PRZEDMIOTU

WYDZIAŁ ***** KARTA PRZEDMIOTU 9815Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ Geoinżynierii, Górnictwa i Geologii KARTA PRZEDMIOTU Nazwa w języku polskim Wstęp do analizy i algebry Nazwa w języku angielskim Introduction to analysis and algebra Kierunek studiów

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: ANALIZA MATEMATYCZNA M3 Nazwa w języku angielskim: MATHEMATICAL ANALYSIS M3 Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Analiza Matematyczna III Mathematical Analysis III Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom przedmiotu: I

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Matematyka (EiT stopień) Nazwa w języku angielskim: Mathematics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

Z-ID-103 Algebra liniowa Linear Algebra

Z-ID-103 Algebra liniowa Linear Algebra KARTA MODUŁU / KARTA PRZEDMIOTU Z-ID-0 Algebra liniowa Linear Algebra Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/06 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26 Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne

Bardziej szczegółowo

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka

Bardziej szczegółowo

Kierunek MATEMATYKA, Specjalność MATEMATYKA STOSOWANA

Kierunek MATEMATYKA, Specjalność MATEMATYKA STOSOWANA Załącznik nr 11 do Uchwały nr 236 Rady WMiI z dnia 31 marca 2015 roku Kierunek MATEMATYKA, Specjalność MATEMATYKA STOSOWANA Profil kształcenia: ogólnoakademicki Forma studiów: stacjonarne Forma kształcenia/poziom

Bardziej szczegółowo

WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Nazwa w języku angielskim ORDINARY DIFFERENTIAL EQUATIONS Kierunek studiów (jeśli dotyczy): Automatyka

Bardziej szczegółowo

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol) KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Geometria analityczna (GAN010) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 8 6. LICZBA GODZIN: 30 / 30

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim Analiza matematyczna Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Inżynieria zarządzania

Bardziej szczegółowo

WYDZIAŁ CHEMICZNY POLITECHNIKI GDAŃSKIEJ Kierunek Chemia. Semestr 1 Godziny 3 3 Punkty ECTS 11 w c l p S BRAK

WYDZIAŁ CHEMICZNY POLITECHNIKI GDAŃSKIEJ Kierunek Chemia. Semestr 1 Godziny 3 3 Punkty ECTS 11 w c l p S BRAK WYDZIAŁ CHEMICZNY POLITECHNIKI GDAŃSKIEJ Nazwa przedmiotu MATEMATYKA I Kod CH 1.1 Semestr 1 Godziny 3 3 Punkty ECTS 11 w c l p S Sposób zaliczenia E Katedra Centrum Nauczania Matematyki i Kształcenia na

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M dr hab. inż. Stanisław Cudziło, prof. WAT Dziekan Wydziału Nowych Technologii i Chemii Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: MATEMATYKA Wersja anglojęzyczna:

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2016/2017

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2016/2017 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 206/207 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Algebra liniowa z geometrią (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod () Studia Kierunek

Bardziej szczegółowo

KARTA PRZEDMIOTU CELE PRZEDMIOTU

KARTA PRZEDMIOTU CELE PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr do ZW KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

SPIS TREŚCI PRZEDMOWA... 13

SPIS TREŚCI PRZEDMOWA... 13 SPIS TREŚCI PRZEDMOWA... 13 CZĘŚĆ I. ALGEBRA ZBIORÓW... 15 ROZDZIAŁ 1. ZBIORY... 15 1.1. Oznaczenia i określenia... 15 1.2. Działania na zbiorach... 17 1.3. Klasa zbiorów. Iloczyn kartezjański zbiorów...

Bardziej szczegółowo

3. Plan studiów PLAN STUDIÓW. Faculty of Fundamental Problems of Technology Field of study: MATHEMATICS

3. Plan studiów PLAN STUDIÓW. Faculty of Fundamental Problems of Technology Field of study: MATHEMATICS 148 3. Plan studiów PLAN STUDIÓW 3.1. MATEMATYKA 3.1. MATHEMATICS - MSc studies - dzienne studia magisterskie - day studies WYDZIAŁ: PPT KIERUNEK: MATEMATYKA SPECJALNOŚCI: Faculty of Fundamental Problems

Bardziej szczegółowo

ECTS Razem 30 Godz. 330

ECTS Razem 30 Godz. 330 3-letnie stacjonarne studia licencjackie kier. Matematyka profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Algebra liniowa z geometrią analityczną I 7 30 30 E Analiza matematyczna I 13 60 60 E Technologie

Bardziej szczegółowo

Kierunek i poziom studiów: Chemia, pierwszy Sylabus modułu: Matematyka A (0310-CH-S1-001)

Kierunek i poziom studiów: Chemia, pierwszy Sylabus modułu: Matematyka A (0310-CH-S1-001) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy Sylabus modułu: Matematyka A (001) 1. Informacje ogólne koordynator modułu rok akademicki 2013/2014 semestr forma studiów

Bardziej szczegółowo

PW Wydział Elektryczny Rok akad / Podstawowe Informacje dla studentów

PW Wydział Elektryczny Rok akad / Podstawowe Informacje dla studentów PW Wydział Elektryczny Rok akad. 2017 / 2018 Podstawowe Informacje dla studentów Piotr Multarzyński, e-mail: multarynka@op.pl, konsultacje: Zob isod. Przedmiot: Matematyka 1 Cel przedmiotu: Zapoznanie

Bardziej szczegółowo

przedmiot podstawowy obowiązkowy polski drugi

przedmiot podstawowy obowiązkowy polski drugi KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 07/08 IN--008 STATYSTYKA W INŻYNIERII ŚRODOWISKA Statistics in environmental engineering

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: JFT s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2013/2014 Kod: JFT s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Matematyczne metody fizyki 1 Rok akademicki: 2013/2014 Kod: JFT-1-103-s Punkty ECTS: 5 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Techniczna Specjalność: - Poziom studiów:

Bardziej szczegółowo

Matematyka. w formie niestacjonarnej Matematyka dyskretna: wykład 20, ćwiczenia audytoryjne - 20 Analiza matematyczna i algebra liniowa:

Matematyka. w formie niestacjonarnej Matematyka dyskretna: wykład 20, ćwiczenia audytoryjne - 20 Analiza matematyczna i algebra liniowa: Matematyka Matematyka dyskretna (MAD) Analiza matematyczna i algebra liniowa z geometrią analityczną (AAL) Rachunek prawdopodobieństwa i statystyka (RRR) Kod modułu: MAT Rodzaj modułu: podstawowy, obowiązkowy

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Tarnowie Instytut Matematyczno-Przyrodniczy Zakład Matematyki

Państwowa Wyższa Szkoła Zawodowa w Tarnowie Instytut Matematyczno-Przyrodniczy Zakład Matematyki Program studiów na kierunku matematyka (studia I stopnia o profilu ogólnoakademickim, stacjonarne) dotyczy osób zarekrutowanych w roku 2013/14 i w latach następnych Państwowa Wyższa Szkoła Zawodowa w Tarnowie

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2010/2011

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2010/2011 PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS Obowiązuje od roku akademickiego: 2010/2011 Instytut Ekonomiczny Kierunek studiów: Ekonomia Kod kierunku: 04.9 Specjalność: brak 1. PRZEDMIOT NAZWA

Bardziej szczegółowo

KARTA MODUŁU. 17. Efekty kształcenia: 2. Nr Opis efektu kształcenia Metoda sprawdzenia efektu kształcenia 1 potrafi wykorzystać

KARTA MODUŁU. 17. Efekty kształcenia: 2. Nr Opis efektu kształcenia Metoda sprawdzenia efektu kształcenia 1 potrafi wykorzystać (pieczęć wydziału) KARTA MODUŁU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa modułu: MATEMATYKA 2. Kod przedmiotu: 3 3. Karta modułu ważna od roku akademickiego: 2013/2014 4. Forma kształcenia: studia pierwszego

Bardziej szczegółowo

Zajęcia fakultatywne z matematyki (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Zajęcia fakultatywne z matematyki (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Architektura

Bardziej szczegółowo

SYLABUS/KARTA PRZEDMIOTU

SYLABUS/KARTA PRZEDMIOTU SYLABUS/KARTA PRZEDMIOTU. NAZWA PRZEDMIOTU Analiza i modelowanie systemów. NAZWA JEDNOSTKI PROWADZĄCEJ PRZEDMIOT Instytut Politechniczny. STUDIA kierunek stopień tryb język status przedmiotu AiR I Stacjonarne/Niestacjonarne

Bardziej szczegółowo

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Zał. nr 4 do ZW 33/01 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim: Analiza matematyczna 1.1 A Nazwa w języku angielskim: Mathematical Analysis 1.1

Bardziej szczegółowo

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA. Nazwa w języku angielskim Mathematical Analysis. Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

Opis przedmiotu: Probabilistyka I

Opis przedmiotu: Probabilistyka I Opis : Probabilistyka I Kod Nazwa Wersja TR.SIK303 Probabilistyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka prowadząca

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Materiały pomocnicze dla studentów do wykładów Opracował (-li): 1 Prof dr hab Edward Smaga dr Anna Gryglaszewska 3 mgr Marta Kornafel 4 mgr Fryderyk Falniowski 5 mgr Paweł Prysak Materiały przygotowane

Bardziej szczegółowo

ZAKRESY NATERIAŁU Z-1:

ZAKRESY NATERIAŁU Z-1: Załącznik nr 2 do SIWZ Nr postępowania: ZP/47/055/U/13 ZAKRESY NATERIAŁU Z-1: 1) Funkcja rzeczywista jednej zmiennej: ciąg dalszy a) Definicja granicy funkcji, b) Twierdzenie o trzech funkcjach, o granicy

Bardziej szczegółowo

WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU Zał. nr 4 do ZW Nazwa w języku polskim: FUNKCJE ZESPOLONE Nazwa w języku angielskim: Complex functions Kierunek studiów (jeśli dotyczy): Automatyka i Robotyka Specjalność

Bardziej szczegółowo

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44 Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: ALGEBRA LINIOWA Z GEOMETRIĄ ANALITYCZNĄ Linear algebra and analytical geometry Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka,

Bardziej szczegółowo

WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Zał. nr 4 do ZW 33/01 Nazwa w języku polskim: Analiza matematyczna.1 Nazwa w języku angielskim: Mathematical analysis.1 Kierunek

Bardziej szczegółowo

Z-ZIP-0530 Analiza Matematyczna II Calculus II

Z-ZIP-0530 Analiza Matematyczna II Calculus II KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-ZIP-0530 Analiza Matematyczna II Calculus II A. USYTUOWANIE MODUŁU

Bardziej szczegółowo

12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych

12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: Rachunek prawdopodobieństwa i statystyka matematyczna 2. Kod przedmiotu: RPiS 3. Karta przedmiotu ważna od roku akademickiego:

Bardziej szczegółowo

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu Sylabus przedmiotu: Specjalność: Matematyka I Wszystkie specjalności Data wydruku: 21.01.2016 Dla rocznika: 2015/2016 Kierunek: Wydział: Zarządzanie i inżynieria produkcji Inżynieryjno-Ekonomiczny Dane

Bardziej szczegółowo

Opis poszczególnych przedmiotów (Sylabus)

Opis poszczególnych przedmiotów (Sylabus) Opis poszczególnych przedmiotów (Sylabus) Nazwa Przedmiotu: Analiza matematyczna Kod przedmiotu: Typ przedmiotu: obowiązkowy Poziom przedmiotu: podstawowy Rok studiów, semestr: rok pierwszy, semestr I

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki z semestru 1

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki z semestru 1 KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 WY + 30

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Nazwa Algebra liniowa z geometrią Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot Kod Studia Kierunek

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Obliczenia symboliczne Symbolic computations Kierunek: Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Informatyka Rodzaj zajęć: wykład,

Bardziej szczegółowo

Matematyka - opis przedmiotu

Matematyka - opis przedmiotu Matematyka - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka Kod przedmiotu 11.1-WZ-EkoP-M-W-S14_pNadGenAT6Y9 Wydział Kierunek Wydział Ekonomii i Zarządzania Ekonomia Profil ogólnoakademicki

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2018 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Algebra liniowa z geometrią Kod przedmiotu/

Bardziej szczegółowo

KARTA PRZEDMIOTU. 12. Przynależność do grupy przedmiotów: Prawdopodobieństwo i statystyka

KARTA PRZEDMIOTU. 12. Przynależność do grupy przedmiotów: Prawdopodobieństwo i statystyka (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: RACHUNEK PRAWDOPODOBIEŃSTWA 2. Kod przedmiotu: RPr 3. Karta przedmiotu ważna od roku akademickiego: 20152016 4. Forma

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2017 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Analiza matematyczna Kod przedmiotu/ modułu* Wydział (nazwa jednostki

Bardziej szczegółowo

1. Algebra 2. Analiza Matematyczna. Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

1. Algebra 2. Analiza Matematyczna. Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim FUNKCJE ANALITYCZNE Nazwa w języku angielskim Analytic Functions Kierunek studiów (jeśli dotyczy): Matematyka

Bardziej szczegółowo

E-N-1112-s1 MATEMATYKA Mathematics

E-N-1112-s1 MATEMATYKA Mathematics KARTA MODUŁU / KARTA PRZEDMIOTU E-N-1112-s1 MATEMATYKA Mathematics Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim WSTĘP DO TEORII RÓWNAŃ RÓŻNICZKOWYCH Nazwa w języku angielskim INTRODUCTION TO DIFFERENTIAL EQUATIONS THEORY

Bardziej szczegółowo

stacjonarne (stacjonarne / niestacjonarne) Katedra Matematyki dr Dmytro Mierzejewski podstawowy (podstawowy / kierunkowy / inny HES)

stacjonarne (stacjonarne / niestacjonarne) Katedra Matematyki dr Dmytro Mierzejewski podstawowy (podstawowy / kierunkowy / inny HES) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod Nazwa Nazwa w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-ETI-1017-W2 Elementy

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Funkcje zespolone Complex functions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

MATEMATYKA. audytoryjne),

MATEMATYKA. audytoryjne), Nazwa przedmiotu: MATEMATYKA 1. Wydział: InŜynierii Środowiska i Geodezji 2. Kierunek studiów: InŜynieria Środowiska 3. Rodzaj i stopień studiów: studia I stopnia, inŝynierskie, stacjonarne 4. Nazwa przedmiotu:

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: MATEMATYKA STOSOWANA II 2. Kod przedmiotu: Ma2 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechatronika 5. Specjalność: Zastosowanie informatyki

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Analiza matematyczna 2 Rok akademicki: 2014/2015 Kod: EME-1-202-s Punkty ECTS: 5 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Mikroelektronika w technice

Bardziej szczegółowo

PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU MATEMATYKA NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO

PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU MATEMATYKA NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU MATEMATYKA NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO rekrutacja w roku akademickim 2014/2015 Zatwierdzono:

Bardziej szczegółowo

Analiza matematyczna w zadaniach. [Cz.] 2 / W. Krysicki, L. Włodarski. - wyd. 27, dodr. 6. Warszawa, Spis rzeczy

Analiza matematyczna w zadaniach. [Cz.] 2 / W. Krysicki, L. Włodarski. - wyd. 27, dodr. 6. Warszawa, Spis rzeczy Analiza matematyczna w zadaniach. [Cz.] 2 / W. Krysicki, L. Włodarski. - wyd. 27, dodr. 6. Warszawa, 2010 Spis rzeczy Przedmowa do wydania pierwszego 5 Przedmowa do wydania dziesiątego 6 Rozdział I. Funkcje

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty) SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/17 2019/20 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Analiza matematyczna Kod przedmiotu/ modułu* Wydział (nazwa jednostki

Bardziej szczegółowo

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS)

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS) Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.3 A Nazwa w języku angielskim Mathematical Analysis Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA 1.1 A Nazwa w języku angielskim Mathematical Analysis 1A Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 3W E, 3C PRZEWODNIK PO PRZEDMIOCIE

Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 3W E, 3C PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Teoria miary i całki Measure and Integration Theory Kod przedmiotu: Poziom

Bardziej szczegółowo

SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne

SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne SYLABUS 1.Nazwa Matematyka 2.Nazwa jednostki prowadzącej Katedra Metod Ilościowych i Informatyki przedmiot Gospodarczej 3.Kod E/I/A.3 4.Studia Kierunek studiów/specjalność Poziom Forma studiów Ekonomia

Bardziej szczegółowo

PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU MATEMATYKA

PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU MATEMATYKA PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU MATEMATYKA NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO rekrutacja w roku akademickim 2016/2017 Zatwierdzono:

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów)

Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów) Przedmiot: Matematyka I Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów) Kod przedmiotu: E05_1_D Typ przedmiotu/modułu: obowiązkowy X obieralny Rok: pierwszy Semestr: pierwszy

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr do ZW /01 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Identyfikacja systemów Nazwa w języku angielskim System identification Kierunek studiów (jeśli dotyczy): Inżynieria Systemów

Bardziej szczegółowo

PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU INŻYNIERIA DANYCH

PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU INŻYNIERIA DANYCH PLAN STUDIÓW STACJONARNYCH PIERWSZEGO STOPNIA DLA KIERUNKU INŻYNIERIA DANYCH NA WYDZIALE MATEMATYKI, INFORMATYKI I EKONOMETRII UNIWERSYTETU ZIELONOGÓRSKIEGO rekrutacja w roku akademickim 2014/2015 Zatwierdzono:

Bardziej szczegółowo

WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS

WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS Nazwa przedmiotu: Matematyka Profil 1 : ogólnoakademicki Cel przedmiotu: Zapoznanie studentów z pewnymi

Bardziej szczegółowo