PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

Wielkość: px
Rozpocząć pokaz od strony:

Download "PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych""

Transkrypt

1 PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1

2 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych w niej danych. Temporalne bazy danych są często administrowane automatycznie, poprzez usuwanie nieaktualnych danych lub ich archiwizowanie. 2

3 Perspektywy baz danych Rozwój rozproszonych baz danych Rozproszona baza danych - baza danych istniejąca fizycznie na dwóch lub większej liczbie komputerów, traktowana jednak jak jedna logiczna całość, dzięki czemu zmiany w zawartości bazy w jednym komputerze są uwzględniane również w innych maszynach. Rozproszone bazy danych są stosowane ze względu na zwiększoną wydajność przetwarzania na wielu komputerach jednocześnie. 3

4 Perspektywy baz danych Dedukcyjne bazy danych Dedukcyjnej bazy danych - W skład dedukcyjnej bazy danych wchodzą dwie bazy (lub grupy baz): Jedna zwana bazą faktów, jest typową bazą danych (taką jak np. relacyjna lub obiektowa), przechowującą trwale fakty określonego typu. Druga zwana bazą reguł wnioskowania, jest również typową bazą danych, z tym że przechowuje nie fakty lecz aksjomaty (reguły wnioskowania ). Zarówno dane jak i aksjomaty mogą być opisane w języku logiki zdań. Przykładem takiego języka jest Prolog lub Datalog (stworzony specjalnie dla dedukcyjnych baz danych). 4

5 Perspektywy baz danych Systemy eksperckie System ekspertowy (funkcjonują też nazwy system ekspercki) jest to program, lub zestaw programów komputerowych wspomagający korzystanie z wiedzy i ułatwiający podejmowanie decyzji. Systemy ekspertowe mogą wspomagać bądź zastępować ludzkich ekspertów w danej dziedzinie, mogą dostarczać rad, zaleceń i diagnoz dotyczących problemów tej dziedziny. W zasadzie są to bazy dedukcyjne. 5

6 Perspektywy baz danych Systemy eksperckie Przykładowe obszary zastosowań systemów eksperckich: diagnozowanie chorób udzielanie porad prawniczych prognozowanie pogody sterowania robotami, analiza notowań giełdowych 6

7 Perspektywy baz danych Hurtownie danych Hurtownia danych (ang. data warehouse) - rodzaj bazy danych, która jest zorganizowana i zoptymalizowana pod kątem pewnego wycinka rzeczywistości. W skład hurtowni wchodzą zbiory danych zorientowanych tematycznie (np. hurtownia danych klientów). Dane te często pochodzą z wielu źródeł, są one zintegrowane i przeznaczone wyłącznie do odczytu. W praktyce hurtownie są bazami danych integrującymi dane z wszystkich pozostałych systemów bazodanowych w firmie. Ta integracja polega na cyklicznym zasilaniu hurtowni danymi systemów produkcyjnych (może być tych baz lub systemów dużo i mogą być rozproszone). Architektura bazy hurtowni jest zorientowana na optymalizację szybkości wyszukiwania i jak najefektywniejszą analizę zawartości. 7

8 Perspektywy baz danych Data Mining Data Mining - Eksploracja danych (spotyka się również określenie drążenie danych, pozyskiwanie wiedzy, wydobywanie danych, ekstrakcja danych) to jeden z etapów procesu odkrywania wiedzy z baz danych. Istnieje wiele technik eksploracji danych, które wywodzą się z ugruntowanych dziedzin nauki takich jak statystyka i uczenie maszynowe. Idea eksploracji danych polega na wykorzystaniu szybkości komputera do znajdowania ukrytych dla człowieka prawidłowości w danych zgromadzonych np. w hurtowniach danych. 8 8

9 Perspektywy baz danych Data Mining Techniki i metody służące eksploracji danych wywodzą się głównie z obszaru badań nad sztuczną inteligencją. Główne przykłady stosowanych rozwiązań należą do następujących zakresów: metody statystyczne sieci neuronowe metody uczenia maszynowego metody ewolucyjne logika rozmyta zbiory przybliżone 9 9

10 Perspektywy baz danych Bazy rozmyte (Fuzzy database) Od 1995 roku datowana jest teoria zbiorów rozmytych. Podstawowym założeniem, leżącym u jej podstaw jest rozszerzenie tradycyjnego dla klasycznej teorii zbiorów pojęcia przynależności elementu do zbioru. Miejsce dwóch stanów, należy i nie należy, zastąpiła liczba z przedziału [0,1] określająca stopień przynależności danego elementu do określonego zbioru rozmytego. Każdy element zbioru rozmytego musi mieć określoną, przyporządkowaną wartość przynależności do zbioru. Przyporządkowanie to w teorii zbiorów rozmytych nosi nazwę funkcji przynależności. 10

11 Perspektywy baz danych Bazy rozmyte Jeśli więc przyjmiemy, że X reprezentuje i-elementowy rozmyty zbiór elementów to funkcja przynależności przyporządkowuje każdemu elementowi zbioru X stopień, w jakim należy on do zbioru rozmytego. Stopień ten wyraża się liczbą z przedziału [0,1], gdzie 0 oznacza zerową przynależność, a 1 całkowitą. Przykład. Poniższy rysunek przedstawia wykres przykładowej funkcji przynależności dla zbioru rozmytego A, będącego zbiorem liczb mniej więcej równych

12 Perspektywy baz danych Bazy przestrzenne Bazy przestrzenne do tworzenia modeli i danych przestrzennych. W Oracle istnieje moduł SPATIAL do obsługi takich danych. Zawiera on nawet pewne elementy programowania. Zastosowania: Opis map; 12

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2012 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę

Bardziej szczegółowo

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2007 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę

Bardziej szczegółowo

Hurtownia danych praktyczne zastosowania

Hurtownia danych praktyczne zastosowania Hurtownia danych praktyczne zastosowania Dorota Olkowicz dorota.olkowicz@its.waw.pl Centrum Bezpieczeństwa Ruchu Drogowego ITS Plan prezentacji 1. Hurtownie danych 2. Hurtownia danych POBR 3. Narzędzia

Bardziej szczegółowo

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do

Bardziej szczegółowo

Hurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH

Hurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH Wstęp. Architektura hurtowni. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH B. Inmon, 1996: Hurtownia to zbiór zintegrowanych, nieulotnych, ukierunkowanych

Bardziej szczegółowo

INFORMATYKA Pytania ogólne na egzamin dyplomowy

INFORMATYKA Pytania ogólne na egzamin dyplomowy INFORMATYKA Pytania ogólne na egzamin dyplomowy 1. Wyjaśnić pojęcia problem, algorytm. 2. Podać definicję złożoności czasowej. 3. Podać definicję złożoności pamięciowej. 4. Typy danych w języku C. 5. Instrukcja

Bardziej szczegółowo

Business Intelligence jako narzędzie do walki z praniem brudnych pieniędzy

Business Intelligence jako narzędzie do walki z praniem brudnych pieniędzy Business www.comarch.pl Intelligence jako narzędzie do walki z praniem brudnych pieniędzy Business Intelligence jako narzędzie do walki z praniem brudnych pieniędzy Tomasz Matysik Kołobrzeg, 19.11.2009

Bardziej szczegółowo

Wprowadzenie do technologii Business Intelligence i hurtowni danych

Wprowadzenie do technologii Business Intelligence i hurtowni danych Wprowadzenie do technologii Business Intelligence i hurtowni danych 1 Plan rozdziału 2 Wprowadzenie do Business Intelligence Hurtownie danych Produkty Oracle dla Business Intelligence Business Intelligence

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Systemy ekspertowe w zarządzaniu firmą Expert systems in enterprise management Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: Rodzaj zajęć: Wyk. Ćwicz. Lab. Sem. Proj.

Bardziej szczegółowo

Analiza internetowa czyli Internet jako hurtownia danych

Analiza internetowa czyli Internet jako hurtownia danych Analiza internetowa czyli Internet jako hurtownia danych Agenda 1. Hurtownie danych, eksploracja danych i OLAP 3. Internet 5. Analiza Internetowa 7. Google Analytics 9. Podsumowanie Hurtownie danych (definicja)

Bardziej szczegółowo

Specjalizacja magisterska Bazy danych

Specjalizacja magisterska Bazy danych Specjalizacja magisterska Bazy danych Strona Katedry http://bd.pjwstk.edu.pl/katedra/ Prezentacja dostępna pod adresem: http://www.bd.pjwstk.edu.pl/bazydanych.pdf Wymagania wstępne Znajomość podstaw języka

Bardziej szczegółowo

Systemy baz danych w zarządzaniu przedsiębiorstwem. W poszukiwaniu rozwiązania problemu, najbardziej pomocna jest znajomość odpowiedzi

Systemy baz danych w zarządzaniu przedsiębiorstwem. W poszukiwaniu rozwiązania problemu, najbardziej pomocna jest znajomość odpowiedzi Systemy baz danych w zarządzaniu przedsiębiorstwem W poszukiwaniu rozwiązania problemu, najbardziej pomocna jest znajomość odpowiedzi Proces zarządzania danymi Zarządzanie danymi obejmuje czynności: gromadzenie

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

Metadane. Data Maining. - wykład VII. Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006

Metadane. Data Maining. - wykład VII. Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Metadane. Data Maining. - wykład VII Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Plan 1. Metadane 2. Jakość danych 3. Eksploracja danych (Data mining) 4. Sprawy róŝne

Bardziej szczegółowo

Kierunek Informatyka stosowana Studia stacjonarne Studia pierwszego stopnia

Kierunek Informatyka stosowana Studia stacjonarne Studia pierwszego stopnia Studia pierwszego stopnia I rok Matematyka dyskretna 30 30 Egzamin 5 Analiza matematyczna 30 30 Egzamin 5 Algebra liniowa 30 30 Egzamin 5 Statystyka i rachunek prawdopodobieństwa 30 30 Egzamin 5 Opracowywanie

Bardziej szczegółowo

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2012 Zagadnienia do omówienia 1. Miejsce i rola w firmie 2. Przegląd architektury

Bardziej szczegółowo

Transformacja wiedzy w budowie i eksploatacji maszyn

Transformacja wiedzy w budowie i eksploatacji maszyn Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces

Bardziej szczegółowo

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel według przewidywań internetowego magazynu ZDNET News z 8 lutego 2001 roku eksploracja danych (ang. data mining ) będzie jednym z najbardziej rewolucyjnych osiągnięć następnej dekady. Rzeczywiście MIT Technology

Bardziej szczegółowo

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2008 Zagadnienia do omówienia 1. 2. Przegląd architektury HD 3. Warsztaty

Bardziej szczegółowo

Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym

Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym POLITECHNIKA WARSZAWSKA Instytut Technik Wytwarzania Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym Marcin Perzyk Dlaczego eksploracja danych?

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Systemy z bazą wiedzy (spojrzenie bardziej korporacyjne) Baza wiedzy. Baza wiedzy. Baza wiedzy. Baza wiedzy

Systemy z bazą wiedzy (spojrzenie bardziej korporacyjne) Baza wiedzy. Baza wiedzy. Baza wiedzy. Baza wiedzy Zarządzanie wiedzą z bazą wiedzy (spojrzenie bardziej korporacyjne) Wybrane aspekty technologiczne związane z wiedzą i zarządzaniem wiedzą Google: baza wiedzy 1,180,000 znalezionych systemy zarządzania

Bardziej szczegółowo

SPIS TREŚCI Funkcje systemu operacyjnego Zapewnia obsługę dialogu między użytkownikiem a komputerem Nadzoruje wymianę informacji między poszczególnymi urządzeniami systemu komputerowego Organizuje zapis

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Systemy ekspertowe Expert systems Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: Rodzaj zajęć: Wyk. Ćwicz. Lab. Sem. Proj. Poziom studiów: studia I stopnia forma studiów:

Bardziej szczegółowo

Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl

Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykładów Wprowadzenie - integracja

Bardziej szczegółowo

Hurtownie danych - przegląd technologii

Hurtownie danych - przegląd technologii Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykład adów Wprowadzenie - integracja

Bardziej szczegółowo

Bazy danych i ich aplikacje

Bazy danych i ich aplikacje ORAZ ZAPRASZAJĄ DO UDZIAŁU W STUDIACH PODYPLOMOWYCH Celem Studiów jest praktyczne zapoznanie słuchaczy z podstawowymi technikami tworzenia i administrowania bazami oraz systemami informacyjnymi. W trakcie

Bardziej szczegółowo

METODY ANALIZY DANYCH ORAZ PREZENTACJI INFORMACJI GEOPRZESTRZENNYCH

METODY ANALIZY DANYCH ORAZ PREZENTACJI INFORMACJI GEOPRZESTRZENNYCH METODY ANALIZY DANYCH ORAZ PREZENTACJI INFORMACJI GEOPRZESTRZENNYCH Tomasz POTEMPA Instytut Politechniczny, Zakład Informatyki Święto Uczelni Tarnów, 19 Maja 2011 1 Podsystemy 2 Usługi WMS, WFS, WCS oraz

Bardziej szczegółowo

Co to jest Business Intelligence?

Co to jest Business Intelligence? Cykl: Cykl: Czwartki z Business Intelligence Sesja: Co Co to jest Business Intelligence? Bartłomiej Graczyk 2010-05-06 1 Prelegenci cyklu... mariusz@ssas.pl lukasz@ssas.pl grzegorz@ssas.pl bartek@ssas.pl

Bardziej szczegółowo

w ekonomii, finansach i towaroznawstwie

w ekonomii, finansach i towaroznawstwie w ekonomii, finansach i towaroznawstwie spotykane określenia: zgłębianie danych, eksploracyjna analiza danych, przekopywanie danych, męczenie danych proces wykrywania zależności w zbiorach danych poprzez

Bardziej szczegółowo

Organizacja zajęć BAZY DANYCH II WYKŁAD 1. Plan wykładu. SZBD Oracle 2010-10-21

Organizacja zajęć BAZY DANYCH II WYKŁAD 1. Plan wykładu. SZBD Oracle 2010-10-21 Organizacja zajęć BAZY DANYCH II WYKŁAD 1 Wykładowca dr inż. Agnieszka Bołtuć, pokój 304, e-mail: aboltuc@ii.uwb.edu.pl Liczba godzin i forma zajęć: 15 godzin wykładu oraz 30 godzin laboratorium Konsultacje:

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych Rodzaj zajęć: wykład, laboratorium BAZY DANYCH I SYSTEMY EKSPERTOWE Database and expert systems Forma

Bardziej szczegółowo

Bazy danych 2. Wykład 1

Bazy danych 2. Wykład 1 Bazy danych 2 Wykład 1 Sprawy organizacyjne Materiały i listy zadań zamieszczane będą na stronie www.math.uni.opole.pl/~ajasi E-mail: standardowy ajasi@math.uni.opole.pl Sprawy organizacyjne Program wykładu

Bardziej szczegółowo

Matryca pokrycia efektów kształcenia

Matryca pokrycia efektów kształcenia Matryca pokrycia efektów kształcenia Matryca dla przedmiotów realizowanych na kierunku Informatyka (z wyłączeniem przedmiotów realizowanych w ramach specjalności oraz przedmiotów swobodnego wyboru) Efekty

Bardziej szczegółowo

Rozmyte systemy doradcze

Rozmyte systemy doradcze Systemy ekspertowe Rozmyte systemy doradcze Plan. Co to jest myślenie rozmyte? 2. Teoria zbiorów rozmytych. 3. Zmienne lingwistyczne. 4. Reguły rozmyte. 5. Wnioskowanie rozmyte (systemy doradcze). typu

Bardziej szczegółowo

I rok. semestr 1 semestr 2 15 tyg. 15 tyg. Razem ECTS. laborat. semin. ECTS. konwer. wykł. I rok. w tym. Razem ECTS. laborat. semin. ECTS. konwer.

I rok. semestr 1 semestr 2 15 tyg. 15 tyg. Razem ECTS. laborat. semin. ECTS. konwer. wykł. I rok. w tym. Razem ECTS. laborat. semin. ECTS. konwer. Wydział Informatyki i Nauki o Materiałach Kierunek Informatyka studia I stopnia inżynierskie studia stacjonarne 08- IO1S-13 od roku akademickiego 2015/2016 A Lp GRUPA TREŚCI PODSTAWOWYCH kod Nazwa modułu

Bardziej szczegółowo

Wykład I. Wprowadzenie do baz danych

Wykład I. Wprowadzenie do baz danych Wykład I Wprowadzenie do baz danych Trochę historii Pierwsze znane użycie terminu baza danych miało miejsce w listopadzie w 1963 roku. W latach sześcdziesątych XX wieku został opracowany przez Charles

Bardziej szczegółowo

Systemy GIS Systemy baz danych

Systemy GIS Systemy baz danych Systemy GIS Systemy baz danych Wykład nr 5 System baz danych Skomputeryzowany system przechowywania danych/informacji zorganizowanych w pliki Użytkownik ma do dyspozycji narzędzia do wykonywania różnych

Bardziej szczegółowo

Normy serii ISO 19100 w geodezji i geoinformatyce

Normy serii ISO 19100 w geodezji i geoinformatyce Akademia Rolnicza we Wrocławiu Normy serii ISO 19100 w geodezji i geoinformatyce Adam Iwaniak Alina Kmiecik Nowoczesne ODGIK - utopia czy rzeczywistość, Wisła 13-15 października 2006 Lata 80te Spectrum,

Bardziej szczegółowo

Usługi analityczne budowa kostki analitycznej Część pierwsza.

Usługi analityczne budowa kostki analitycznej Część pierwsza. Usługi analityczne budowa kostki analitycznej Część pierwsza. Wprowadzenie W wielu dziedzinach działalności człowieka analiza zebranych danych jest jednym z najważniejszych mechanizmów podejmowania decyzji.

Bardziej szczegółowo

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia

Bardziej szczegółowo

INŻYNIERIA OPROGRAMOWANIA

INŻYNIERIA OPROGRAMOWANIA INSTYTUT INFORMATYKI STOSOWANEJ 2013 INŻYNIERIA OPROGRAMOWANIA Inżynieria Oprogramowania Proces ukierunkowany na wytworzenie oprogramowania Jak? Kto? Kiedy? Co? W jaki sposób? Metodyka Zespół Narzędzia

Bardziej szczegółowo

SZKOLENIE: Administrator baz danych. Cel szkolenia

SZKOLENIE: Administrator baz danych. Cel szkolenia SZKOLENIE: Administrator baz danych. Cel szkolenia Kurs Administrator baz danych skierowany jest przede wszystkim do osób zamierzających rozwijać umiejętności w zakresie administrowania bazami danych.

Bardziej szczegółowo

RAMOWY PROGRAM STUDIÓW NA KIERUNKU INFORMATYKA STUDIA INŻYNIERSKIE SEMESTR: I

RAMOWY PROGRAM STUDIÓW NA KIERUNKU INFORMATYKA STUDIA INŻYNIERSKIE SEMESTR: I SEMESTR: I 1. Język angielski Z 18 1 PRZEDMIOTY PODSTAWOWE 1. Analiza matematyczna i algebra liniowa E Z 30 15 5 2. Podstawy elektrotechniki Z 10 1 3. Podstawy elektroniki i miernictwa 1 Z 10 2 1. Podstawy

Bardziej szczegółowo

Bazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych

Bazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych Plan wykładu Bazy Wykład 14: Hurtownie Bazy operacyjne i analityczne Architektura hurtowni Projektowanie hurtowni Małgorzata Krętowska, Agnieszka Oniśko Wydział Informatyki PB Bazy (studia dzienne) 2 Rodzaje

Bardziej szczegółowo

STUDIA STACJONARNE Przedmioty kierunkowe

STUDIA STACJONARNE Przedmioty kierunkowe STUDIA STACJONARNE Przedmioty kierunkowe Programowanie komputerów Dr Jakub Swacha 1. Rekurencja a iteracja w programach 2. Klasyfikacja języków programowania 3. Różnice między kompilacją a interpretacją

Bardziej szczegółowo

T2A_W01 T2A_W01 T2A_W02 3 SI_W03 Posiada szeroką wiedzę w zakresie teorii grafów T2A_W01

T2A_W01 T2A_W01 T2A_W02 3 SI_W03 Posiada szeroką wiedzę w zakresie teorii grafów T2A_W01 Efekty dla studiów drugiego stopnia profil ogólnoakademicki, na kierunku Informatyka w języku polskim, na specjalnościach Metody sztucznej inteligencji oraz Projektowanie systemów CAD/CAM, na Wydziale

Bardziej szczegółowo

Katedra Systemów Decyzyjnych. Kierownik: prof. dr hab. inż. Zdzisław Kowalczuk ksd@eti.pg.gda.pl

Katedra Systemów Decyzyjnych. Kierownik: prof. dr hab. inż. Zdzisław Kowalczuk ksd@eti.pg.gda.pl Katedra Systemów Decyzyjnych Kierownik: prof. dr hab. inż. Zdzisław Kowalczuk ksd@eti.pg.gda.pl 2010 Kadra KSD profesor zwyczajny 6 adiunktów, w tym 1 z habilitacją 4 asystentów 7 doktorantów Wydział Elektroniki,

Bardziej szczegółowo

ROZDZIAŁ 1. WPROWADZENIE DO PROBLEMATYKI SYSTEMÓW EKSPERTOWYCH 19

ROZDZIAŁ 1. WPROWADZENIE DO PROBLEMATYKI SYSTEMÓW EKSPERTOWYCH 19 SPIS TREŚCI WSTĘP 15 ROZDZIAŁ 1. WPROWADZENIE DO PROBLEMATYKI SYSTEMÓW EKSPERTOWYCH 19 1.1. Pojęcie i rozwój systemów ekspertowych 19 1.1.1. Definiowanie systemu ekspertowego w literaturze przedmiotu 20

Bardziej szczegółowo

Kierownik Katedry: Prof. dr hab. inż. Tadeusz BURCZYŃSKI

Kierownik Katedry: Prof. dr hab. inż. Tadeusz BURCZYŃSKI Kierownik Katedry: Prof. dr hab. inż. Tadeusz BURCZYŃSKI Zakład Inteligentnych Systemów Obliczeniowych RMT4-3 Kierownik Zakładu: Prof. dr hab. inż. Tadeusz BURCZYŃSKI Zakład Metod Numerycznych w Termomechanice

Bardziej szczegółowo

Algorytmy i bazy danych (wykład obowiązkowy dla wszystkich)

Algorytmy i bazy danych (wykład obowiązkowy dla wszystkich) MATEMATYKA I EKONOMIA PROGRAM STUDIÓW DLA II STOPNIA Data: 2010-11-07 Opracowali: Krzysztof Rykaczewski Paweł Umiński Streszczenie: Poniższe opracowanie przedstawia projekt planu studiów II stopnia na

Bardziej szczegółowo

RELACYJNE BAZY DANYCH

RELACYJNE BAZY DANYCH RELACYJNE BAZY DANYCH Aleksander Łuczyk Bielsko-Biała, 15 kwiecień 2015 r. Ludzie używają baz danych każdego dnia. Książka telefoniczna, zbiór wizytówek przypiętych nad biurkiem, encyklopedia czy chociażby

Bardziej szczegółowo

Oracle11g: Wprowadzenie do SQL

Oracle11g: Wprowadzenie do SQL Oracle11g: Wprowadzenie do SQL OPIS: Kurs ten oferuje uczestnikom wprowadzenie do technologii bazy Oracle11g, koncepcji bazy relacyjnej i efektywnego języka programowania o nazwie SQL. Kurs dostarczy twórcom

Bardziej szczegółowo

Logika rozmyta typu 2

Logika rozmyta typu 2 Logika rozmyta typu 2 Zbiory rozmyte Funkcja przynależności Interwałowe zbiory rozmyte Funkcje przynależności przedziałów Zastosowanie.9.5 Francuz Polak Niemiec Arytmetyka przedziałów Operacje zbiorowe

Bardziej szczegółowo

Zatwierdzono na Radzie Wydziału w dniu 11 czerwca 2015 r.

Zatwierdzono na Radzie Wydziału w dniu 11 czerwca 2015 r. PLAN STUDIÓW DLA KIERUNKU INFORMATYKA STUDIA: INŻYNIERSKIE TRYB STUDIÓW: STACJONARNE Zatwierdzono na Radzie Wydziału w dniu 11 czerwca 201 r. Egzamin po semestrze Obowiązuje od naboru na rok akademicki

Bardziej szczegółowo

PLAN STUDIÓW. Zał. nr 3 do ZW 33/2012. Załącznik nr 1 do Programu studiów. WYDZIAŁ: Informatyki i Zarządzania. KIERUNEK: Informatyka

PLAN STUDIÓW. Zał. nr 3 do ZW 33/2012. Załącznik nr 1 do Programu studiów. WYDZIAŁ: Informatyki i Zarządzania. KIERUNEK: Informatyka Zał. nr do ZW /2012 Załącznik nr 1 do Programu studiów PLAN STUDIÓW WYDZIAŁ: Informatyki i Zarządzania KIERUNEK: Informatyka POZIOM KSZTAŁCENIA: I / II * stopień, studia licencjackie / inżynierskie / magisterskie*

Bardziej szczegółowo

Bazy Danych. C. J. Date, Wprowadzenie do systemów baz danych, WNT - W-wa, (seria: Klasyka Informatyki), 2000

Bazy Danych. C. J. Date, Wprowadzenie do systemów baz danych, WNT - W-wa, (seria: Klasyka Informatyki), 2000 Bazy Danych LITERATURA C. J. Date, Wprowadzenie do systemów baz danych, WNT - W-wa, (seria: Klasyka Informatyki), 2000 J. D. Ullman, Systemy baz danych, WNT - W-wa, 1998 J. D. Ullman, J. Widom, Podstawowy

Bardziej szczegółowo

Grupy pytań na egzamin magisterski na kierunku Informatyka (dla studentów niestacjonarnych studiów II stopnia)

Grupy pytań na egzamin magisterski na kierunku Informatyka (dla studentów niestacjonarnych studiów II stopnia) Grupy pytań na egzamin magisterski na kierunku Informatyka (dla studentów niestacjonarnych studiów II stopnia) WERSJA WSTĘPNA, BRAK PRZYKŁADOWYCH PYTAŃ DLA NIEKTÓRYCH PRZEDMIOTÓW Należy wybrać trzy dowolne

Bardziej szczegółowo

Zaawansowane bazy danych i hurtownie danych Wydział Informatyki Politechnika Białostocka

Zaawansowane bazy danych i hurtownie danych Wydział Informatyki Politechnika Białostocka Zaawansowane bazy danych i hurtownie danych Wydział Informatyki Politechnika Białostocka wiosna 2014 Prowadzący: Agnieszka Oniśko-Drużdżel, Marek J. Drużdżel pokój: 207, Wiejska 45A telefon: 85-746 9086

Bardziej szczegółowo

Nowoczesne techniki informatyczne Program: 1. Sztuczna inteligencja. a) definicja; b) podział: Systemy ekspertowe Algorytmy ewolucyjne Logika rozmyta Sztuczne sieci neuronowe c) historia; 2. Systemy eksperckie

Bardziej szczegółowo

System informatyczny zdalnego egzaminowania

System informatyczny zdalnego egzaminowania System informatyczny zdalnego egzaminowania - strategia, logika systemu, architektura, ewaluacja (platforma informatyczna e-matura) redakcja Sławomir Wiak Konrad Szumigaj Redakcja: prof. dr hab. inż. Sławomir

Bardziej szczegółowo

Każdy system GIS składa się z: - danych - sprzętu komputerowego - oprogramowania - twórców i użytkowników

Każdy system GIS składa się z: - danych - sprzętu komputerowego - oprogramowania - twórców i użytkowników System Informacji Geograficznej (GIS: ang. Geographic Information System) system informacyjny służący do wprowadzania, gromadzenia, przetwarzania oraz wizualizacji danych geograficznych. Najbardziej oczywistą

Bardziej szczegółowo

Hurtownie danych czyli jak zapewnić dostęp do wiedzy tkwiącej w danych

Hurtownie danych czyli jak zapewnić dostęp do wiedzy tkwiącej w danych Hurtownie danych czyli jak zapewnić dostęp do wiedzy tkwiącej w danych Rodzaj zajęć: Wszechnica Popołudniowa Tytuł: Hurtownie danych czyli jak zapewnić dostęp do wiedzy tkwiącej w danych Autor: mgr inż.

Bardziej szczegółowo

Podstawowe pakiety komputerowe wykorzystywane w zarządzaniu przedsiębiorstwem. dr Jakub Boratyński. pok. A38

Podstawowe pakiety komputerowe wykorzystywane w zarządzaniu przedsiębiorstwem. dr Jakub Boratyński. pok. A38 Podstawowe pakiety komputerowe wykorzystywane w zarządzaniu przedsiębiorstwem zajęcia 1 dr Jakub Boratyński pok. A38 Program zajęć Bazy danych jako podstawowy element systemów informatycznych wykorzystywanych

Bardziej szczegółowo

Alicja Marszałek Różne rodzaje baz danych

Alicja Marszałek Różne rodzaje baz danych Alicja Marszałek Różne rodzaje baz danych Rodzaje baz danych Bazy danych można podzielić wg struktur organizacji danych, których używają. Można podzielić je na: Bazy proste Bazy złożone Bazy proste Bazy

Bardziej szczegółowo

Wrocławska Wyższa Szkoła Informatyki Stosowanej. Bazy danych. Dr hab. inż. Krzysztof Pieczarka. Email: krzysztof.pieczarka@gmail.

Wrocławska Wyższa Szkoła Informatyki Stosowanej. Bazy danych. Dr hab. inż. Krzysztof Pieczarka. Email: krzysztof.pieczarka@gmail. Wrocławska Wyższa Szkoła Informatyki Stosowanej Bazy danych Dr hab. inż. Krzysztof Pieczarka Email: krzysztof.pieczarka@gmail.com Literatura: Connoly T., Begg C., Systemy baz danych Praktyczne metody projektowania,

Bardziej szczegółowo

Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego

Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis Elementy uczenia maszynowego Literatura [1] Bolc L., Zaremba

Bardziej szczegółowo

Włodzimierz Dąbrowski, Przemysław Kowalczuk, Konrad Markowski. Bazy danych ITA-101. Wersja 1

Włodzimierz Dąbrowski, Przemysław Kowalczuk, Konrad Markowski. Bazy danych ITA-101. Wersja 1 Włodzimierz Dąbrowski, Przemysław Kowalczuk, Konrad Markowski Bazy danych ITA-101 Wersja 1 Warszawa, wrzesień 2009 Wprowadzenie Informacje o kursie Opis kursu We współczesnej informatyce coraz większą

Bardziej szczegółowo

Prezentacja specjalności studiów II stopnia. Inteligentne Technologie Internetowe

Prezentacja specjalności studiów II stopnia. Inteligentne Technologie Internetowe Prezentacja specjalności studiów II stopnia Inteligentne Technologie Internetowe Koordynator specjalności Prof. dr hab. Jarosław Stepaniuk Tematyka studiów Internet jako zbiór informacji Przetwarzanie:

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE DIAGNOSTYKĘ MEDYCZNĄ Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj zajęć: wykład, projekt

Bardziej szczegółowo

Ekspert MS SQL Server Oferta nr 00/08

Ekspert MS SQL Server Oferta nr 00/08 Ekspert MS SQL Server NAZWA STANOWISKA Ekspert Lokalizacja/ Jednostka organ.: Pion Informatyki, Biuro Hurtowni Danych i Aplikacji Wspierających, Zespół Jakości Oprogramowania i Utrzymania Aplikacji Szczecin,

Bardziej szczegółowo

Sterowanie z wykorzystaniem logiki rozmytej

Sterowanie z wykorzystaniem logiki rozmytej Sterowanie z wykorzystaniem logiki rozmytej konspekt seminarium Paweł Szołtysek 24 stycznia 2009 1 Wstęp 1.1 Podstawy logiki rozmytej Logika rozmyta jest rodzajem logiki wielowartościowej, stanowi uogólnienie

Bardziej szczegółowo

Hurtownie danych a transakcyjne bazy danych

Hurtownie danych a transakcyjne bazy danych Hurtownie danych a transakcyjne bazy danych Materiały źródłowe do wykładu: [1] Jerzy Surma, Business Intelligence. Systemy wspomagania decyzji, Wydawnictwo Naukowe PWN, Warszawa 2009 [2] Arkadiusz Januszewski,

Bardziej szczegółowo

WYKAZ OSÓB które będą uczestniczyć w wykonywaniu zamówienia

WYKAZ OSÓB które będą uczestniczyć w wykonywaniu zamówienia Załącznik nr 5 do SIWZ znak sprawy:45/di/pn/2011 WYKAZ OSÓB które będą uczestniczyć w wykonywaniu zamówienia 1 Wymagane kwalifikacje zawodowe, doświadczenie i wykształcenie niezbędne do wykonania zamówienia

Bardziej szczegółowo

Baza danych. Modele danych

Baza danych. Modele danych Rola baz danych Systemy informatyczne stosowane w obsłudze działalności gospodarczej pełnią funkcję polegającą na gromadzeniu i przetwarzaniu danych. Typowe operacje wykonywane na danych w systemach ewidencyjno-sprawozdawczych

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Bazy danych Database Kierunek: Rodzaj przedmiotu: obieralny Rodzaj zajęć: wykład, laboratorium Matematyka Poziom kwalifikacji: I stopnia Liczba godzin/tydzień: 2W, 2L Semestr: III Liczba

Bardziej szczegółowo

Cel przedmiotu. Wymagania wstępne w zakresie wiedzy, umiejętności i innych kompetencji 1 Język angielski 2 Inżynieria oprogramowania

Cel przedmiotu. Wymagania wstępne w zakresie wiedzy, umiejętności i innych kompetencji 1 Język angielski 2 Inżynieria oprogramowania Przedmiot: Bazy danych Rok: III Semestr: V Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 30 21 Ćwiczenia Laboratorium 30 21 Projekt Liczba punktów ECTS: 4 C1 C2 C3 Cel przedmiotu

Bardziej szczegółowo

INSTYTUT NAUK EKONOMICZNYCH I INFORMATYKI Rozkład zajęć, Semestr zimowy, Kierunek INFORMATYKA PONIEDZIAŁEK

INSTYTUT NAUK EKONOMICZNYCH I INFORMATYKI Rozkład zajęć, Semestr zimowy, Kierunek INFORMATYKA PONIEDZIAŁEK PONIEDZIAŁEK Automaty i języki formalne (W) informatycznym (W) Algebra liniowa z geometrią 1 (W) dr R. Kamocki Automaty i języki formalne Analiza matematyczna 2 (W) Analiza matematyczna 2 informatycznym

Bardziej szczegółowo

Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych

Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych PRZEDMIOT (liczba godzin konwersatoriów/ćwiczeń) Statystyka opisowa z elementami analizy regresji (4/19) Wnioskowanie

Bardziej szczegółowo

Modernizacja systemu gromadzenia i przetwarzania informacji hydrogeologicznych

Modernizacja systemu gromadzenia i przetwarzania informacji hydrogeologicznych 151 Dział tematyczny VII: Modernizacja systemu gromadzenia i przetwarzania informacji hydrogeologicznych 152 Zadanie 31 System przetwarzania danych PSH - rozbudowa aplikacji do gromadzenia i przetwarzania

Bardziej szczegółowo

TWORZENIE BAZ WIEDZY W SYSTEMACH EKSPERTOWYCH GOSPODAROWANIA MAJĄTKIEM OBROTOWYM PREDSIĘBIORSTWA

TWORZENIE BAZ WIEDZY W SYSTEMACH EKSPERTOWYCH GOSPODAROWANIA MAJĄTKIEM OBROTOWYM PREDSIĘBIORSTWA TWORZENIE BAZ WIEDZY W SYSTEMACH EKSPERTOWYCH GOSPODAROWANIA MAJĄTKIEM OBROTOWYM PREDSIĘBIORSTWA Leszek Kiełtyka, Waldemar Jędrzejczyk Wprowadzenie Systemy ekspertowe (SE) są to komputerowe programy konsultacyjne,

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium BAZY DANYCH Databases Forma studiów: Stacjonarne

Bardziej szczegółowo

Kurs logiki rozmytej - zadania. Wojciech Szybisty

Kurs logiki rozmytej - zadania. Wojciech Szybisty Kurs logiki rozmytej - zadania Wojciech Szybisty 2009 Spis treści 1 Zadania - zbiory rozmyte 3 2 Zadania - relacje rozmyte 6 3 Zadania - logika rozmyta 11 1 Zadania - zbiory rozmyte 3 Przykłady rozwiązywania

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

Plan prezentacji 0 Wprowadzenie 0 Zastosowania 0 Przykładowe metody 0 Zagadnienia poboczne 0 Przyszłość 0 Podsumowanie 7 Jak powstaje wiedza? Dane Informacje Wiedza Zrozumienie 8 Przykład Teleskop Hubble

Bardziej szczegółowo

Integracja systemów transakcyjnych

Integracja systemów transakcyjnych Integracja systemów transakcyjnych Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Problematyka i architektury integracji danych

Bardziej szczegółowo

System Obsługi Wniosków

System Obsługi Wniosków System Obsługi Wniosków Wersja 2.0 1 System Obsługi Wniosków wersja 2.0 System Obsługi Wniosków to nowoczesne rozwiązanie wspierające proces obsługi wniosków o produkty bankowe. Pozwala na przyjmowanie,

Bardziej szczegółowo

LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów

LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów Łukasz Piątek, Jerzy W. Grzymała-Busse Katedra Systemów Ekspertowych i Sztucznej Inteligencji, Wydział Informatyki

Bardziej szczegółowo

11. INFORMATYCZNE WSPARCIE LOGISTYKI

11. INFORMATYCZNE WSPARCIE LOGISTYKI 11. INFORMATYCZNE WSPARCIE LOGISTYKI 56 11.1. Informacja i jej przetwarzanie Do zarządzania dowolną organizacją potrzebna jest określona informacja. Według Cz. Cempla: informacja to zawartość przekazu

Bardziej szczegółowo

Spis treści. O autorach... 12

Spis treści. O autorach... 12 Księgarnia PWN: Rick Greenwald, Robert Stackowiak, Jonathan Stern - Oracle Database 11g. To co najważniejsze Spis treści O autorach... 12 Wstęp... 13 Cele książki... 14 Czytelnicy książki... 15 O czwartym

Bardziej szczegółowo

BD2 BazyDanych2. dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego

BD2 BazyDanych2. dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego BD2 BazyDanych2 dr inż. Tomasz Traczyk 14. Systemy przetwarzania analitycznego ³ Copyright c Tomasz Traczyk Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej Materiały dydaktyczne

Bardziej szczegółowo

HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego

HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego http://www.jakubw.pl/zajecia/hur/bi.pdf http://www.jakubw.pl/zajecia/hur/dw.pdf http://www.jakubw.pl/zajecia/hur/dm.pdf http://www.jakubw.pl/zajecia/hur/

Bardziej szczegółowo

Zintegrowane Systemy Informatyczne analiza, projektowanie, wdrażanie

Zintegrowane Systemy Informatyczne analiza, projektowanie, wdrażanie dr hab. Grzegorz Bartoszewicz, prof. nadzw. UEP Katedra Informatyki Ekonomicznej Zintegrowane Systemy Informatyczne analiza, projektowanie, wdrażanie Tematyka seminarium związana jest z wykorzystaniem

Bardziej szczegółowo

Informatyka w zarządzaniu. Wstęp do informatyki. Dr inż. Andrzej Czerepicki WSM, 2015

Informatyka w zarządzaniu. Wstęp do informatyki. Dr inż. Andrzej Czerepicki WSM, 2015 Informatyka w zarządzaniu Wstęp do informatyki Dr inż. Andrzej Czerepicki WSM, 2015 Plan wykładu Wprowadzenie. Pojęcie Informatyki Systemy informatyczne w zarządzaniu. Przeznaczenie, charakterystyki oraz

Bardziej szczegółowo

OdświeŜanie hurtownie danych - wykład IV. Zagadnienia do omówienia. Wprowadzenie

OdświeŜanie hurtownie danych - wykład IV. Zagadnienia do omówienia. Wprowadzenie OdświeŜanie hurtownie danych - wykład IV Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006/2007 Zagadnienia do omówienia 1. Wprowadzenie 2. Klasyfikacja źródeł danych 3. Wymagania

Bardziej szczegółowo

Efekty kształcenia wymagane do podjęcia studiów 2 stopnia na kierunku Informatyka

Efekty kształcenia wymagane do podjęcia studiów 2 stopnia na kierunku Informatyka Efekty kształcenia wymagane do podjęcia studiów 2 stopnia na kierunku Informatyka Test kwalifikacyjny obejmuje weryfikację efektów kształcenia oznaczonych kolorem szarym, efektów: K_W4 (!), K_W11-12, K_W15-16,

Bardziej szczegółowo

Konferencja Hurtownia danych podstawą efektywnych decyzji

Konferencja Hurtownia danych podstawą efektywnych decyzji Konferencja Hurtownia danych podstawą efektywnych decyzji 21 lutego 2008 r., w Warszawie przy ulicy Daimlera 1 odbyła się konferencja poświęcona tematyce Hurtowni Danych. Bardzo dobra organizacja i profesjonalizm

Bardziej szczegółowo

Migracja Business Intelligence do wersji 11.0

Migracja Business Intelligence do wersji 11.0 Migracja Business Intelligence do wersji 11.0 Copyright 2012 COMARCH Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest

Bardziej szczegółowo

Praca dyplomowa magisterska

Praca dyplomowa magisterska KATEDRA WYTRZYMAŁOŚCI MATERIAŁÓW I METOD KOMPUTEROWYCH MECHANIKI Wydział Mechaniczny Technologiczny POLITECHNIKA ŚLĄSKA W GLIWICACH Praca dyplomowa magisterska Temat: Komputerowy system wspomagania wiedzy:

Bardziej szczegółowo