WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB IV ZBIORY PRZYBLIŻONE I ODKRYWANIE REGUŁ DECYZYJNYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB IV ZBIORY PRZYBLIŻONE I ODKRYWANIE REGUŁ DECYZYJNYCH"

Transkrypt

1 WSOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB IV ZBIORY RZYBLIŻONE I ODKRYWANIE REGUŁ DECYZYJNYCH 1. Definicje Zbiory, które nie są zbiorami definiowalnymi, są nazywane zbiorami przybliżonymi. Zbiory definiowalne można jednoznacznie scharakteryzować przez własności ich elementów, natomiast zbiorów przybliżonych nie można scharakteryzować w ten sposób. Dlatego w teorii zbiorów przybliżonych zostały wprowadzone pojęcia dolnego i górnego przybliżenia zbioru, które pozwalają każdy zbiór niedefiniowalny (przybliżony) scharakteryzować za pomocą dwóch zbiorów definiowalnych jego dolnego i górnego przybliżenia. ojęcia: Zbiór nierozróżnialny; klasa nierozróżnialności z x, granula, atom I (x) - warianty opisane tak samo jak wariant x na wszystkich atrybutach warunkowych. Dolne przybliżenie: X ) { x U : I ( x) X} Wszystkie te elementy, które w świetle posiadanej wiedzy mogą być zaklasyfikowane jednoznacznie do rozważanego zbioru (intuicja: na pewno należą do zbioru) Górne przybliżenie: X ) I ( x) xx Wszystkie te elementy, których nie można wykluczyć, w świetle posiadanej wiedzy, z danego zbioru (intuicja: być może należą do zbioru) Brzeg przybliżenia: ( X ) X ) X ) Bn Różnica między górnym a dolnym przybliżeniem (intuicja: mamy wątpliwość, do którego zbioru należą) X ) X X ) Dokładności przybliżenia klasy X: Jakość przybliżenia klasy X: ( X ) X ) ( X ) X ) X ) X Zbiór jest przybliżony iff gdy jego obszar brzegowy jest niepusty. Jakość klasyfikacji: ( Cl) n t1 Cl ) U t (intuicja: jaki odsetek przykładów można jednoznacznie zaklasyfikować do jednej z klas) rzybliżone członkostwo (ang. rough membership) przykładu xu do klasy XU, biorąc pod uwagę zbiór parametrów C X I x ) X ( x ) = procent przykładów z klasy nierozróżnialności x, które należą do klasy X I ( x ) Redukt minimalny podzbiór atrybutów (nie oznacza to zawsze podzbioru o minimalnej liczności), który utrzymuje niezmienioną jakość klasyfikacji. Rdzeń (jądro, ang. core) część wspólna (przecięcie) wszystkich reduktów

2 Reguła: jeżeli, to Wsparcie (ang. support) reguły Siła (ang. strength) reguły : sups (, ) card ( ) : (, ) Współczynnik pewności (ang. certainty) reguły Współczynnik pokrycia (ang. coverage) reguły S sups (, ) card( U) : : S sups (, ) cers (, ) card( ) sups (, ) covs (, ) card( ) s s Atrybuty warunkowe X1, X2. Atrybut decyzyjny K. Tabela decyzyjna. Obiekt X1 X2 K A1 8 4 A2 5 7 A3 2 3 A4 5 7 R A5 2 5 S A6 8 5 S ) { A1, A3}, ) { A1, A2, A3, A4} R) 0, R) { A2, A4} S) { A5, A6}, S) { A5, A6} jeżeli X1=5 to sup 1, 1/ 6, cer 1/ 2,cov 1/ 3 jeżeli X2=5 to S sup 2, 2 / 6, cer 2 / 2,cov 2 / 2 jeżeli X1=2 i X2=5 to S sup 1, 1/ 6, cer 1/1, cov 1/ 2-2 -

3 Decision: D (atrybut decyzyjny) C1: [a,b] (atrybut warunkowy) C2: [1,2,3] (atrybut warunkowy) C3: [+,-] (atrybut warunkowy) D: [A,B] Obiekt C1 C2 C3 D O1 a 1 + B O2 a 3 - A O3 a 2 + A O4 b 1 - B O5 a 2 + A O6 b 3 + B O7 a 1 + A A ) A ) Bn ( A) accuracy_ of _ approximation( A) ( A) A ) A ) Bn ( accuracy_ of _ approximation ( ( Dla dwóch klas A i B: B ( A) B ( n n quality_ of A) _ approximation( Cl) ( Cl) U Redukty : Core (rdzeń): - 3 -

4 rzykład (obiekt) Atrybuty warunkowe Decyzja Temperatura Hemoglobina Ciśnienie Samopoczucie A Niska Dobra Niskie Słabe B Niska Dobra Normalne Słabe C Normalna B. dobra Niskie Słabe D Normalna B. dobra Niskie Dobre E Niska B. dobra Normalne Dobre F Niska B. dobra Normalne Dobre G Normalna Dobra Normalne Dobre H Normalna Niska Wysokie Złe I Wysoka B. dobra Wysokie Złe slabe) dobre) zle) slabe) dobre) zle) Algorytm LEM2 Minimalny zbiór reguł Reguły pewne dla dolnych przybliżeń klas (deterministyczne) Reguły możliwe dla górnych przybliżeń klas (niedeterministyczne) Reguły przybliżone dla brzegów klas Reguły pewne (deterministyczne) wyznaczamy, dając na wejście LEM2 dolne przybliżenie zbioru. Reguły możliwe wyznaczamy, dając na wejście LEM2 górne przybliżenie zbioru. Reguły przybliżone wyznaczamy, dając na wejście LEM2 brzeg klas. W każdym z trzech powyższych przypadków LEM2 działa tak samo. Różnica pojawia się w interpretacji reguł. Reguły deterministyczne mają charakter na pewno należy do klasy X, reguły możliwe (niedeterministyczne) mają charakter być może należy do klasy X, a reguły przybliżone mają charakter należy do klasy X lub Y lub ) - 4 -

5 Reguły dla (slabe) 1. Wypisujemy warunki, które występują dla przykładów wchodzących w jego skład: temperatura = niska, hemoglobina = dobra, ciśnienie = niskie, ciśnienie = normalne 2. Wybieramy warunek, który maksymalizuje: liczba pokrytych przykładów z rozważanego przybliżenia Jeśli jest więcej niż jeden to wybieramy warunek, który minimalizuje: liczba pokrytych przykładów ogółem Jeśli wciąż jest więcej niż jeden, to bierzemy pierwszy z brzegu. Najlepszy jest (hemoglobina = dobra) pokrywa 2 z rozważanego zbioru, ogółem pokrywa Warunek ten pokrywa wszystkie przykłady z rozważanego przybliżenia (A, i jeszcze jakiś nadmiarowy (G). Trzeba kontynuować dalej tworzenie reguły tak, by reguła nie pokrywała nadmiarowych przykładów, a ostatecznie pokrywała podzbiór rozważanego przybliżenia (w idealnym przypadku cały zbiór). 4. Rozważamy pozostałe warunki. Najlepsza jest (temperatura = niska) pokrywa 2 z rozważanego zbioru, ogółem pokrywa Warunki (hemoglobina = dobra) oraz (temperatura = niska) pokrywają tylko przykłady z (slabe). Znaleźliśmy regułę: jeżeli (hemoglobina = dobra) i (temperatura = niska) to samopoczucie = słabe 6. Sprawdzamy, czy reguła nie ma warunków nadmiarowych. Obydwa warunki są potrzebne. Zostawiamy regułę bez zmian. 7. Sprawdzamy, czy nie ma nadmiarowych reguł. Jest tylko jedna reguła, więc na pewno nie jest nadmiarowa

6 Reguły dla (dobre) 1. Wypisujemy warunki, które występują dla przykładów wchodzących w jego skład: temperatura = niska, temperatura = normalna, hemoglobina = b. dobra, hemoglobina = dobra, ciśnienie = normalne 2. Wybieramy warunek, który maksymalizuje: liczba pokrytych przykładów z rozważanego przybliżenia Jeśli jest więcej niż jeden to wybieramy warunek, który minimalizuje: liczba pokrytych przykładów ogółem Jeśli wciąż jest więcej niż jeden, to bierzemy pierwszy z brzegu. Najlepszy jest (ciśnienie = normalne) pokrywa 3 z rozważanego zbioru, ogółem pokrywa Warunek ten pokrywa wszystkie przykłady z rozważanego przybliżenia (E,F,G) i jeszcze jakiś nadmiarowy (. Trzeba kontynuować dalej tworzenie reguły. 4. Rozważamy pozostałe warunki. Najlepsza jest (temperatura = niska) - pokrywa 2 z rozważanego zbioru, ogółem pokrywa Warunki (ciśnienie = normalne) oraz (temperatura = niska) pokrywają przykłady B, E i F. 6. Rozważamy warunki na pozostałych kryteriach dla przykładów E oraz F. Zostało nam: hemoglobina = b.dobra. Wybieramy go. 7. Znaleźliśmy regułę: jeżeli (ciśnienie = normalne) i (temperatura = niska) i (hemoglobina = b.dobra) to samopoczucie = dobre 8. Sprawdzamy, czy nie ma w niej warunków nadmiarowych. Jeśli usuniemy (temperatura = dobra) to reguła wciąż będzie poprawna, a więc usuwamy go. Zostało nam: jeżeli (ciśnienie = normalne) i (hemoglobina = b.dobra) to samopoczucie = dobre 9. Został jednak jeden niepokryty przykład z (dobre), mianowicie G. Trzeba znaleźć dla niego nową regułę, która go będzie pokrywała. 10. Wypisujemy warunki, które go pokrywają: temperatura = normalna, hemoglobina = dobra, ciśnienie = normalne 11. Wybieramy warunek, który maksymalizuje: liczba pokrytych przykładów z rozważanego przybliżenia Jeśli jest więcej niż jeden to wybieramy warunek, który minimalizuje: liczba pokrytych przykładów ogółem Jeśli wciąż jest więcej niż jeden, to bierzemy pierwszy z brzegu. Najlepszy jest (hemoglobina = dobra) pokrywa 1 z rozważanego zbioru, ogółem pokrywa okrywane są też inne przykłady (A,. Trzeba kontynuować dalej. 13. Rozważamy pozostałe warunki. Wybieramy (temperatura = normalna) jako pierwszy z brzegu. 14. Warunki (hemoglobina = dobra) oraz (temperatura = normalna) pokrywają tylko przykład G. Znaleźliśmy regułę: jeżeli (hemoglobina = dobra) i (temperatura = normalna) to samopoczucie = dobre. 15. Sprawdzamy, czy reguła nie ma warunków nadmiarowych. Obydwa warunki są potrzebne. Zostawiamy regułę bez zmian. 16. Na końcu przeglądamy zbiór reguł, by znaleźć i odrzucić reguły nadmiarowe. Obydwie reguły są potrzebne

7 Wyznacz dolne i górne przybliżenia klas M, N, R. Oblicz jakość klasyfikacji. Wyindukuj minimalne reguły indukcyjne dla dolnych przybliżeń (reguły pewne). Dla otrzymanych reguł podaj siłę, współczynnik pewności i pokrycia. Znajdź redukty i rdzeń. Obiekt X1 X2 X3 Klasa I 2 J a M II 1 J b M III 3 H a M IV 3 H a N V 3 H a R VI 3 H b N VII 3 K c R VIII 2 H b N IX 2 H c R M ) { I, II}, M ) { I, II, III, IV, V} N) { VI, VIII}, N) { III, IV, V, VI, VIII} R) { VII, IX}, R) { III, IV, V, VII, IX} Jakość klasyfikacji=(2+2+2)/9=2/3 Jeżeli X2=J to Dec=M, pokrywane obiekty: I, II, siła = 2/9, pokrycie = 2/3, pewność 2/2 Jeżeli X3=b i X2=H to Dec=N, pokrywane obiekty: VI, VIII, siła = 2/9, pokrycie = 2/3, pewność 2/2 Jeżeli X3=c to Dec=R, pokrywane obiekty: VII, IX, siła = 2/9, pokrycie = 2/3, pewność 2/2 Redukty: {X1,X3}, {X2,X3} Rdzeń: {X3} Wyznacz dolne i górne przybliżenia klas,,. Oblicz jakość klasyfikacji. Wyindukuj minimalne reguły indukcyjne dla dolnych przybliżeń (reguły pewne) i dla brzegów klas (reguły przybliżone). Dla otrzymanych reguł podaj wsparcie, siłę, współczynnik pewności i pokrycia. Obiekt X1 X2 X3 Klasa I C B B II A A B III A A A IV A A A V A A B VI C C B VII C A A - 7 -

8 Co należy potrafić przed "zajęciami raportowymi"? Zbiory przybliżone + generowanie reguł decyzyjnych: Zapoznaj się z przykładowym zbiorem danych, który każdy będzie rozwiązywał sam na następnych zajęciach: example1.isf, example2.isf, example3.isf. Biorąc pod uwagę wszystkie 5 atrybutów warunkowych: Wygenerować klasy: Generując klasy, zastosuj notację: X={przykłady_należące_do_X} D, Y={przykłady_należące_do_Y} D, gdzie X oraz Y to Twoje symbole klas. odaj też, ile przykładów jest w każdej klasie. Dolny indeks D oznacza, że jest to granula wiedzy ze względu na atrybut decyzyjny. Wygenerować atomy (klasy nierozróżnialności): Generując atomy, zastosuj notację I (II)={II}, I (IV)= I (X)={IV, X}. Dolny indeks ={C1,C2,C3,C4,C5} oznacza, że jest to granula wiedzy ze względu na zbiór atrybutów warunkowych. Zaznacz, ze względu na który zbiór prezentujesz granule. Wygenerować dolne i górne przybliżenia oraz brzegi klas Obliczyć dokładność przybliżenia każdej klasy i jakość klasyfikacji Wygenerować redukty i rdzeń Biorąc pod uwagę 2 wskazane atrybuty warunkowe: To, co dla 5 atrybutów warunkowych Wygenerować minimalne deterministyczne i niedeterministyczne reguły: Rozpatrywana składnia reguły decyzyjnej to: jeżeli (koniunkcja warunków elementarnych) to (decyzja) i w takiej postaci powinny zostać zapisane wszystkie wygenerowane reguły Obliczyć dla tych reguł wsparcie, siłę, współczynnik pewności i pokrycia rzydatne symbole: (X ), (X ), Bn (X), (X ), (Cl) należy stosować prezentacji wyników., RED Cl (), CORE Cl(), które rogramowanie liniowe, celowe i ilorazowe: Raport będzie dotyczył rozwiązania zadania Lab3-zadanie_pc_pi.xls odać interpretację zmiennych decyzyjnych Zapisać funkcję celu rozważanych problemów (w przypadku problemów nielinowych, zapisać także zlinearyzowaną postać funkcji celu) Wskazać kierunek optymalizacji Zapisać ograniczenia, przy których rozwiązywany jest problem Zapisać wzory na ewentualne nowe zmienne odać rozwiązanie uzyskane za pomocą Solvera (wartości zmiennych decyzyjnych, funkcji celu, wartości rozwiązań oryginalnego problemu) - 8 -

Systemy ekspertowe. Eksploracja danych z wykorzystaniem tablic decyzyjnych i zbiorów przybliżonych. Część trzecia

Systemy ekspertowe. Eksploracja danych z wykorzystaniem tablic decyzyjnych i zbiorów przybliżonych. Część trzecia Część trzecia Autor Roman Simiński Eksploracja danych z wykorzystaniem tablic decyzyjnych i zbiorów przybliżonych Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót

Bardziej szczegółowo

Sztuczna inteligencja

Sztuczna inteligencja POLITECHNIKA KRAKOWSKA WIEiK KATEDRA AUTOMATYKI I TECHNIK INFORMACYJNYCH Sztuczna inteligencja www.pk.edu.pl/~zk/si_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 10: Zbiory przybliżone

Bardziej szczegółowo

System informacyjny a system decyzyjny Relacja nierozróżnialności Klasy abstrakcji Teoria zbiorów przybliżonych Usuwanie niespójności z tablicy

System informacyjny a system decyzyjny Relacja nierozróżnialności Klasy abstrakcji Teoria zbiorów przybliżonych Usuwanie niespójności z tablicy System informacyjny a system decyzyjny Relacja nierozróżnialności Klasy abstrakcji Teoria zbiorów przybliżonych Usuwanie niespójności z tablicy decyzyjnej System informacyjny System informacyjny SI zdefiniowany

Bardziej szczegółowo

Odkrywanie wiedzy z danych przy użyciu zbiorów przybliżonych. Wykład 3

Odkrywanie wiedzy z danych przy użyciu zbiorów przybliżonych. Wykład 3 Odkrywanie wiedzy z danych przy użyciu zbiorów przybliżonych Wykład 3 W internecie Teoria zbiorów przybliżonych zaproponowany w 1982 r. przez prof. Zdzisława Pawlaka formalizm matematyczny, stanowiący

Bardziej szczegółowo

Systemy ekspertowe : Tablice decyzyjne

Systemy ekspertowe : Tablice decyzyjne Instytut Informatyki Uniwersytetu Śląskiego 16 marzec 2010 Tablica decyzyjna Klasy nierozróżnialności i klasy decyzyjne Rdzeń Redukt Macierz nierozróżnialności Rdzeń i redukt w macierzy nierozróżnialności

Bardziej szczegółowo

Zbiory przybliżone, cz. 1 (wersja do druku) dr. Piotr Szczuko

Zbiory przybliżone, cz. 1 (wersja do druku) dr. Piotr Szczuko Zbiory przybliżone, cz. 1 (wersja do druku) dr. Piotr Szczuko Katedra Systemów Multimedialnych 2009 Plan wykładu Historia zbiorów przybliżonych System informacyjny i decyzyjny Reguły decyzyjne Tożsamość

Bardziej szczegółowo

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ;

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ; Algorytm LEM1 Oznaczenia i definicje: U - uniwersum, tj. zbiór obiektów; A - zbiór atrybutów warunkowych; d - atrybut decyzyjny; IND(B) = {(x, y) U U : a B a(x) = a(y)} - relacja nierozróżnialności, tj.

Bardziej szczegółowo

Sztuczna Inteligencja Projekt

Sztuczna Inteligencja Projekt Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować

Bardziej szczegółowo

Reguły decyzyjne, algorytm AQ i CN2. Reguły asocjacyjne, algorytm Apriori.

Reguły decyzyjne, algorytm AQ i CN2. Reguły asocjacyjne, algorytm Apriori. Analiza danych Reguły decyzyjne, algorytm AQ i CN2. Reguły asocjacyjne, algorytm Apriori. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ REGUŁY DECYZYJNE Metoda reprezentacji wiedzy (modelowania

Bardziej szczegółowo

Teoretyczne podstawy zbiorów przybliżonych

Teoretyczne podstawy zbiorów przybliżonych Teoretyczne podstawy zbiorów przybliżonych Agnieszka Nowak 17 kwietnia 2009 1 Podstawy teorii zbiorów przybliżonych 1.1 Wstęp Teoria zbiorów przybliżonych została sformułowana przez Zdzisława Pawlaka w

Bardziej szczegółowo

Sztuczna Inteligencja Projekt

Sztuczna Inteligencja Projekt Sztuczna Inteligencja Projekt Temat: Algorytm F-LEM1 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm F LEM 1. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu F LEM1

Bardziej szczegółowo

ROUGH SET BASED DECISION SUPPORT

ROUGH SET BASED DECISION SUPPORT ROUGH SET BASED DECISION SUPPORT Roman Słowiński Laboratory of Intelligent Decision Support Systems Institute of Computing Science Poznań University of Technology Roman Słowiński Motywacje Wzrasta przepaść

Bardziej szczegółowo

Programowanie celowe #1

Programowanie celowe #1 Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem

Bardziej szczegółowo

Wprowadzenie do zbiorów przybliżonych

Wprowadzenie do zbiorów przybliżonych Instytut Informatyki, Uniwersytet Śląski, ul. Będzinska 39, Sosnowiec, Polska Tel (32) 2 918 381, Fax (32) 2 918 283 Wykład II i III Wstęp Teoria zbiorów przybliżonych została sformułowana przez Zdzisława

Bardziej szczegółowo

Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 2. Wojciech Waloszek. Teresa Zawadzka.

Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 2. Wojciech Waloszek. Teresa Zawadzka. Eksploracja danych KLASYFIKACJA I REGRESJA cz. 2 Wojciech Waloszek wowal@eti.pg.gda.pl Teresa Zawadzka tegra@eti.pg.gda.pl Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki

Bardziej szczegółowo

Lista kontrolna pytań, wskazówek i podpowiedzi przed pierwszym kolokwium ze Wspomagania Decyzji

Lista kontrolna pytań, wskazówek i podpowiedzi przed pierwszym kolokwium ze Wspomagania Decyzji Lista kontrolna pytań, wskazówek i podpowiedzi przed pierwszym kolokwium ze Wspomagania Decyzji O sprawdzianie Liczba zadań: >15 Zakres materiału: Teoria: (6-8 pytań typu prawda/fałsz; można stracić punkty

Bardziej szczegółowo

Pojęcia podstawowe. Teoria zbiorów przybliżonych i teoria gier. Jak porównać dwa porządki?

Pojęcia podstawowe. Teoria zbiorów przybliżonych i teoria gier. Jak porównać dwa porządki? Pojęcia podstawowe Teoria zbiorów przybliżonych i teoria gier Decision Support Systems Mateusz Lango 5 listopada 16 problem decyzyjny decydent analityk model preferencji (3 rodzaje) zbiór wariantów/alternatyw

Bardziej szczegółowo

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2 Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z

Bardziej szczegółowo

Systemy ekspertowe. Generowanie reguł minimalnych. Część czwarta. Autor Roman Simiński.

Systemy ekspertowe. Generowanie reguł minimalnych. Część czwarta.  Autor Roman Simiński. Część czwarta Autor Roman Simiński Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi uważnego w nim uczestnictwa.

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska

SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania

Bardziej szczegółowo

Tablicowa reprezentacja danych

Tablicowa reprezentacja danych Wstęp Teoria zbiorów przybliżonych została sformułowana przez Zdzisława Pawlaka w 1982 roku. Jest ona wykorzystywana jako narzędzie do syntezy zaawansowanych i efektywnych metod analizy oraz do redukcji

Bardziej szczegółowo

Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji

Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji Michał Witczak Data Mining 20 maja 2012 r. 1. Wstęp Dostarczone zostały nam 4 pliki, z których dwa stanowiły zbiory uczące

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

Odkrywanie wiedzy w danych

Odkrywanie wiedzy w danych Inżynieria Wiedzy i Systemy Ekspertowe Odkrywanie wiedzy w danych dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Data Mining W pewnym teleturnieju

Bardziej szczegółowo

Ekonometria - ćwiczenia 10

Ekonometria - ćwiczenia 10 Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na

Bardziej szczegółowo

WIELOKRYTERIALNE WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB I WPROWADZENIE DO WIELOKRYTERIALNEGO WSPOMAGANIA DECYZJI

WIELOKRYTERIALNE WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB I WPROWADZENIE DO WIELOKRYTERIALNEGO WSPOMAGANIA DECYZJI WIELOKRYTERIALNE WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB I WPROWADZENIE DO WIELOKRYTERIALNEGO WSPOMAGANIA DECYZJI I. Dane kontaktowe Miłosz Kadziński (milosz.kadzinski@cs.put.poznan.pl, pokój 1.6.6

Bardziej szczegółowo

Metody numeryczne. dr Artur Woike. Ćwiczenia nr 2. Rozwiązywanie równań nieliniowych metody połowienia, regula falsi i siecznych.

Metody numeryczne. dr Artur Woike. Ćwiczenia nr 2. Rozwiązywanie równań nieliniowych metody połowienia, regula falsi i siecznych. Ćwiczenia nr 2 metody połowienia, regula falsi i siecznych. Sformułowanie zagadnienia Niech będzie dane równanie postaci f (x) = 0, gdzie f jest pewną funkcją nieliniową (jeżeli f jest liniowa to zagadnienie

Bardziej szczegółowo

Metody numeryczne. Sformułowanie zagadnienia interpolacji

Metody numeryczne. Sformułowanie zagadnienia interpolacji Ćwiczenia nr 4. Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n i wartości y 0,..., y n, takie że i=0,...,n y i = f (x i )). Szukamy funkcji F (funkcji interpolującej), takiej

Bardziej szczegółowo

WYKŁAD 6. Reguły decyzyjne

WYKŁAD 6. Reguły decyzyjne Wrocław University of Technology WYKŁAD 6 Reguły decyzyjne autor: Maciej Zięba Politechnika Wrocławska Reprezentacje wiedzy Wiedza w postaci reguł decyzyjnych Wiedza reprezentowania jest w postaci reguł

Bardziej szczegółowo

Efektywność Procedur Obliczeniowych. wykład 5

Efektywność Procedur Obliczeniowych. wykład 5 Efektywność Procedur Obliczeniowych wykład 5 Modele procesu obliczeń (8) Jedno-, wielotaśmowa MT oraz maszyna RAM są równoważne w przypadku, jeśli dany problem jest rozwiązywany przez jeden model w czasie

Bardziej szczegółowo

Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY

Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY PB 2 PB 1 Projekt z wyznaczania reduktów zbioru Liczba osób realizuj cych projekt: 1-2 osoby 1. Wczytanie danych w formatach arf,

Bardziej szczegółowo

Programowanie nieliniowe

Programowanie nieliniowe Rozdział 5 Programowanie nieliniowe Programowanie liniowe ma zastosowanie w wielu sytuacjach decyzyjnych, jednak często zdarza się, że zależności zachodzących między zmiennymi nie można wyrazić za pomocą

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

Metody eksploracji danych. Reguły asocjacyjne

Metody eksploracji danych. Reguły asocjacyjne Metody eksploracji danych Reguły asocjacyjne Analiza podobieństw i koszyka sklepowego Analiza podobieństw jest badaniem atrybutów lub cech, które są powiązane ze sobą. Metody analizy podobieństw, znane

Bardziej szczegółowo

PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI

PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 5 PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI 5.2. Ćwiczenia komputerowe

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny branżowa szkoła I stopnia klasa 1 po gimnazjum

Wymagania edukacyjne na poszczególne oceny branżowa szkoła I stopnia klasa 1 po gimnazjum Wymagania edukacyjne na poszczególne oceny branżowa szkoła I stopnia klasa 1 po gimnazjum I. Liczby rzeczywiste 1. Liczby naturalne 2. Liczby całkowite. 3. Liczby wymierne 4. Rozwinięcie dziesiętne liczby

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 1

Kształcenie w zakresie podstawowym. Klasa 1 Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

Inteligentne systemy wspomagania decyzji oparte na wiedzy odkrytej z danych. Roman Słowiński

Inteligentne systemy wspomagania decyzji oparte na wiedzy odkrytej z danych. Roman Słowiński Inteligentne systemy wspomagania decyzji oparte na wiedzy odkrytej z danych Roman Słowiński Roman Słowiński Motywacje Wzrasta przepaść między generowaniem danych a ich zrozumieniem Odkrywanie wiedzy z

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa

Wielokryteriowa optymalizacja liniowa Wielokryteriowa optymalizacja liniowa 1. Przy decyzjach złożonych kierujemy się zwykle więcej niż jednym kryterium. Postępowanie w takich sytuacjach nie jest jednoznaczne. Pojawiło się wiele sposobów dochodzenia

Bardziej szczegółowo

Zbiory przybliżone w obszarze systemów ekspertowych

Zbiory przybliżone w obszarze systemów ekspertowych Zbiory przybliżone w obszarze systemów ekspertowych Agnieszka Nowak Institute of Computer Science, University of Silesia Bȩdzińska 39, 41 200 Sosnowiec, Poland e-mail: nowak@us.edu.pl 1 Wprowadzenie Okres

Bardziej szczegółowo

Optymalizacja. Algorytmy dokładne

Optymalizacja. Algorytmy dokładne dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Organizacja zbioru rozwiązań w problemie SAT Wielokrotny podział na dwia podzbiory: x 1 = T, x 1

Bardziej szczegółowo

Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE

Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE 2.2 Ćwiczenia komputerowe Ćwiczenie

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

Aproksymacja diofantyczna

Aproksymacja diofantyczna Aproksymacja diofantyczna Szymon Draga Ustroń, 4 listopada 0 r Wprowadzenie Jak wiadomo, każdą liczbę niewymierną można (z dowolną dokładnością) aproksymować liczbami wymiernymi Powstaje pytanie, w jaki

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

9.9 Algorytmy przeglądu

9.9 Algorytmy przeglądu 14 9. PODSTAWOWE PROBLEMY JEDNOMASZYNOWE 9.9 Algorytmy przeglądu Metody przeglądu dla problemu 1 r j,q j C max były analizowane między innymi w pracach 25, 51, 129, 238. Jak dotychczas najbardziej elegancka

Bardziej szczegółowo

Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł

Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Lp. Temat Kształcone umiejętności 1 Zasady pracy na lekcjach matematyki. Dział I. LICZBY

Bardziej szczegółowo

Rozkłady dwóch zmiennych losowych

Rozkłady dwóch zmiennych losowych Rozkłady dwóch zmiennych losowych Uogólnienie pojęć na rozkład dwóch zmiennych Dystrybuanta i gęstość prawdopodobieństwa Rozkład brzegowy Prawdopodobieństwo warunkowe Wartości średnie i odchylenia standardowe

Bardziej szczegółowo

System informacyjny a system decyzyjny Relacja nierozróżnialności Klasy abstrakcji Teoria zbiorów przybliżonych Usuwanie niespójności z tablicy

System informacyjny a system decyzyjny Relacja nierozróżnialności Klasy abstrakcji Teoria zbiorów przybliżonych Usuwanie niespójności z tablicy System informacyjny a system decyzyjny Relacja nierozróżnialności Klasy abstrakcji Teoria zbiorów przybliżonych Usuwanie niespójności z tablicy decyzyjnej Metody usuwania niespójności z T 1. Pomoc eksperta:

Bardziej szczegółowo

Technologia informacyjna Algorytm Janusz Uriasz

Technologia informacyjna Algorytm Janusz Uriasz Technologia informacyjna Algorytm Janusz Uriasz Algorytm Algorytm - (łac. algorithmus); ścisły przepis realizacji działań w określonym porządku, system operacji, reguła komponowania operacji, sposób postępowania.

Bardziej szczegółowo

Microsoft EXCEL SOLVER

Microsoft EXCEL SOLVER Microsoft EXCEL SOLVER 1. Programowanie liniowe z wykorzystaniem dodatku Microsoft Excel Solver Cele Po ukończeniu tego laboratorium słuchacze potrafią korzystając z dodatku Solver: formułować funkcję

Bardziej szczegółowo

Optymalizacja. Algorytmy dokładne

Optymalizacja. Algorytmy dokładne dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Organizacja zbioru rozwiązań w problemie SAT Wielokrotny podział na dwia podzbiory: x 1 = T, x 1

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Matematyka dyskretna. Andrzej Łachwa, UJ, /10 Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych

Rozwiązywanie równań nieliniowych Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej

Bardziej szczegółowo

INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH

INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH 1. Czym jest eksploracja danych Eksploracja danych definiowana jest jako zbiór technik odkrywania nietrywialnych zależności i schematów w dużych

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych

Bardziej szczegółowo

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników

Bardziej szczegółowo

mgr inż. Magdalena Deckert Poznań, r. Metody przyrostowego uczenia się ze strumieni danych.

mgr inż. Magdalena Deckert Poznań, r. Metody przyrostowego uczenia się ze strumieni danych. mgr inż. Magdalena Deckert Poznań, 30.11.2010r. Metody przyrostowego uczenia się ze strumieni danych. Plan prezentacji Wstęp Concept drift i typy zmian Algorytmy przyrostowego uczenia się ze strumieni

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

PRACA DYPLOMOWA MAGISTERSKA. Analiza danych z zastosowaniem teorii zbiorów przybliżonych.

PRACA DYPLOMOWA MAGISTERSKA. Analiza danych z zastosowaniem teorii zbiorów przybliżonych. POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRONIKI I TECHNIK INFORMACYJNYCH INSTYTUT INFORMATYKI Rok akademicki 2003/2004 PRACA DYPLOMOWA MAGISTERSKA Andrzej Dominik Analiza danych z zastosowaniem teorii zbiorów

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

Systemy informacyjne nad grafami ontologicznymi

Systemy informacyjne nad grafami ontologicznymi Systemy informacyjne nad grafami ontologicznymi Krzysztof Pancerz Wyższa Szkoła Zarządzania i Administracji w Zamościu Wyższa Szkoła Informatyki i Zarządzania w Rzeszowie Seminarium Zakładu Inteligentnych

Bardziej szczegółowo

Przykład eksploracji danych o naturze statystycznej Próba 1 wartości zmiennej losowej odległość

Przykład eksploracji danych o naturze statystycznej Próba 1 wartości zmiennej losowej odległość Dwie metody Klasyczna metoda histogramu jako narzędzie do postawienia hipotezy, jaki rozkład prawdopodobieństwa pasuje do danych Indukcja drzewa decyzyjnego jako metoda wykrycia klasyfikatora ukrytego

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

Imię, nazwisko, nr indeksu

Imię, nazwisko, nr indeksu Imię, nazwisko, nr indeksu (kod) (9 punktów) Wybierz 9 z poniższych pytań i wybierz odpowiedź tak/nie (bez uzasadnienia). Za prawidłowe odpowiedzi dajemy +1 punkt, za złe -1 punkt. Punkty policzymy za

Bardziej szczegółowo

Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak

Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak 1 Wprowadzenie. Zmienne losowe Podczas kursu interesować nas będzie wnioskowanie o rozpatrywanym zjawisku. Poprzez wnioskowanie rozumiemy

Bardziej szczegółowo

Schemat programowania dynamicznego (ang. dynamic programming)

Schemat programowania dynamicznego (ang. dynamic programming) Schemat programowania dynamicznego (ang. dynamic programming) Jest jedną z metod rozwiązywania problemów optymalizacyjnych. Jej twórcą (1957) był amerykański matematyk Richard Ernest Bellman. Schemat ten

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa

SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

ALGORYTMY INDUKCJI REGUŁ DECYZYJNYCH W ODKRYWANIU WIEDZY

ALGORYTMY INDUKCJI REGUŁ DECYZYJNYCH W ODKRYWANIU WIEDZY JERZY STEFANOWSKI ALGORYTMY INDUKCJI REGUŁ DECYZYJNYCH W ODKRYWANIU WIEDZY Rozprawa habilitacyjna Wersja z 8 lutego 2001 Wydane przez Wydawnictwo Politechniki Poznańskiej, Seria Rozprawy nr 361 4 Spis

Bardziej szczegółowo

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Systemy uczące się wykład 2

Systemy uczące się wykład 2 Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania

Bardziej szczegółowo

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L, Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Systemy decyzyjne. Wykład 3: Wnioskowanie Boolowskie w obliczeniu Redutów i reguł decyzyjnych. Nguyen Hung Son. Nguyen Hung Son () 1 / 61

Systemy decyzyjne. Wykład 3: Wnioskowanie Boolowskie w obliczeniu Redutów i reguł decyzyjnych. Nguyen Hung Son. Nguyen Hung Son () 1 / 61 Systemy decyzyjne Wykład 3: Wnioskowanie Boolowskie w obliczeniu Redutów i reguł decyzyjnych Nguyen Hung Son Nguyen Hung Son () 1 / 61 Spis treści 1 Wprowadzenie do teorii zbiorów przybliżonych Systemy

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny To się liczy! Branżowa Szkoła I stopnia, klasa 1 po szkole podstawowej

Wymagania edukacyjne na poszczególne oceny To się liczy! Branżowa Szkoła I stopnia, klasa 1 po szkole podstawowej Wymagania edukacyjne na poszczególne oceny To się liczy! Branżowa Szkoła I stopnia, klasa 1 po szkole podstawowej Wymagania dostosowano do sześciostopniowej skali ocen. I. Liczby rzeczywiste zna cechy

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

Wprowadzenie i pojęcia wstępne.

Wprowadzenie i pojęcia wstępne. Wprowadzenie i pojęcia wstępne. X\A a b c x 1 a 1 b 1 c 1 x 2 a 1 b 1 c 2 x 3 a 1 b 2 c 3 x 4 a 2 b 1 c 4 x 5 a 1 b 2 c 1 x 6 a 1 b 2 c 2 x 7 a 1 b 1 c 1 S = X = {x 1,,x 8 } A = {a, b, c}

Bardziej szczegółowo

SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization

SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization Wrocław University of Technology SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization Jakub M. Tomczak Studenckie Koło Naukowe Estymator jakub.tomczak@pwr.wroc.pl 4.1.213 Klasteryzacja Zmienne

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 01 Modele obliczeń Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 33 1 2 3 4 5 6 2 / 33 Co to znaczy obliczać? Co to znaczy obliczać? Deterministyczna maszyna Turinga

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów 5. Przybliżone metody rozwiązywania równań 5.1 Lokalizacja pierwiastków 5.2 Metoda bisekcji 5.3 Metoda iteracji 5.4 Metoda stycznych (Newtona) 5.5 Metoda

Bardziej szczegółowo

Algorytmy asymetryczne

Algorytmy asymetryczne Algorytmy asymetryczne Klucze występują w parach jeden do szyfrowania, drugi do deszyfrowania (niekiedy klucze mogą pracować zamiennie ) Opublikowanie jednego z kluczy nie zdradza drugiego, nawet gdy można

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się algorytmem gradientu prostego

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka Poznać, zrozumieć Kształcenie w zakresie podstawowym Klasa 1 (4 godziny tygodniowo) Poniżej podajemy umiejętności, jakie powinien

Bardziej szczegółowo

Systemy Wspomagania Decyzji

Systemy Wspomagania Decyzji Reguły Asocjacyjne Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności March 18, 2014 1 Wprowadzenie 2 Definicja 3 Szukanie reguł asocjacyjnych 4 Przykłady użycia 5 Podsumowanie Problem Lista

Bardziej szczegółowo

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych. Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem

Bardziej szczegółowo

Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych. Data Mining Wykład 2

Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych. Data Mining Wykład 2 Data Mining Wykład 2 Odkrywanie asocjacji Plan wykładu Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych Geneza problemu Geneza problemu odkrywania reguł

Bardziej szczegółowo

Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW NIEDETERMINISTYCZNE MASZYNY TURINGA Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 NIEDETERMINISTYCZNE MASZYNY TURINGA DEFINICJA: NIEDETERMINISTYCZNA

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

1. Reguły minimalne (optymalne) Podstawowe twierdzenia i definicje. Definicja 1 Funkcję postaci f. nazwiemy n-argumentową funkcją boolowską.

1. Reguły minimalne (optymalne) Podstawowe twierdzenia i definicje. Definicja 1 Funkcję postaci f. nazwiemy n-argumentową funkcją boolowską. 1. Reguły minimalne (optymalne) Podstawowe twierdzenia i definicje Definicja 1 Funkcję postaci f n :{ 0, 1} { 0, 1} nazwiemy n-argumentową funkcją boolowską. Definicja 2 1 2 Term g = x 1 x x ( ϕ ) ( ϕ

Bardziej szczegółowo

Agnieszka Nowak Brzezińska

Agnieszka Nowak Brzezińska Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia

Bardziej szczegółowo