Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji"

Transkrypt

1 Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji Michał Witczak Data Mining 20 maja 2012 r. 1. Wstęp Dostarczone zostały nam 4 pliki, z których dwa stanowiły zbiory uczące a dwa inne były zbiorami testującymi. Jedno z zadań stanowił problem regresji a drugi problem klasyfikacji. Należało stworzyć modele rozwiązania dla obu problemów, zastosować je dla zbiorów testujących. Następnie uzyskane wyniki będą sprawdzone przez prowadzącą. Zbiór danych uczących dla problemu klasyfikacji zawierał ponad 2 tysiące instancji. Każdy z nich opisany przez 13 atrybutów, które dzielą instancje na dwie klasy. W zbiorze część argumentów ma charakter dyskretny a część decyzyjny. Tyle samo atrybutów i tyle samo przypadków zawierał zbiór danych uczących dla problemu regresji. W tym przypadku również są to argumenty ciągłe, jak i dyskretne. 2. Opis użytych metod i otrzymanych modeli 2.1. Problem regresji Przed przystąpieniem do badania postanowiono zebrać informacje, które algorytmy zaimplementowane w Wece nadają się do problemu regresji. Z wybranych metod najlepsze okazały się M5P oraz IBk (k najbliższych sąsiadów). Zdecydowano się na metodę M5P ponieważ przy wyłączeniu jednego z jej parametrów (wygładzania) dawała znakomite wyniki. Metoda, która kryje się w Wece pod nazwą M5P ma być rozwinięciem algorytmu M5. Algorytm ten ma bazować na budowaniu zwykłych drzew decyzyjnych, z tą różnicą, że w liściach mogą występować funkcje regresji zamiast klas tak jak to ma miejsce w problemach klasyfikacji. Przy budowie drzewa algorytm wybiera tak atrybuty, aby zmniejszyć przedział wartości klasy na poszczególnych gałęziach. Innymi słowy drzewo jest w budowane w taki sposób, aby każdy liść zawierał jak najmniejszy przedział wartości. Po utworzeniu drzewa wykonywany jest pruning, który może prowadzić do braku ciągłości pomiędzy sąsiednimi liśćmi w drzewie. Dlatego po tym uruchamiana jest procedura zwana wygładzaniem, która analizuje wartości funkcji w poszczególnych liściach i dopasowuje ich wartości w górę drzewa do samego korzenia. Po tej fazie następuje generowanie reguł. Z drzewa za pomocą algorytmów heurystyk wybierany jest jeden najlepszy liść, który usuwany z drzewa tworząc regułę(usuwane są również przypadki które

2 pokrywają ten liść ze zbioru uczącego). Krok ten powtarzany jest aż wszystkie przypadki ze zbioru uczącego się zostaną pokryte zostaną przez przynajmniej jedną regułę. Następnie wybierane są reguły, które utworzą model. Niestety nie udało się dotrzeć do informacji na jakiej podstawie wybierane są te reguły konkretnie w M5P, wiadomo jednak że np. w podstawowej wersji stosowano np. proste podejście wybierające reguły, które miały największe pokrycie. Algorytm M5P różnie się od klasycznego M5 między innymi tym, że podczas usuwania liści z drzewa stosowane jest surrogate splitting, które sprawia, że tak naprawdę z drzewa nie są usuwane liście, tylko zastępowane przez uśrednione wartości z pobieranych liści. Ostatecznie wybrano metodę M5P z włączoną wygładzaniem i minimalną liczbą przypadków w liściu określoną jako 4. W opisie algorytmu znajdujemy informacje, że wygładzanie ma polepszać jakość rozwiązania. Jednak wynik na zbiorze pokazywał odwrotną sytuacje. Postanowiono zaufać jednak osobom, które mają lepszą wiedzę o sposobie funkcjonowania tego algorytmu. Sama predykcja na podstawie modelu powinna odbywać się w dwóch krokach. W pierwszym kroku dany przypadek powinien przejść do odpowiedniego liścia, w którym będzie znajdować się odwołanie do odpowiedniej reguły (równania atrybutów ze współczynnikami), przy użyciu której można wyznaczyć daną wartość dla poszczególnego przypadku Problem klasyfikacji Wybór metody rozpoczął się oczywiście od analizy zestawu uczącego. Zauważono, że argumenty, które przyjmują wartości ciągłe nie wnoszą wiele do poprawy wyników. Skorzystano z algorytmów tworzących rankingi atrybutów, wbudowanych w Wekę. Wyniki potwierdziły przypuszczenie, że należy odrzucić atrybuty o ciągłych wartościach. Postanowiono, jednak pozostawić dwa z nich, które według rankingu były najbardziej przydatne. Sprawdzono większość algorytmów klasyfikujących dostępnych w Wece. Poszukiwania rozpoczęły się prostych, pojedynczych klasyfikatorów. Najlepsze wyniki uzyskano przy użyciu sieci Bayesowskich oraz tabeli decyzyjnych. Metoda wyznaczania tabel decyzyjnych uzyskała minimalnie lepsze rezultaty niż budowanie sieci bayerowskich, dlatego w dalszej części postanowiono szukać rozwiązania przy użyciu multi klasyfikatorów bazujących na tej metodzie. Poza tym przy klasyfikacja i tak bazowała tylko na argumentach dyskretnych, więc bardziej naturalne wydało się zastosowanie tabel decyzyjnych. Tabela decyzyjna jest oczywiście powiązana z pojęciem reguł decyzyjnych. Są to klasyfikatory hierarchiczne które tworzą reguły: Jeżeli <warunek> to <wynik1> albo <wynik2>. Budowanie tablic decyzyjnych sprowadza się tak naprawdę do uogólnienia, zminimalizowania reguł decyzyjnych, wyeliminowania nadmiarowych atrybutów. W dalszej kolejności badano możliwość zastosowania tej metody w multi klasyfikatorach. Przypuszczono, że może uda się wykorzystać dwa pozostawione argumenty, które przyczynią się do poprawy klasyfikacji. Dlatego spróbowano zastosować klasyfikator z założonym filtrem (FilteredClassifier) dyskretyzacji. Sądzono, że takie rozwiązanie pozwoli na wykorzystanie dwóch argumentów, które dotychczas nie były brane pod uwagę przy klasyfikowaniu. Jednak przeglądając tablicę decyzyjną zauważono, że argumenty te dalej pozostają bezużyteczne. W dalszej kolejności

3 próbowano uzyskać jakieś rozwiązanie, które pozwoli wykorzystywać te argumenty. Nie udało się tego osiągnąć. Być może poczyniono błędne założenia. Ostatecznie użyto więc klasyfikatora FilteredClassifier z parametrami -F "weka.filters.supervised.attribute.discretize -R first-last" -W weka.classifiers.rules.decisiontable -D -- -X 1 -R -S "weka.attributeselection.exhaustivesearch. Czyli użyto klasyfikatora tabel decyzyjnych, który z kolei jako funkcję oceny miał ustawione kombinacje Accuracy (skuteczność, dla argumentów dyskretnych) z RMSE (błąd średniokwadratowy dla argumentów ciągłych), co też miało być wskazówką, że użycie dwóch ciągłych argumentów może być możliwe. Jako metodę wyszukiwania wybrano oczywiście przeszukiwanie wyczerpujące, co prawda nie dało to poprawy rezultatu w zbiorze uczącym, ale może dać jakiś rezultat w zbiorze testowym. Filtrem była dyskretyzacja. 3. Rezultaty 3.1. Problem regresji W wyniku działania algorytmu otrzymaliśmy drzewo decyzyjne, w którym widać zastosowanie pruningu (różna głębokość poszczególnych gałęzi) a na liściach znajdują się odwołania do reguł decyzyjnych. Zauważono, że drzewo operowało tylko na 5 atrybutach. 3.1 fragment drzewa z odwłaniami do 4 pierwszych reguł Same reguły mają postać równania z różnymi współczynnikami przy atrybutach. Reguł jest 28 ale operują już na wszystkich atrybutach (nie wszystkie) z 28 reguł wygenerowanych przez algorytm Analiza dopasowania stworzonego na podstawie działania tego algorytmu wprawia w osłupienie. Zwłaszcza, gdy porównamy wyniki z działania prostych algorytmów. Być może źle został odczytany sposób działania algorytmu i przyjęto błędne założenia. Jednak pewne raporty i

4 opracowania, które traktują o tym algorytmie często wskazują go jako ten, z którego pomocą uzyskano najlepszą predykcję. 3.3 Analiza wyników uzyskanych na zbiorze uczącym 3.2. Problem klasyfikacji W wyniku działania klasyfikatora uzyskano tablicę decyzyjną, która zawiera 36 reguł, co sugeruje że, albo nie można było ich zredukować, albo ten algorytm tego nie przeprowadza, ponieważ taka liczba reguł jest równa ilości kombinacji jaką można uzyskać z trzech atrybutów, które brały udział w procesie klasyfikacji. 3.4 Tablica decyzyjna uzyskana w jako rezultat działania algorytmu Uzyskana skuteczność na poziomie 71% wydaje się dość wysoka, jednak pryzmat wielkości instancji, która posłużyła za zbiór uczący (2200 przypadków) nie jest to już tak imponujący wynik.

5 3.5 Analiza skuteczności uzyskanego modelu Sensivity: 70,03% Specificity: 74% Total accuracy: 71,6% 4. Podsumowanie Przy obu problemach zauważono, że dobór algorytmu może mieć kolosalne znaczenie w wynikach. Algorytmy zawierały argumenty zarówno o dziedzinie ciągłej, jak i dyskretnej, dlatego w problemie klasyfikacji trudno było określić, który typ klasyfikatora zastosować. Oczywiście, jak się później okazało, atrybuty ciągłe były w tym przypadku bezużyteczne. Jest to kolejna rzecz na którą należało zwrócić uwagę przy budowaniu modelu. Warto zatem przeprowadzać analizę przydatności atrybutów przed przystępowaniem do budowy modeli. Problem regresji pokazał nam, że jest duża dysproporcja pomiędzy rezultatami uzyskiwanymi za pomocą prostych algorytmów, takich jak regresja liniowa, a zaawansowanymi algorytmami (M5P). Przy okazji poznano sposób działania kilku algorytmów stosowanych do tych dwóch typów problemów, o których wcześniej autor nie miał szerszego rozeznania. Ponadto warto podać informacje czego tak naprawdę dotyczyły zbiory danych, lub czy były to dane sztucznie wygenerowane. Analiza zbiorów testowych pochłonęła również sporo czasu przy badaniach.

Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 2. Wojciech Waloszek. Teresa Zawadzka.

Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 2. Wojciech Waloszek. Teresa Zawadzka. Eksploracja danych KLASYFIKACJA I REGRESJA cz. 2 Wojciech Waloszek wowal@eti.pg.gda.pl Teresa Zawadzka tegra@eti.pg.gda.pl Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

Algorytmy klasyfikacji

Algorytmy klasyfikacji Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe

Bardziej szczegółowo

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną

Bardziej szczegółowo

Maciej Piotr Jankowski

Maciej Piotr Jankowski Reduced Adder Graph Implementacja algorytmu RAG Maciej Piotr Jankowski 2005.12.22 Maciej Piotr Jankowski 1 Plan prezentacji 1. Wstęp 2. Implementacja 3. Usprawnienia optymalizacyjne 3.1. Tablica ekspansji

Bardziej szczegółowo

Wprowadzenie do klasyfikacji

Wprowadzenie do klasyfikacji Wprowadzenie do klasyfikacji ZeroR Odpowiada zawsze tak samo Decyzja to klasa większościowa ze zbioru uczącego A B X 1 5 T 1 7 T 1 5 T 1 5 F 2 7 F Tutaj jest więcej obiektów klasy T, więc klasyfikator

Bardziej szczegółowo

Agnieszka Nowak Brzezińska

Agnieszka Nowak Brzezińska Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia

Bardziej szczegółowo

WYKŁAD 6. Reguły decyzyjne

WYKŁAD 6. Reguły decyzyjne Wrocław University of Technology WYKŁAD 6 Reguły decyzyjne autor: Maciej Zięba Politechnika Wrocławska Reprezentacje wiedzy Wiedza w postaci reguł decyzyjnych Wiedza reprezentowania jest w postaci reguł

Bardziej szczegółowo

Agnieszka Nowak Brzezińska Wykład III

Agnieszka Nowak Brzezińska Wykład III Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe

Bardziej szczegółowo

Sztuczna Inteligencja Projekt

Sztuczna Inteligencja Projekt Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować

Bardziej szczegółowo

Metody probabilistyczne klasyfikatory bayesowskie

Metody probabilistyczne klasyfikatory bayesowskie Konwersatorium Matematyczne Metody Ekonomii narzędzia matematyczne w eksploracji danych First Prev Next Last Go Back Full Screen Close Quit Metody probabilistyczne klasyfikatory bayesowskie Wykład 8 Marcin

Bardziej szczegółowo

Wprowadzenie do uczenia maszynowego

Wprowadzenie do uczenia maszynowego Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania

Bardziej szczegółowo

Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18

Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18 Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)

Bardziej szczegółowo

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB IV ZBIORY PRZYBLIŻONE I ODKRYWANIE REGUŁ DECYZYJNYCH

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB IV ZBIORY PRZYBLIŻONE I ODKRYWANIE REGUŁ DECYZYJNYCH WSOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB IV ZBIORY RZYBLIŻONE I ODKRYWANIE REGUŁ DECYZYJNYCH 1. Definicje Zbiory, które nie są zbiorami definiowalnymi, są nazywane zbiorami przybliżonymi. Zbiory definiowalne

Bardziej szczegółowo

Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne)

Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne) Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski Klasyfikacja i predykcja. Odkrywaniem reguł klasyfikacji nazywamy proces znajdowania

Bardziej szczegółowo

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski : idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Bardziej szczegółowo

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski

Bardziej szczegółowo

Drzewa decyzyjne i lasy losowe

Drzewa decyzyjne i lasy losowe Drzewa decyzyjne i lasy losowe Im dalej w las tym więcej drzew! ML Gdańsk http://www.mlgdansk.pl/ Marcin Zadroga https://www.linkedin.com/in/mzadroga/ 20 Czerwca 2017 WPROWADZENIE DO MACHINE LEARNING CZYM

Bardziej szczegółowo

Dopasowanie prostej do wyników pomiarów.

Dopasowanie prostej do wyników pomiarów. Dopasowanie prostej do wyników pomiarów. Graficzna analiza zależności liniowej Założenie: każdy z pomiarów obarczony jest taką samą niepewnością pomiarową (takiej samej wielkości prostokąty niepewności).

Bardziej szczegółowo

Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji

Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji Jacek Szcześniak Jerzy Błaszczyński Roman Słowiński Poznań, 5.XI.2013r. Konspekt Wstęp Wprowadzenie Metody typu wrapper Nowe metody

Bardziej szczegółowo

ALGORYTMY SZTUCZNEJ INTELIGENCJI

ALGORYTMY SZTUCZNEJ INTELIGENCJI ALGORYTMY SZTUCZNEJ INTELIGENCJI Sieci neuronowe 06.12.2014 Krzysztof Salamon 1 Wstęp Sprawozdanie to dotyczy ćwiczeń z zakresu sieci neuronowych realizowanym na przedmiocie: Algorytmy Sztucznej Inteligencji.

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania

Bardziej szczegółowo

Projekt Sieci neuronowe

Projekt Sieci neuronowe Projekt Sieci neuronowe Chmielecka Katarzyna Gr. 9 IiE 1. Problem i dane Sieć neuronowa miała za zadanie nauczyć się klasyfikować wnioski kredytowe. W projekcie wykorzystano dane pochodzące z 110 wniosków

Bardziej szczegółowo

Modelowanie glikemii w procesie insulinoterapii

Modelowanie glikemii w procesie insulinoterapii Dawid Kaliszewski Modelowanie glikemii w procesie insulinoterapii Promotor dr hab. inż. Zenon Gniazdowski Cel pracy Zbudowanie modelu predykcyjnego przyszłych wartości glikemii diabetyka leczonego za pomocą

Bardziej szczegółowo

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ;

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ; Algorytm LEM1 Oznaczenia i definicje: U - uniwersum, tj. zbiór obiektów; A - zbiór atrybutów warunkowych; d - atrybut decyzyjny; IND(B) = {(x, y) U U : a B a(x) = a(y)} - relacja nierozróżnialności, tj.

Bardziej szczegółowo

Klasyfikacja. Sformułowanie problemu Metody klasyfikacji Kryteria oceny metod klasyfikacji. Eksploracja danych. Klasyfikacja wykład 1

Klasyfikacja. Sformułowanie problemu Metody klasyfikacji Kryteria oceny metod klasyfikacji. Eksploracja danych. Klasyfikacja wykład 1 Klasyfikacja Sformułowanie problemu Metody klasyfikacji Kryteria oceny metod klasyfikacji Klasyfikacja wykład 1 Niniejszy wykład poświęcimy kolejnej metodzie eksploracji danych klasyfikacji. Na początek

Bardziej szczegółowo

Algorytmy genetyczne w interpolacji wielomianowej

Algorytmy genetyczne w interpolacji wielomianowej Algorytmy genetyczne w interpolacji wielomianowej (seminarium robocze) Seminarium Metod Inteligencji Obliczeniowej Warszawa 22 II 2006 mgr inż. Marcin Borkowski Plan: Przypomnienie algorytmu niszowego

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska BUDOWA DRZEW DECYZYJNYCH Drzewa decyzyjne są metodą indukcyjnego

Bardziej szczegółowo

Algorytmy klasyfikacji

Algorytmy klasyfikacji Algorytmy klasyfikacji Konrad Miziński Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych Warszawa, Polska k.mizinski@stud.elka.pw.edu.pl Streszczenie Niniejszy dokument opisuje jedna

Bardziej szczegółowo

INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH

INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH 1. Czym jest eksploracja danych Eksploracja danych definiowana jest jako zbiór technik odkrywania nietrywialnych zależności i schematów w dużych

Bardziej szczegółowo

Sprawozdanie z zadania Modele predykcyjne (2)

Sprawozdanie z zadania Modele predykcyjne (2) Maciej Karpus, 131529 Tomasz Skarżyński, 131618 19.04.2013r. Sprawozdanie z zadania Modele predykcyjne (2) 1. Wprowadzenie 1.1. Informacje wstępne Dane dotyczą wyników badań mammograficznych wykonanych

Bardziej szczegółowo

Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl

Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl 1. Wstęp Aby skorzystać z możliwości RapidMinera w zakresie analizy tekstu, należy zainstalować Text Mining Extension. Wybierz: 1 Po

Bardziej szczegółowo

Optimizing Programs with Intended Semantics

Optimizing Programs with Intended Semantics Interaktywna optymalizacja programów 26 kwietnia 2010 Spis treści Spis treści Wstęp Omówienie zaproponowanego algorytmu na przykładzie Wewnętrzna reprezentacja reguł dotyczących optymalizacji Wybrane szczegóły

Bardziej szczegółowo

Sortowanie. Bartman Jacek Algorytmy i struktury

Sortowanie. Bartman Jacek Algorytmy i struktury Sortowanie Bartman Jacek jbartman@univ.rzeszow.pl Algorytmy i struktury danych Sortowanie przez proste wstawianie przykład 41 56 17 39 88 24 03 72 41 56 17 39 88 24 03 72 17 41 56 39 88 24 03 72 17 39

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania

Bardziej szczegółowo

Metody klasyfikacji danych - część 1 p.1/24

Metody klasyfikacji danych - część 1 p.1/24 Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji

Bardziej szczegółowo

Data Mining podstawy analizy danych Część druga

Data Mining podstawy analizy danych Część druga Data Mining podstawy analizy danych Część druga W części pierwszej dokonaliśmy procesu analizy danych treningowych w oparciu o algorytm drzewa decyzyjnego. Proces analizy danych treningowych może być realizowany

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia stacjonarne I stopnia Rok akademicki 2010/2011 Wykład nr 7 (24.01.2011) dr inż. Jarosław Forenc Rok akademicki

Bardziej szczegółowo

WARSZTATY METODYCZNE (dla nauczycieli matematyki szkół ponadgimnazjalnych)

WARSZTATY METODYCZNE (dla nauczycieli matematyki szkół ponadgimnazjalnych) WARSZTATY METODYCZNE (dla nauczycieli matematyki szkół ponadgimnazjalnych) Aktywizujące metody nauczania na przykładzie tematu: Dyskusja nad liczbą rozwiązań równania liniowego z wartością bezwzględną

Bardziej szczegółowo

Algorytmy, które estymują wprost rozkłady czy też mapowania z nazywamy algorytmami dyskryminacyjnymi.

Algorytmy, które estymują wprost rozkłady czy też mapowania z nazywamy algorytmami dyskryminacyjnymi. Spis treści 1 Wstęp: generatywne algorytmy uczące 2 Gaussowska analiza dyskryminacyjna 2.1 Gaussowska analiza dyskryminacyjna a regresja logistyczna 3 Naiwny Klasyfikator Bayesa 3.1 Wygładzanie Laplace'a

Bardziej szczegółowo

8. Drzewa decyzyjne, bagging, boosting i lasy losowe

8. Drzewa decyzyjne, bagging, boosting i lasy losowe Algorytmy rozpoznawania obrazów 8. Drzewa decyzyjne, bagging, boosting i lasy losowe dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Drzewa decyzyjne Drzewa decyzyjne (ang. decision trees), zwane

Bardziej szczegółowo

METODY INŻYNIERII WIEDZY

METODY INŻYNIERII WIEDZY METODY INŻYNIERII WIEDZY WALIDACJA KRZYŻOWA dla ZAAWANSOWANEGO KLASYFIKATORA KNN ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Stosy, kolejki, drzewa Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. VII Jesień 2013 1 / 25 Listy Lista jest uporządkowanym zbiorem elementów. W Pythonie

Bardziej szczegółowo

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 16.01.2003 Algorytmy i Struktury Danych PIŁA ALGORYTMY ZACHŁANNE czas [ms] Porównanie Algorytmów Rozwiązyjących problem TSP 100 000 000 000,000 10 000 000

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

Zadanie 1: Piętnastka

Zadanie 1: Piętnastka Informatyka, studia dzienne, inż. I st. semestr VI Sztuczna Inteligencja i Systemy Ekspertowe 2010/2011 Prowadzący: mgr Michał Pryczek piątek, 12:00 Data oddania: Ocena: Grzegorz Graczyk 150875 Marek Rogalski

Bardziej szczegółowo

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa. Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna

Bardziej szczegółowo

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 20.11.2002 Algorytmy i Struktury Danych PIŁA ZŁOŻONE STRUKTURY DANYCH C za s tw or ze nia s tr uk tur y (m s ) TWORZENIE ZŁOŻONYCH STRUKTUR DANYCH: 00 0

Bardziej szczegółowo

IX EKSPLORACJA DANYCH

IX EKSPLORACJA DANYCH Zastosowanie drzew decyzyjnych do analizy danych Artur Soroczyński Politechnika Warszawska Instytut Technologii Materiałowych Terminologia Datamining Drzewa decyzyjne Plan wykładu Przykład wykorzystania

Bardziej szczegółowo

Część 2: Data Mining

Część 2: Data Mining Łukasz Przywarty 171018 Wrocław, 18.01.2013 r. Grupa: CZW/N 10:00-13:00 Raport z zajęć laboratoryjnych w ramach przedmiotu Hurtownie i eksploracja danych Część 2: Data Mining Prowadzący: dr inż. Henryk

Bardziej szczegółowo

W dalszej części dokumentu przedstawiamy skrócony opis kluczowych funkcji systemu. Niniejszy dokument nie zawiera opisu technicznego systemu.

W dalszej części dokumentu przedstawiamy skrócony opis kluczowych funkcji systemu. Niniejszy dokument nie zawiera opisu technicznego systemu. 1. Informacje Podstawowe Mediamanager 2.1 jest systemem wspierającym zarządzanie dokumentami elektronicznymi. Podstawowymi funkcjami realizowanymi przez oprogramowanie jest przetrzymywanie, zarządzanie

Bardziej szczegółowo

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących

Bardziej szczegółowo

Metody selekcji cech

Metody selekcji cech Metody selekcji cech A po co to Często mamy do dyspozycji dane w postaci zbioru cech lecz nie wiemy które z tych cech będą dla nas istotne. W zbiorze cech mogą wystąpić cechy redundantne niosące identyczną

Bardziej szczegółowo

Algorytmy genetyczne jako metoda wyszukiwania wzorców. Seminarium Metod Inteligencji Obliczeniowej Warszawa 26 X 2005 mgr inż.

Algorytmy genetyczne jako metoda wyszukiwania wzorców. Seminarium Metod Inteligencji Obliczeniowej Warszawa 26 X 2005 mgr inż. Algorytmy genetyczne jako metoda wyszukiwania wzorców Seminarium Metod Inteligencji Obliczeniowej Warszawa 26 X 2005 mgr inż. Marcin Borkowski Krótko i na temat: Cel pracy Opis modyfikacji AG Zastosowania

Bardziej szczegółowo

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów Eksploracja danych Piotr Lipiński Informacje ogólne Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów UWAGA: prezentacja to nie

Bardziej szczegółowo

Data Mining Wykład 5. Indukcja drzew decyzyjnych - Indeks Gini & Zysk informacyjny. Indeks Gini. Indeks Gini - Przykład

Data Mining Wykład 5. Indukcja drzew decyzyjnych - Indeks Gini & Zysk informacyjny. Indeks Gini. Indeks Gini - Przykład Data Mining Wykład 5 Indukcja drzew decyzyjnych - Indeks Gini & Zysk informacyjny Indeks Gini Popularnym kryterium podziału, stosowanym w wielu produktach komercyjnych, jest indeks Gini Algorytm SPRINT

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

ZeroR. Odpowiada zawsze tak samo Decyzja to klasa większościowa ze zbioru uczącego A B X 1 5 T 1 7 T 1 5 T 1 5 F 2 7 F

ZeroR. Odpowiada zawsze tak samo Decyzja to klasa większościowa ze zbioru uczącego A B X 1 5 T 1 7 T 1 5 T 1 5 F 2 7 F ZeroR Odpowiada zawsze tak samo Decyzja to klasa większościowa ze zbioru uczącego A B X 5 T 7 T 5 T 5 F 2 7 F Tutaj jest więcej obiektów klasy T, więc klasyfikator ZeroR będzie zawsze odpowiadał T niezależnie

Bardziej szczegółowo

Data Mining z wykorzystaniem programu Rapid Miner

Data Mining z wykorzystaniem programu Rapid Miner Data Mining z wykorzystaniem programu Rapid Miner Michał Bereta www.michalbereta.pl Program Rapid Miner jest dostępny na stronie: http://rapid-i.com/ Korzystamy z bezpłatnej wersji RapidMiner Community

Bardziej szczegółowo

Data Mining w doborze parametrów układu testującego urządzenia EAZ 1

Data Mining w doborze parametrów układu testującego urządzenia EAZ 1 Rozdział 6 Data Mining w doborze parametrów układu testującego urządzenia EAZ 1 Streszczenie. W rozdziale został zaproponowany sposób doboru parametrów układu testującego urządzenia elektroenergetycznej

Bardziej szczegółowo

Wyszukiwanie binarne

Wyszukiwanie binarne Wyszukiwanie binarne Wyszukiwanie binarne to technika pozwalająca na przeszukanie jakiegoś posortowanego zbioru danych w czasie logarytmicznie zależnym od jego wielkości (co to dokładnie znaczy dowiecie

Bardziej szczegółowo

Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 1. Wojciech Waloszek. Teresa Zawadzka.

Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 1. Wojciech Waloszek. Teresa Zawadzka. Eksploracja danych KLASYFIKACJA I REGRESJA cz. 1 Wojciech Waloszek wowal@ei.pg.gda.pl Teresa Zawadzka egra@ei.pg.gda.pl Kaedra Inżyrii Oprogramowania Wydział Elekroniki, Telekomunikacji i Informayki Poliechnika

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 5 (Materiały)

Badania Operacyjne Ćwiczenia nr 5 (Materiały) ZADANIE 1 Zakład produkuje trzy rodzaje papieru: standardowy do kserokopiarek i drukarek laserowych (S), fotograficzny (F) oraz nabłyszczany do drukarek atramentowych (N). Każdy z rodzajów papieru wymaga

Bardziej szczegółowo

Metoda list prostych Wykład II. Agnieszka Nowak - Brzezińska

Metoda list prostych Wykład II. Agnieszka Nowak - Brzezińska Metoda list prostych Wykład II Agnieszka Nowak - Brzezińska Wprowadzenie Przykładowa KW Inna wersja KW Wyszukiwanie informacji Metoda I 1. Przeglądamy kolejne opisy obiektów i wybieramy te, które zawierają

Bardziej szczegółowo

Uczenie maszyn. Projekt: Porównanie algorytmów tworzenia drzew decyzyjnych. Politechnika Wrocławska. Michał Płodowski Michał Suszko

Uczenie maszyn. Projekt: Porównanie algorytmów tworzenia drzew decyzyjnych. Politechnika Wrocławska. Michał Płodowski Michał Suszko Politechnika Wrocławska Projekt: Porównanie algorytmów tworzenia drzew decyzyjnych Uczenie maszyn Michał Płodowski 163763 Michał Suszko 171132 Kamil Markuszewski 171016 1. WSTĘP... 2 2. CEL PROJEKTU...

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 12. PRZESZUKIWANIE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska ROZWIĄZYWANIE PROBLEMÓW JAKO PRZESZUKIWANIE Istotną rolę podczas

Bardziej szczegółowo

08.06.07r. Warszawa UCZENIE SIĘ MASZYN. Drzewa i lasy losowe Dokumentacja końcowa. Autor: Krzysztof Marcinek Prowadzący: Paweł Cichosz

08.06.07r. Warszawa UCZENIE SIĘ MASZYN. Drzewa i lasy losowe Dokumentacja końcowa. Autor: Krzysztof Marcinek Prowadzący: Paweł Cichosz 8.6.7r. Warszawa UCZENIE SIĘ MASZYN Drzewa i lasy losowe Dokumentacja końcowa Autor: Krzysztof Marcinek Prowadzący: Paweł Cichosz 1. Wprowadzenie Drzewa decyzyjne są jedną z najbardziej skutecznych i najpopularniejszych

Bardziej szczegółowo

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,

Bardziej szczegółowo

Drzewa klasyfikacyjne Lasy losowe. Wprowadzenie

Drzewa klasyfikacyjne Lasy losowe. Wprowadzenie Wprowadzenie Konstrukcja binarnych drzew klasyfikacyjnych polega na sekwencyjnym dzieleniu podzbiorów przestrzeni próby X na dwa rozłączne i dopełniające się podzbiory, rozpoczynając od całego zbioru X.

Bardziej szczegółowo

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew

EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew 1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;

Bardziej szczegółowo

Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski

Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera

Bardziej szczegółowo

Algorytmy metaheurystyczne Wykład 11. Piotr Syga

Algorytmy metaheurystyczne Wykład 11. Piotr Syga Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,

Bardziej szczegółowo

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325 PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj

Bardziej szczegółowo

Zadanie 1: Piętnastka - uzupełnienie

Zadanie 1: Piętnastka - uzupełnienie Informatyka, studia dzienne, inż. I st. semestr VI Sztuczna Inteligencja i Systemy Ekspertowe 2010/2011 Prowadzący: mgr Michał Pryczek piątek, 12:00 Data oddania: Ocena: Grzegorz Graczyk 150875 Marek Rogalski

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Algorytmy i struktury danych ĆWICZENIE 2 - WYBRANE ZŁOŻONE STRUKTURY DANYCH - (12.3.212) Prowadząca: dr hab. inż. Małgorzata Sterna Informatyka i3, poniedziałek godz. 11:45 Adam Matuszewski, nr 1655 Oliver

Bardziej szczegółowo

Reguły decyzyjne, algorytm AQ i CN2. Reguły asocjacyjne, algorytm Apriori.

Reguły decyzyjne, algorytm AQ i CN2. Reguły asocjacyjne, algorytm Apriori. Analiza danych Reguły decyzyjne, algorytm AQ i CN2. Reguły asocjacyjne, algorytm Apriori. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ REGUŁY DECYZYJNE Metoda reprezentacji wiedzy (modelowania

Bardziej szczegółowo

Inteligentna analiza danych

Inteligentna analiza danych Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 8

Języki formalne i automaty Ćwiczenia 8 Języki formalne i automaty Ćwiczenia 8 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Konwersja NFA do DFA... 2 Minimalizacja liczby stanów DFA... 4 Konwersja automatu DFA do

Bardziej szczegółowo

Drzewa Decyzyjne, cz.2

Drzewa Decyzyjne, cz.2 Drzewa Decyzyjne, cz.2 Inteligentne Systemy Decyzyjne Katedra Systemów Multimedialnych WETI, PG Opracowanie: dr inŝ. Piotr Szczuko Podsumowanie poprzedniego wykładu Cel: przewidywanie wyniku (określania

Bardziej szczegółowo

Korespondencja seryjna MS Word 2007. Korespondencja seryjna połączenie dwóch programów MS Word i MS Excela

Korespondencja seryjna MS Word 2007. Korespondencja seryjna połączenie dwóch programów MS Word i MS Excela Korespondencja seryjna połączenie dwóch programów MS Word i MS Excela 1. Otwórz pusty dokument Word 2007, a następnie napisz w tym dokumencie następujący tekst: niniejszym informuje, że uczeń klasy jest

Bardziej szczegółowo

Lekcja : Tablice + pętle

Lekcja : Tablice + pętle Lekcja : Tablice + pętle Wprowadzenie Oczywiście wiesz już jak dużo można osiągnąć za pomocą tablic oraz jak dużo można osiągnąć za pomocą pętli, jednak tak naprawdę prawdziwe możliwości daje połączenie

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Przygotowanie materiału uczącego dla OCR w oparciu o aplikację Wycinanki.

Przygotowanie materiału uczącego dla OCR w oparciu o aplikację Wycinanki. Przygotowanie materiału uczącego dla OCR w oparciu o aplikację Wycinanki. Zespół bibliotek cyfrowych PCSS 6 maja 2011 1 Cel aplikacji Aplikacja wspomaga przygotowanie poprawnego materiału uczącego dla

Bardziej szczegółowo

Laboratorium 6. Indukcja drzew decyzyjnych.

Laboratorium 6. Indukcja drzew decyzyjnych. Laboratorium 6 Indukcja drzew decyzyjnych. 1. Uruchom narzędzie Oracle Data Miner i połącz się z serwerem bazy danych. 2. Z menu głównego wybierz Activity Build. Na ekranie powitalnym kliknij przycisk

Bardziej szczegółowo

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień. Zadanie Należy zacząć od sprawdzenia, co studenci pamiętają ze szkoły średniej na temat funkcji jednej zmiennej. Na początek można narysować kilka krzywych na tle układu współrzędnych (funkcja gładka,

Bardziej szczegółowo

Programowanie genetyczne, gra SNAKE

Programowanie genetyczne, gra SNAKE STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................

Bardziej szczegółowo

Praktyczny Excel. 50 praktycznych formuł na każdą okazję

Praktyczny Excel. 50 praktycznych formuł na każdą okazję Praktyczny Excel 50 praktycznych formuł na każdą okazję 3 1 NUMER PRAWNICZY przygotowany przez + OCHRONA DANYCH OSOBOWYCH profesjonalnie i kompleksowo 1 2 + GRATIS 20% GRATIS 30%, tel. 22 518 29 29, email:

Bardziej szczegółowo

Dopasowywanie modelu do danych

Dopasowywanie modelu do danych Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;

Bardziej szczegółowo

2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew

2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew 0-0-6 PLAN WYKŁADU Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew BAZY DANYCH Wykład 9 dr inż. Agnieszka Bołtuć INDEKSY - DEFINICJE Indeksy to pomocnicze struktury

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości

Bardziej szczegółowo

PODSTAWY STATYSTYCZNEGO MODELOWANIA DANYCH. Wykład 6 Drzewa klasyfikacyjne - wprowadzenie. Reguły podziału i reguły przycinania drzew.

PODSTAWY STATYSTYCZNEGO MODELOWANIA DANYCH. Wykład 6 Drzewa klasyfikacyjne - wprowadzenie. Reguły podziału i reguły przycinania drzew. PODSTAWY STATYSTYCZNEGO MODELOWANIA DANYCH Wykład 6 Drzewa klasyfikacyjne - wprowadzenie. Reguły podziału i reguły przycinania drzew. Wprowadzenie Drzewo klasyfikacyjne Wprowadzenie Formalnie : drzewo

Bardziej szczegółowo

Algorytmy zachłanne. dr inż. Urszula Gałązka

Algorytmy zachłanne. dr inż. Urszula Gałązka Algorytmy zachłanne dr inż. Urszula Gałązka Algorytm zachłanny O Dokonuje wyboru, który w danej chwili wydaje się najkorzystniejszy. O Mówimy, że jest to wybór lokalnie optymalny O W rzeczywistości nie

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

Obliczanie opłaty elektronicznej za przejazd wybraną trasą (krok po kroku)

Obliczanie opłaty elektronicznej za przejazd wybraną trasą (krok po kroku) Obliczanie opłaty elektronicznej za przejazd wybraną trasą (krok po kroku) 1. Wprowadź adres Pierwszym etapem obliczania opłaty elektronicznej jest wprowadzenie adresów będących punktami nawigacyjnymi

Bardziej szczegółowo

Drzewa Semantyczne w KRZ

Drzewa Semantyczne w KRZ Drzewa Semantyczne w KRZ Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl 7 XII 2006, 13:30 15:00 Jerzy Pogonowski (MEG) Drzewa Semantyczne w KRZ 7 XII 2006, 13:30 15:00

Bardziej szczegółowo