Eksploracja danych (Data mining)
|
|
- Filip Kaczor
- 8 lat temu
- Przeglądów:
Transkrypt
1 Eksploracja danych (Data mining) jest dynamicznie rozwijającą się o szerokich zastosowaniach: dziedziną informatyki medycynie farmakologii bankowości lingwistyce rozpoznawaniu mowy ochrona środowiska Przez eksplorację danych rozumie się proces automatycznego odkrywania znaczących i dotychczas nieznanych informacji z dużych baz danych, czyli informacji ujawniających ukrytą wiedzę o badanym przedmiocie. ZPT
2 Eksploracja danych. Nazywa się również odkrywaniem wiedzy w bazach danych (ang. knowledge discovery in databases). Potrafi Potrafi przeprowadzić sondaż? Potrafi Potrafi zdiagnozować pacjenta Potrafi Potrafi klasyfikować dane? dane? Potrafi Potrafi podjąć podjąćdecyzję decyzję o przyznaniu kredytu kredytu klientowi banku banku ZPT
3 Pozyskiwanie wiedzy z baz danych na abstrakcyjnym poziomie algorytmów polega na Redukcji atrybutów Generacji reguł decyzyjnych Hierarchicznym podejmowanie decyzji Są to algorytmy analogiczne do algorytmów stosowanych w syntezie logicznej! ZPT
4 Eksploracja danych a synteza logiczna Eksploracja danych Synteza logiczna! Generacja reguł decyzyjnych! Redukcja atrybutów! Minimalizacja funkcji boolowskich! Redukcja argumentów! Hierarchiczne podejmowanie decyzji! Dekompozycja funkcjonalna ZPT 4
5 Tablice i reguły decyzyjne Wiele rzeczywistych zjawisk opisuje się tablicami danych O b i e k t y a b d e Klasyfikacja (Decyzja) W tablicach takich obiekty reprezentowane w poszczególnych wierszach opisywane są wartościami atrybutów a, b, d. Jednocześnie obiekty są klasyfikowane, kolumna e. ZPT 5
6 Tablice i reguły decyzyjne Tablice takie można również reprezentować za pomocą wyrażeń logicznych zwanych regułami decyzyjnymi: U: (a,) (b,) (d,) (e,) U5: (a,) (b,) (d,) (e,) a b d e redukcja atrybutów redukcja (generacja) reguł decyzyjnych ZPT 6
7 Generacja reguł Wyrażenia takie można upraszczać za pomocą metod stosowanych w syntezie logicznej. Np. metodą analogiczną do ekspansji można uogólniać (minimalizować) reguły decyzyjne. Metoda uogólniania reguł decyzyjnych: Tworzy się macierz porównań M, Wyznacza minimalne pokrycie M, Atrybutami reguły minimalnej są atrybuty należące do minimalnego pokrycia M. ZPT 7
8 Przykład generacji reguł Tablica decyzyjna U a b c d e Tablica reguł minimalnych a b c d e ZPT 8
9 Przykład: uogólniamy U U a b c d e a b c d M = 7 Macierz M powstaje przez porównanie obiektów: (u, u ), (u, u 4 ),..., (u, u 7 ). Wynikiem porównania są wiersze M. Dla takich samych wartości atrybutów odpowiedni m=, dla różnych m=. ZPT 9
10 Przykład: uogólniamy U a b c d a, d U a b c d e M = b b, d a, b, d Minimalne pokrycia są: {a,b} oraz {b,d}, a, b, c, d Wyznaczone na ich podstawie minimalne reguły: (a,) & (b,) (e,) (b,) & (d,) (e,) U a b c d e - - ZPT
11 Przykład generacji reguł cd. Po uogólnieniu obiektu u u. U a b c d e - - u mo na U a b c d e ZPT
12 Przykład generacji reguł c.d. U a b c d e (a,) (e,) (b,) & (d,) (e,) Dla obiektu u a b c d Dla obiektu u4 / / a b c d Niestety po uogólnieniu ani u nie pokrywa u 4, ani u 4 nie pokrywa u ZPT
13 Przykład generacji reguł c.d. U a b c d e Dla obiektu u5 a b c d (d,) (e,) u 6, u 7 ZPT
14 Reguły minimalne Uogólnione reguły decyzyjne: (a,) & (b,) (e,) (a,) (e,) (b,) & (d,) (e,) (d,) (e,) a b c d e w innym zapisie: (a,) & (b,) (e,) (a,) (b,) & (d,) (e,) (d,) (e,) ZPT 4
15 Interpretacja reguł uogólnionych Takie metody stosuje się w przypadkach, gdy dysponuje się zbiorem obiektów, których przynależność do odpowiedniej klasy jest znana, a celem jest klasyfikacja nowych danych. Pierwotna tablica decyzyjna: zapisane są w niej dane zebrane do tej pory i już sklasyfikowane U a b c d e Ale pojawia się nowy zestaw danych a=,b=, c=, d= Jaka decyzja? Na uogólnionych regułach jest to oczywiste! a b c d e e = ZPT 5
16 Zastosowania Sytuacja ta występuje np. przy wnioskach kredytowych składanych w bankach. Ponieważ część z nich jest akceptowana, a część odrzucana, można dane zebrane w dłuższym okresie czasu zapisać w tablicy decyzyjnej, uogólnić i dalej stosować w uproszczonej formie do podejmowania decyzji. Klientów charakteryzuje się za pomocą następujących cech jakościowych i ilościowych: Przykładowo: - Sytuacja zawodowa: B (bezrobotny), P (pracujący) - przeznaczenie kredytu: komputer (K), sprzęt audio (A), biżuteria (B) - wiek w latach - stan konta ZPT 6
17 Przykładowa tablica danych... Sytuacja zawodowa Przeznaczenie: Komp., sam. wiek Stan konta Staż pracy w danym zakładzie pracy C C C C4 C5 C6 C7 C8 C9 C Klasa P K K S nie 8 5 tak P K K S nie tak B K K R tak nie P S M R nie 5 tak P S M S nie 5 5 tak P S M R nie 8 5 tak ZPT 7
18 Zastosowania Po uogólnieniu reguł decyzyjnych [wiek > 5] & [stan konta > 7] & [staż pracy > ] tak. [płeć = kobieta] & [wiek < 5] nie Proces uogólniania takich reguł to jedno głównych zagadnień Eksploracji Danych Do wykonywania takich obliczeń opracowano wiele narzędzi komputerowych. Do najbardziej znanych należy ZPT LERS 8
19 Diagnostyka raka piersi Breast Cancer Database: " Instancje (obiekty): 699 (dane poszczególnych pacjentów) " Liczba atrybutów: " Klasyfikacja ( klasy). Ocena spoistości masy nowotworowej. Ocena jednolitości rozmiaru komórek. Ocena jednolitości kształtu komórek. ZPT Sources: Dr. WIlliam H. Wolberg (physician); University of Wisconsin Hospital ;Madison; Wisconsin; USA 9. Występowanie podziałów komórkowych (mitoza) 9
20 Breast Cancer Database (fragment) ZPT ID a a a a4 a5 a6 a7 a8 a9 a
21 Pozyskiwanie wiedzy z baz danych LERS był wykorzystany do obliczenia reguł decyzyjnych wspomagających diagnostykę raka piersi. R. K. Nowicki Rozmyte systemy decyzyjne w zadaniach z ograniczoną wiedzą, Akademicka Oficyna Wydawnicza EXIT, Warszawa 9. (Reguły decyzyjne dla Breast Cancer Database ) ZPT
22 Komputerowe systemy klasyfikacji danych ROSETTA Rough Set Toolkit for Analysis of Data: Biomedical Centre (BMC), Uppsala, Sweden. ale skoro wiemy, że można do tych obliczeń stosować metody syntezy logicznej ZPT
23 Porównanie ESPRESSO.i 7.o.type fr.p 9.e f = x + 4x7 xx6 RSES TABLE extlbis ATTRIBUTES 8 x numeric x numeric x numeric x4 numeric x5 numeric x6 numeric x7 numeric x8 numeric OBJECTS 9 (x=)&(x5=)&(x6=)&(x=)=>(x8=) (x=)&(x=)&(x5=)&(x=)&(x4=)&(x6=)=>(x8=) (x4=)&(x=)&(x=)&(x7=)=>(x8=) (x=)&(x4=)&(x5=)&(x6=)=>(x8=) f = x + 4xxx7 xx4x5x6 ZPT
24 Porównanie Przykład sugeruje, że algorytmy stosowane w komputerowych systemach eksploracji danych nie są najskuteczniejsze. I być może warto je opracować na nowo korzystając z metod syntezy logicznej. Przykładem potwierdzającym tę tezę jest redukcja atrybutów, którą najpierw omówimy w ujęciu redukcji argumentów. ZPT
25 Redukcja atrybutów a a a a 4 a 5 a 6 d a a a 5 a 6 d Redukty: {a, a, a 5, a 6 } {a, a, a 5, a 6 } ZPT 5
26 ZPT 6 Przykład redukcji atrybutów a 4 a d a 6 a a a ponieważ wiersze 6 i różnią się na pozycji a a a 6 a wiersze i 8 różnią się na pozycji a 6
27 ZPT 7 Przykład redukcji atrybutów a 4 a d a 6 a a a ),9;,6,7 ; P = (,,4,5,8 P 6 = (,,6,9,;,4,5,7,8) P D = (,,7;,4,6;5,8;9,) (,)(9);(4)(5,8);(6);()(7);() P P P D 6 =
28 Przykład redukcji atrybutów 4 5 a a a a 4 a 5 a 6 d () P P6 PD = (,)(9);(4)(5,8);(6);()(7);,9,9 4,5 a, a 4, a 5 a, a, a 4, a 5 a, a ,8,7 a, a 4 a 4, a (a 4 + a ) (a 4 + a ) (a 4 + a 5 ) = a 4 + a a a 5 {a, a 4, a 6 } {a, a, a, a 5, a 6 } ZPT 8
29 ZPT TABLE EXPLOR ATTRIBUTES 7 x numeric x numeric x numeric x4 numeric x5 numeric x6 numeric x7 numeric OBJECTS 4 4 Plik danych RSES REDUCTS () { x, x4, x6 } { x, x, x, x5, x6 }
30 Inna metoda obliczania reduktów Omówioną metodę można znacznie usprawnić wykorzystując stosowaną w syntezie logicznej procedurę uzupełniania funkcji boolowskiej. Twierdzenie: Każdy wiersz i macierzy, stanowiącej uzupełnienie macierzy porównań M reprezentuje pokrycie kolumnowe M, gdzie j M wtedy i tylko wtedy, gdy = M ij Powyższe twierdzenie sprowadza proces obliczania reduktów do obliczania uzupełnienia jednorodnej funkcji boolowskiej. Procedura ta (nazwana UNATE_COMPLEMENT) została opracowana jako fragment procedury COMPLEMENT programu Espresso. ZPT
31 Przykład metoda klasyczna M: x x x 4 x x 4 x x x x 4 (x + x + x 4 ) (x + x 4 ) (x + x )(x + x 4 ) = = x x + x x 4 +x x 4 To są wszystkie minimalne pokrycia kolumnowe macierzy M ZPT
32 Przykład metoda uzupełniania M: f = M x = x x 4 x + x x 4 x + 4 x + x x 4 x + x x + x x 4 = x x 4 x x x x + x x 4 +x x 4 f M = x x + x 4 + x x x4 ZPT To samo co poprzednio!
33 ZPT Obliczanie reduktów metodą uzupełniania jest bardzo skuteczne Przykład TL7.i 7.o.type fr.p 9.e Tablica porównań Tablica porównań nie jest funkcją boolowską
34 Redukcja (usuwanie) wierszy tabl. porównań.i 7.o.type fr.p 9.e ZPT Zredukowana tablica porównań.i 7.o.p end reprezentuje funkcję boolowską 4
35 Do obliczenia uzupełnienia zastosujmy Espresso {x,x,x 4,x 6,x 7 } F,D Complement {x,x,x 4,x 6 }.i 7.o.p end Expand Essential primes Irredundant-Cover ESPRESSO Reduce Last-gasp F M {x,x 4,x 5,x 6 } {x,x 4,x 6,x 7 }.i 7.o.p end ZPT 5
36 Skuteczność metody uzupełniania w zastosowaniu do rzeczywistych baz danych ZPT Audiology Database " Number of instances: training cases " Number of attributes: 7 " Classification (4 classes) Sources: (a) Original Owner: Professor Jergen at Baylor College of Medicine (b) Donor: Bruce Porter (porter@fall.cs.utexas.edu) Dermatology Database Number of Instances: 66 Number of attributes: 4 Classification (6 classes) Source Information: Nilsel Ilter, M.D., Ph.D., Gazi University, School of Medicine 65 Ankara, Turkey Phone: +9 () 4 8 6
37 Trains.type fdr.i.o.p end ZPT RSES nie może policzyć, znajduje tylko rozwiązanie heurystyczne redukty
38 ZPT.type fr.i.o.p.end Funkcja KAZ 5574 redukty 8
39 Eksperymenty attributes objects RSES/ROSETTA prop. method reducts trains >5 h out of memory < sec. 689 KAZ 7 min. < sec house sec. sec. audiology 7 >5 h out of memory min. 767 dermatology 5 66 >5 h out of memory 9 min ZPT Bezwzględna przewaga metody uzupełniania! 9
40 Wnioski " Metody syntezy logicznej są skuteczne " Dają rewelacyjne wyniki " Proste do implementacji " Mogą być źródłem ciekawych prac dyplomowych ZPT 4
41 Dekompozycja tablic decyzyjnych Atrybuty A B G Tablica decyzyjna H Decyzja pośrednia Decyzja końcowa Atrybuty ZPT 4
42 Dekompozycja tablic decyzyjnych F = H(A,G(B)) A B G Π G P(A) Π G P(B): P D H Decyzja pośrednia Decyzja końcowa ZPT 4
43 Przykład dekompozycji TD a 4 a 5 a a a a 6 d A = {a4, a 5, a 6 } B = {a, a, a } 4 4 P(A) = (; ; ; 4; 5,7; 6,9,; 8) P(B) P D = (;,8;,6,7; 4; 5,9;) PU P = (,)(9);(4)(5,8);(6);()(7);() Π G = D (,,7; = (,,,4,6,7,8;,4,6; 5,8; 9,) 5,9,) ZPT 4
44 Przykład c.d. F ZPT 44 G: H: a a a g a 4 a 5 a 6 g d
45 Kompresja danych S = pσq i S G = 4 jednostki S F = jednostek Dekompozycja S H = 7 jednostki S G + S H = 87% S F ZPT 4
46 Przykład!, Decision table for house of reps.!, < D A A A A A A A A A A A A A A A A >!, [ CLASS-NAME HANDICAPPED-INFANTS WATER-PROJECT-COST-SHARING ADOPTION-OF-THE-BUDGET-RESOLUTION PHYSICIAN-FEE-FREEZE EL- SALVADOR-AID RELIGIOUS-GROUPS-IN-SCHOOLS ANTI-SATELLITE-TEST-BAN AID-TO-NICARAGUAN-CONTRAS MX-MISSILE IMMIGRATION SYNFUELS-CORPORATION-CUTBACK EDUCATION-SPENDING SUPERFUND- RIGHT-TO-SUE CRIME DUTY-FREE-EXPORTS EXPORT-ADMINISTRATION-ACT- SOUTH-AFRICA ]!,!, Now the data!, democrat n y y n y y n n n n n n y y y y republican n y n y y y n n n n n y y y n y republican n n y y y y n n y y n y y y n y democrat n n y n n n y y y y n n n n n y 68% kompresji danych ZPT 4
Synteza logiczna w eksploracji danych
Synteza logiczna w eksploracji danych Eksploracja danych (Data mining) jest dynamicznie rozwijającą się dziedziną informatyki o coraz szerszych zastosowaniach niemal w kaŝdej dziedzinie Ŝycia bankowości
Synteza logiczna w eksploracji danych
Synteza logiczna w eksploracji danych Eksploracja danych (Data mining) jest dynamicznie rozwijającą się dziedziną informatyki o coraz szerszych zastosowaniach niemal w każdej dziedzinie życia medycynie
Synteza logiczna w eksploracji danych
Synteza logiczna w eksploracji danych Metody syntezy logicznej są wykorzystywane głównie do optymalizacji systemów cyfrowych przetwarzających sygnały binarne. Ich podstawowym zadaniem jest poprawa implementacji
Minimalizacja funkcji boolowskich c.d.
Minimalizacja funkcji boolowskich c.d. Metoda tablic Karnaugha Metoda Quine a McCluskey a Absolutnie nieprzydatna do obliczeń komputerowych Pierwsze skuteczne narzędzie do minimalizacji wieloargumentowych
Minimalizacja form boolowskich UC1, 2009
Minimalizacja form boolowskich UC, 29 mplikanty funkcji boolowskiej UC, 29 2 mplikanty funkcji boolowskiej UC, 29 3 Metody minimalizacji UC, 29 4 Siatki Karnaugh UC, 29 5 Siatki Karnaugh UC, 29 Stosowanie
PRACA DYPLOMOWA. Andrzej Kisiel DISCOVERING DECISION RULES OF BINARY DATA TABLES USING COMPLEMENT OF BOOLEAN FUNCTIONS
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA pod auspicjami Polskiej Akademii Nauk WYDZIAŁ INFORMATYKI STUDIA I STOPNIA (INŻYNIERSKIE) Kierunek INFORMATYKA PRACA DYPLOMOWA Andrzej Kisiel UOGÓLNIANIE
Odkrywanie wiedzy z danych przy użyciu zbiorów przybliżonych. Wykład 3
Odkrywanie wiedzy z danych przy użyciu zbiorów przybliżonych Wykład 3 W internecie Teoria zbiorów przybliżonych zaproponowany w 1982 r. przez prof. Zdzisława Pawlaka formalizm matematyczny, stanowiący
PRACA DYPLOMOWA INŻYNIERSKA
Politechnika Warszawska Rok akademicki 22/23 Wydział Elektroniki i Technik Informacyjnych Kierunek Elektronika i Telekomunikacja Specjalność Inżynieria Komputerowa PRACA DYPLOMOWA INŻYNIERSKA Dawid Mazurek
WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB IV ZBIORY PRZYBLIŻONE I ODKRYWANIE REGUŁ DECYZYJNYCH
WSOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB IV ZBIORY RZYBLIŻONE I ODKRYWANIE REGUŁ DECYZYJNYCH 1. Definicje Zbiory, które nie są zbiorami definiowalnymi, są nazywane zbiorami przybliżonymi. Zbiory definiowalne
Krótki opis programu pandor.exe
Krótki opis programu pandor.exe 1. Budowa panelu głównego Po uruchomieniu programu oba pola są puste. Lewe służy do wprowadzania badanej funkcji w postaci tablicy prawdy, w prawym natomiast prezentowane
PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski
Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji
Systemy ekspertowe : Tablice decyzyjne
Instytut Informatyki Uniwersytetu Śląskiego 16 marzec 2010 Tablica decyzyjna Klasy nierozróżnialności i klasy decyzyjne Rdzeń Redukt Macierz nierozróżnialności Rdzeń i redukt w macierzy nierozróżnialności
Koszt literału (literal cost) jest określony liczbą wystąpień literału w wyrażeniu boolowskim realizowanym przez układ.
Elementy cyfrowe i układy logiczne Wykład Legenda Kryterium kosztu realizacji Minimalizacja i optymalizacja Optymalizacja układów dwupoziomowych Tablica (mapa) Karnaugh a Metoda Quine a-mccluskey a Złożoność
Algorytmy klasyfikacji
Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe
Klasyfikacja metodą Bayesa
Klasyfikacja metodą Bayesa Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski warunkowe i bezwarunkowe 1. Klasyfikacja Bayesowska jest klasyfikacją statystyczną. Pozwala przewidzieć prawdopodobieństwo
ZAGADNIENIA DO EGZAMINU DYPLOMOWEGO NA STUDIACH INŻYNIERSKICH. Matematyka dyskretna, algorytmy i struktury danych, sztuczna inteligencja
Kierunek Informatyka Rok akademicki 2016/2017 Wydział Matematyczno-Przyrodniczy Uniwersytet Rzeszowski ZAGADNIENIA DO EGZAMINU DYPLOMOWEGO NA STUDIACH INŻYNIERSKICH Technika cyfrowa i architektura komputerów
JAKOŚĆ DANYCH Z PERSPEKTYWY SYSTEMÓW WSPOMAGANIA DECYZJI KLINICZNYCH. Dr hab. inż. Szymon Wilk Politechnika Poznańska Instytut Informatyki
JAKOŚĆ DANYCH Z PERSPEKTYWY SYSTEMÓW WSPOMAGANIA DECYZJI KLINICZNYCH Dr hab. inż. Szymon Wilk Politechnika Poznańska Instytut Informatyki Warszawa, 28.11.2011 Konferencja ekspercka dotycząca e-zdrowia
Sztuczna inteligencja
POLITECHNIKA KRAKOWSKA WIEiK KATEDRA AUTOMATYKI I TECHNIK INFORMACYJNYCH Sztuczna inteligencja www.pk.edu.pl/~zk/si_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 10: Zbiory przybliżone
Wykład I. Wprowadzenie do baz danych
Wykład I Wprowadzenie do baz danych Trochę historii Pierwsze znane użycie terminu baza danych miało miejsce w listopadzie w 1963 roku. W latach sześcdziesątych XX wieku został opracowany przez Charles
Minimalizacja formuł Boolowskich
Minimalizacja formuł Boolowskich Stosowanie reguł algebry Boole a w celu minimalizacji funkcji logicznych jest niedogodne brak metody, aby stwierdzić czy dana formuła może być jeszcze minimalizowana czasami
Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne)
Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski Klasyfikacja i predykcja. Odkrywaniem reguł klasyfikacji nazywamy proces znajdowania
Analiza i wizualizacja danych Data analysis and visualization
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
T. Łuba, B. Zbierzchowski Układy logiczne Podręcznik WSISiZ, Warszawa 2002.
Książkę: T. Łuba, B. Zbierzchowski Układy logiczne Podręcznik WSISiZ, Warszawa 2002. Można zakupić po najniższej cenie w księgarni Wyższej Szkoły Informatyki Stosowanej i Zarządzania ul. Newelska 6 pok.
Adrian Horzyk
Metody Inteligencji Obliczeniowej Metoda K Najbliższych Sąsiadów (KNN) Adrian Horzyk horzyk@agh.edu.pl AGH Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE DIAGNOSTYKĘ MEDYCZNĄ Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj zajęć: wykład, projekt
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania
Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
Wstęp do Techniki Cyfrowej... Teoria automatów
Wstęp do Techniki Cyfrowej... Teoria automatów Alfabety i litery Układ logiczny opisywany jest przez wektory, których wartości reprezentowane są przez ciągi kombinacji zerojedynkowych. Zwiększenie stopnia
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-10-15 Projekt
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)
Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia
Newton vs. Lagrange - kto lepszy?
Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Katedra Analizy Matematycznej Agnieszka Rydzyńska nr albumu: 254231 Praca Zaliczeniowa z Seminarium Newton vs. Lagrange - kto lepszy? Opiekun
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74
3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15
Metody zbiorów przybliżonych w uczeniu się podobieństwa z wielowymiarowych zbiorów danych
Metody zbiorów przybliżonych w uczeniu się podobieństwa z wielowymiarowych zbiorów danych WMIM, Uniwersytet Warszawski ul. Banacha 2, 02-097 Warszawa, Polska andrzejanusz@gmail.com 13.06.2013 Dlaczego
Data mininig i wielowymiarowa analiza danych zgromadzonych w systemach medycznych na potrzeby badań naukowych
Temat: Data mininig i wielowymiarowa analiza danych zgromadzonych w systemach medycznych na potrzeby badań naukowych Autorzy: Tomasz Małyszko, Edyta Łukasik 1. Definicja eksploracji danych Eksploracja
Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji
Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji Michał Witczak Data Mining 20 maja 2012 r. 1. Wstęp Dostarczone zostały nam 4 pliki, z których dwa stanowiły zbiory uczące
Optymalizacja reguł decyzyjnych względem pokrycia
Zakład Systemów Informatycznych Instytut Informatyki, Uniwersytet Śląski Chorzów, 9 grudzień 2014 Wprowadzenie Wprowadzenie problem skalowalności dla optymalizacji reguł decyzjnych na podstawie podejścia
Minimalizacja funkcji boolowskich
Minimalizacja funkcji boolowskich Zagadnienie intensywnych prac badawczych od początku lat pięćdziesiątych 2 wieku. Ogromny wzrost zainteresowania minimalizacją f.b. powstał ponownie w latach 8. rzyczyna:
Paweł Kurzawa, Delfina Kongo
Paweł Kurzawa, Delfina Kongo Pierwsze prace nad standaryzacją Obiektowych baz danych zaczęły się w roku 1991. Stworzona została grupa do prac nad standardem, została ona nazwana Object Database Management
Zbiory przybliżone, cz. 1 (wersja do druku) dr. Piotr Szczuko
Zbiory przybliżone, cz. 1 (wersja do druku) dr. Piotr Szczuko Katedra Systemów Multimedialnych 2009 Plan wykładu Historia zbiorów przybliżonych System informacyjny i decyzyjny Reguły decyzyjne Tożsamość
Ćwiczenie 6 - Hurtownie danych i metody eksploracje danych. Regresja logistyczna i jej zastosowanie
Ćwiczenie 6 - Hurtownie danych i metody eksploracje danych Regresja logistyczna i jej zastosowanie Model regresji logistycznej jest budowany za pomocą klasy Logistic programu WEKA. Jako danych wejściowych
WYKŁAD 6. Reguły decyzyjne
Wrocław University of Technology WYKŁAD 6 Reguły decyzyjne autor: Maciej Zięba Politechnika Wrocławska Reprezentacje wiedzy Wiedza w postaci reguł decyzyjnych Wiedza reprezentowania jest w postaci reguł
LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów
LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów Łukasz Piątek, Jerzy W. Grzymała-Busse Katedra Systemów Ekspertowych i Sztucznej Inteligencji, Wydział Informatyki
PRACA DYPLOMOWA INŻYNIERSKA
Politechnika Warszawska Rok akademicki 2010/11 Wydział Elektroniki i Technik Informacyjnych Ośrodek Kształcenia na odległość OKNO-PW Kierunek Elektronika i Telekomunikacja Specjalność Inżynieria Komputerowa
Wprowadzenie do złożoności obliczeniowej
problemów Katedra Informatyki Politechniki Świętokrzyskiej Kielce, 16 stycznia 2007 problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów
METODY INŻYNIERII WIEDZY
METODY INŻYNIERII WIEDZY Metoda K Najbliższych Sąsiadów K-Nearest Neighbours (KNN) ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Prawdopodobieństwo czerwonych = = 0.33
Temat zajęć: Naiwny klasyfikator Bayesa a algorytm KNN Część I: Naiwny klasyfikator Bayesa Naiwny klasyfikator bayerowski jest prostym probabilistycznym klasyfikatorem. Naiwne klasyfikatory bayesowskie
Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS
Wyższa Szkoła Ekologii i Zarządzania Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.5 Slajd 1/25 Slajd 2/25 Warianty W wielu wypadkach, przeprowadzając różne rozważania, chcemy zastanowić się
Wyk lad 8: Leniwe metody klasyfikacji
Wyk lad 8: Leniwe metody Wydzia l MIM, Uniwersytet Warszawski Outline 1 2 lazy vs. eager learning lazy vs. eager learning Kiedy stosować leniwe techniki? Eager learning: Buduje globalna hipoteze Zaleta:
dr inż. Olga Siedlecka-Lamch 14 listopada 2011 roku Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Eksploracja danych
- Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska 14 listopada 2011 roku 1 - - 2 3 4 5 - The purpose of computing is insight, not numbers Richard Hamming Motywacja - Mamy informację,
WEKA klasyfikacja z użyciem sztucznych sieci neuronowych
WEKA klasyfikacja z użyciem sztucznych sieci neuronowych 1 WEKA elementy potrzebne do zadania WEKA (Data mining software in Java http://www.cs.waikato.ac.nz/ml/weka/) jest narzędziem zawierającym zbiór
Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS
Wyższa Szkoła Ekologii i Zarządzania Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.5 Slajd 1/25 Slajd 2/25 W wielu wypadkach, przeprowadzając różne rozważania, chcemy zastanowić się A co by
SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa
Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH
METODY INŻYNIERII WIEDZY
METODY INŻYNIERII WIEDZY Metoda K Najbliższych Sąsiadów K-Nearest Neighbours (KNN) ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej
Zarządzanie danymi na cytometrach BD
1 Zarządzanie danymi na cytometrach BD Rafał Januszewski Senior Application Specialist BD Biosciences Zarządzanie danymi na cytometrach Lokalizacja najważniejszych folderów Zabezpieczenie plików z danymi
KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Metody drążenia danych D1.3
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H
W O J S K O W A A K A D E M I A T E C H N I C Z N A W Y D Z I A Ł E L E K T R O N I K I Drukować dwustronnie P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H Grupa... Data wykonania
Plan prezentacji 0 Wprowadzenie 0 Zastosowania 0 Przykładowe metody 0 Zagadnienia poboczne 0 Przyszłość 0 Podsumowanie 7 Jak powstaje wiedza? Dane Informacje Wiedza Zrozumienie 8 Przykład Teleskop Hubble
Baza danych. Modele danych
Rola baz danych Systemy informatyczne stosowane w obsłudze działalności gospodarczej pełnią funkcję polegającą na gromadzeniu i przetwarzaniu danych. Typowe operacje wykonywane na danych w systemach ewidencyjno-sprawozdawczych
Elementy modelowania matematycznego
Elementy modelowania matematycznego Łańcuchy Markowa: zagadnienia graniczne. Ukryte modele Markowa. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ KLASYFIKACJA STANÓW Stan i jest osiągalny
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.
Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-10-11 1 Modelowanie funkcji logicznych
ALGORYTM RANDOM FOREST
SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM
Skalowanie wielowymiarowe idea
Skalowanie wielowymiarowe idea Jedną z wad metody PCA jest możliwość używania jedynie zmiennych ilościowych, kolejnym konieczność posiadania pełnych danych z doświadczenia(nie da się użyć PCA jeśli mamy
Analiza korespondencji
Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy
Indukcja reguł decyzyjnych z dwustopniowym procesem selekcji reguł
Preprint The final publication is available at http://wwwsigma-notpl/rocznik-24-59-przeglad-telekomunikacyjnyhtml Indukcja reguł decyzyjnych z dwustopniowym procesem selekcji reguł Michał Mańkowski, Tadeusz
Eksploracja logów procesów. Process mining
Eksploracja logów procesów Process mining Eksploracja logów procesów Celem eksploracji logów procesów biznesowych jest: Odkrywanie modelu procesów biznesowych Analiza procesów biznesowych Ulepszanie procesów
Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2
Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z
Systemy ekspertowe. Eksploracja danych z wykorzystaniem tablic decyzyjnych i zbiorów przybliżonych. Część trzecia
Część trzecia Autor Roman Simiński Eksploracja danych z wykorzystaniem tablic decyzyjnych i zbiorów przybliżonych Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót
Agnieszka Nowak Brzezińska Wykład III
Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe
10. Redukcja wymiaru - metoda PCA
Algorytmy rozpoznawania obrazów 10. Redukcja wymiaru - metoda PCA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. PCA Analiza składowych głównych: w skrócie nazywana PCA (od ang. Principle Component
Wymagania na poszczególne oceny szkolne dla klasy VI. (na podstawie Grażyny Koba, Teraz bajty. Informatyka dla szkoły podstawowej.
1 Wymagania na poszczególne oceny szkolne dla klasy VI (na podstawie Grażyny Koba, Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI ) 2 1. Obliczenia w arkuszu kalkulacyjnym słucha poleceń nauczyciela
Rozpoznawanie obrazów
Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie
Statystyka i eksploracja danych
Wykład I: Formalizm statystyki matematycznej 17 lutego 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Zagadnienia omawiane na wykładach Forma zaliczenia przedmiotu Forma zaliczenia Literatura
CLUSTERING. Metody grupowania danych
CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means
Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI
1 Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI Opis założonych osiągnięć ucznia przykłady wymagań na poszczególne oceny szkolne dla klasy VI Grażyna Koba Spis treści 1. Obliczenia w arkuszu
Optymalizacja systemów
Optymalizacja systemów Laboratorium Sudoku autor: A. Gonczarek Cel zadania Celem zadania jest napisanie programu rozwiązującego Sudoku, formułując problem optymalizacji jako zadanie programowania binarnego.
Wprowadzenie do technologii informacyjnej.
Wprowadzenie do technologii informacyjnej. Data mining i jego biznesowe zastosowania dr Tomasz Jach Definicje Eksploracja danych polega na torturowaniu danych tak długo, aż zaczną zeznawać. Eksploracja
Klasyfikacja i regresja Wstęp do środowiska Weka
Klasyfikacja i regresja Wstęp do środowiska Weka 19 listopada 2015 Opis pliku z zadaniami Wszystkie zadania na zajęciach będą przekazywane w postaci plików pdf sformatowanych podobnie do tego dokumentu.
3-letnie (6-semestralne) stacjonarne studia licencjackie kier. matematyka stosowana profil: ogólnoakademicki. Semestr 1. Przedmioty wspólne
3-letnie (6-semestralne) stacjonarne studia licencjackie kier. matematyka stosowana profil: ogólnoakademicki Semestr 1 Przedmioty wspólne Nazwa przedmiotu ECTS W Ć L P S Zal. Algebra liniowa z geometrią
Definicja bazy danych TECHNOLOGIE BAZ DANYCH. System zarządzania bazą danych (SZBD) Oczekiwania wobec SZBD. Oczekiwania wobec SZBD c.d.
TECHNOLOGIE BAZ DANYCH WYKŁAD 1 Wprowadzenie do baz danych. Normalizacja. (Wybrane materiały) Dr inż. E. Busłowska Definicja bazy danych Uporządkowany zbiór informacji, posiadający własną strukturę i wartość.
Diagnostyka procesów przemysłowych Kod przedmiotu
Diagnostyka procesów przemysłowych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Diagnostyka procesów przemysłowych Kod przedmiotu 06.0-WE-AiRP-DPP Wydział Kierunek Wydział Informatyki, Elektrotechniki
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV
Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną
KIERUNKOWE EFEKTY KSZTAŁCENIA
KIERUNKOWE EFEKTY KSZTAŁCENIA Wydział: Matematyki Kierunek studiów: Matematyka i Statystyka (MiS) Studia w j. polskim Stopień studiów: Pierwszy (1) Profil: Ogólnoakademicki (A) Umiejscowienie kierunku
KATEDRA SYSTEMÓW MULTIMEDIALNYCH. Inteligentne systemy decyzyjne. Ćwiczenie nr 12:
KATEDRA SYSTEMÓW MULTIMEDIALNYCH Inteligentne systemy decyzyjne Ćwiczenie nr 12: Rozpoznawanie mowy z wykorzystaniem ukrytych modeli Markowa i pakietu HTK Opracowanie: mgr inż. Kuba Łopatka 1. Wprowadzenie
Jeśli X jest przestrzenią o nieskończonej liczbie elementów:
Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów
Metoda list prostych Wykład II. Agnieszka Nowak - Brzezińska
Metoda list prostych Wykład II Agnieszka Nowak - Brzezińska Wprowadzenie Przykładowa KW Inna wersja KW Wyszukiwanie informacji Metoda I 1. Przeglądamy kolejne opisy obiektów i wybieramy te, które zawierają
Wprowadzenie do Hurtowni Danych
Wprowadzenie do Hurtowni Danych Organizacyjnie Prowadzący: mgr. Mariusz Rafało mrafalo@sgh.waw.pl http://mariuszrafalo.pl (hasło HD2) Literatura 1. Inmon, W., Linstedt, D. (2014). Data Architecture: A
SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
Data Mining Wykład 1. Wprowadzenie do Eksploracji Danych. Prowadzący. Dr inż. Jacek Lewandowski
Data Mining Wykład 1 Wprowadzenie do Eksploracji Danych Prowadzący Dr inż. Jacek Lewandowski Katedra Genetyki Wydział Biologii i Hodowli Zwierząt Uniwersytet Przyrodniczy we Wrocławiu ul. Kożuchowska 7,
Data Mining Wykład 5. Indukcja drzew decyzyjnych - Indeks Gini & Zysk informacyjny. Indeks Gini. Indeks Gini - Przykład
Data Mining Wykład 5 Indukcja drzew decyzyjnych - Indeks Gini & Zysk informacyjny Indeks Gini Popularnym kryterium podziału, stosowanym w wielu produktach komercyjnych, jest indeks Gini Algorytm SPRINT
Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI
1 Teraz bajty. Informatyka dla szkoły podstawowej. Klasa VI 1. Obliczenia w arkuszu kalkulacyjnym Rozwiązywanie problemów z wykorzystaniem aplikacji komputerowych obliczenia w arkuszu kalkulacyjnym wykonuje
Indeksy w bazach danych. Motywacje. Techniki indeksowania w eksploracji danych. Plan prezentacji. Dotychczasowe prace badawcze skupiały się na
Techniki indeksowania w eksploracji danych Maciej Zakrzewicz Instytut Informatyki Politechnika Poznańska Plan prezentacji Zastosowania indeksów w systemach baz danych Wprowadzenie do metod eksploracji
Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony.
GRY (część 1) Zastosowanie: Modelowanie sytuacji konfliktowych, w których występują dwie antagonistyczne strony. Najbardziej znane modele: - wybór strategii marketingowych przez konkurujące ze sobą firmy
Sprzętowo wspomagane metody klasyfikacji danych
Sprzętowo wspomagane metody klasyfikacji danych Jakub Botwicz Politechnika Warszawska, Instytut Telekomunikacji Plan prezentacji 1. Motywacje oraz cele 2. Problemy klasyfikacji danych 3. Weryfikacja integralności
Optymalizacja systemów
Optymalizacja systemów Laboratorium Zadanie nr 3 Sudoku autor: A. Gonczarek Cel zadania Celem zadania jest napisanie programu rozwiązującego Sudoku, formułując problem optymalizacji jako zadanie programowania