Data mininig i wielowymiarowa analiza danych zgromadzonych w systemach medycznych na potrzeby badań naukowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Data mininig i wielowymiarowa analiza danych zgromadzonych w systemach medycznych na potrzeby badań naukowych"

Transkrypt

1 Temat: Data mininig i wielowymiarowa analiza danych zgromadzonych w systemach medycznych na potrzeby badań naukowych Autorzy: Tomasz Małyszko, Edyta Łukasik 1. Definicja eksploracji danych Eksploracja danych (ang. data mining), nazywana często potocznie odkrywaniem wiedzy w bazach danych (ang. knowledge discovery in databases), jest jedną z najdynamiczniej i najintensywniej rozwijanych dziedzin informatyki w ostatnim czasie. Integruje wiele dyscyplin takich jak: statystyka, systemy baz danych, sztuczna inteligencja, optymalizacja, obliczenia równoległe. Olbrzymie zainteresowanie eksploracją danych wynika z faktu, że szereg przedsiębiorstw, instytucji administracji publicznej czy wreszcie ośrodków naukowych nagromadziło w ostatnim czasie bardzo wiele danych przechowywanych w zakładowych bazach danych i stanęło przed problemem, w jaki sposób efektywnie i racjonalnie wykorzystać nagromadzoną w tych bazach wiedzę dla celów wspomagania swojej działalności biznesowej. Zagadnienie eksploracji danych jest niezwykle rozległe i obejmuje różne dyscypliny naukowe. Definicji tego pojęcia jest co najmniej kilka, poniżej zostały przytoczone dwie z funkcjonujących w literaturze: Eksploracja danych jest analizą zbiorów danych obserwacyjnych w celu znalezienia nieoczekiwanych związków i podsumowania danych w oryginalny sposób tak, aby były zarówno zrozumiałe, jak i przydatne dla ich właściciela. Eksploracja danych jest procesem odkrywania znaczących nowych powiązań, wzorców i trendów przez przeszukiwanie dużych ilości danych zgromadzonych w skarbnicach danych, przy wykorzystaniu metod rozpoznawania wzorców, jak również metod statystycznych i matematycznych.

2 2. Zagadnienia wykonywane w eksploracji danych Poniższa lista zawiera zagadnienia, które najczęściej są wykorzystywane podczas eksplorowania danych: opis dokonywany jest opis wzorców i trendów, który często pozwala na zrozumienia zależności między nimi. Wyniki eksploracji danych powinny opisywać jasne wzorce, które można w prosty sposób zinterpretować i wyjaśnić; szacowanie jest podobne do klasyfikacji, z wyjątkiem charakteru zmiennej celu, który jest numeryczny, a nie jakościowy. Modele są budowane za pomocą pełnych rekordów, zawierających zarówno wartości zmiennej celu, jak i zmiennych estymacji. Następnie dla nowych obserwacji szacuje się wartość zmiennej celu, opierając się na wartościach zmiennych opisujących; przewidywanie jest zbliżone do klasyfikacji i szacowania, poza tym, że w przewidywaniu wynik dotyczy przyszłości. Metody stosowane do klasyfikacji i szacowania przy zachowaniu odpowiednich warunków mogą być stosowane przy przewidywaniu; klasyfikacja przy tej operacji kluczowe znaczenie ma jakościowa zmienna celu. Może ona zostać podzielona na kilka klas lub kategorii. Algorytm klasyfikacyjny najpierw uczy się na danym zbiorze danych i na tej podstawie podejmuje decyzję do której kategorii zakwalifikować badane dane; grupowanie oznacza grupowanie obserwacji (rekordów) w klasy podobnych obiektów. Grupa jest zbiorem podobnych rekordów, które są podobne do siebie nawzajem oraz niepodobne do rekordów z innych grup. Grupowanie różni się od klasyfikacji tym, że w przypadku grupowania nie ma zmiennej celu; odkrywanie reguł proces ten polega na szukaniu, które atrybuty są ze sobą powiązane. Wykorzystywane są często w analizie podobieństw lub analizie koszyka sklepowego. Zadaniem odkrywania reguł jest poznawanie nowych związków ilościowych między dwoma lub większą ilością atrybutów.

3 3. Metodyka CRISP-DM Obecne podejście do eksploracji danych powinno być następujące: zamiast dopasowywać ludzi do eksploracji danych, powinno się zastanowić, jak można zaprojektować eksplorację danych jako bardzo ludzki proces rozwiązywania problemów. Obecnie potężna moc, jaka drzemie w algorytmach eksploracji danych, dostępna jest na zasadzie czarnej skrzynki. Takie podejście powoduje, że łatwo można doprowadzić do niewłaściwego zastosowania tych narzędzi, co powoduje otrzymanie błędnych wyników. Z tej przyczyny wymagane jest poznanie statystycznych podstaw tych zagadnień oraz usystematyzowanie procesu przy pomocy posługiwania się stworzoną dla tego celu metodyką. W wielu przedsiębiorstwach z powodu ich sztywnej struktury podchodzi się do zagadnienia eksploracji danych w sposób chaotyczny, co powoduje powstanie efektu wywarzania otwartych drzwi. Narodziła się potrzeba usystematyzowania tego procesu niezależnie od rodzaju przemysłu, przedsiębiorstwa itp. Powstała metodyka CRISP-DM (ang. Cross-Industry Standard Process for Data Mining) dostarczająca ogólnie dostępny standardowy sposób dopasowania eksploracji danych do ogólnej strategii rozwiązywania problemów jednostki biznesowej lub badawczej. Zgodnie z tą metodologią proces życia danego projektu eksploracji danych składa się z sześciu etapów: zrozumienie uwarunkowań biznesowych/badawczych; zrozumienie danych; przygotowanie danych; modelowanie; ewaluacja; wdrożenie. Kolejność faz można dopasować. To znaczy, że następny w kolejności etap często zależy od wyników z poprzedniego etapu. Schemat powiązań w CRISP-DM przedstawiono na rysunku 1.

4 Rys. 1. Zależności zachodzące w CRISP-DM[3] Iteracyjny charakter tej metodologii jest symbolizowany przez zewnętrzny okrąg w kolorze granatowym przedstawiony na rysunku 1. Często rozwiązywanie danego problemu biznesowego prowadzi do odkrywania interesujących kwestii dla których również można zastosować ten sam plan, co poprzednio. 4. Obróbka danych Większość danych przechowywanych w bazach danych jest nieobrobiona, niekompletna i zaszumiona. Przykładowe nieoczekiwane wartości, jakie mogą znaleźć się w bazie danych: pola przestarzałe; niepełne rekordy; punkty oddalone; dane w niepoprawnym formacie; wartości sprzeczne. W tabeli 1 przedstawione zostały przykładowe dane, dla których nie można poprawnie przeprowadzić procesu eksploracji danych.

5 Tabela 1. Zawartość bazy z niepoprawnymi danymi ID Kod pocztowy Wiek Płeć Dochód Kwota operacji K M aaaaa M K KL-ABD C M M K M Analizując tą tabelę można napotkać na wiele problemów. Nasuwają się one już na pierwszy rzut oka. Jednym z wymagań stawianym użytkownikowi podczas eksplorowania danych jest zrozumienie ich. Proces eksploracji danych nie jest automatem, który w cudowny sposób wydaje satysfakcjonujące wyniki. Przed przetwarzaniem danych należy odpowiednio przygotować dane w taki sposób, aby algorytm nie musiał podejmować nieprzewidywalnych decyzji lub przerywać proces z powodu np. niekompletnych danych. Przyglądając się zawartości tabeli 1 można zauważyć szereg nieprawidłowości. Kolumna ID jest typu NUMBER, ale co stanie w przypadku, gdy z nieokreślonej przyczyny znajdzie się tam wartość aaaaa? Taki przypadek stanowi sytuację wyjątkową i powinien zostać zauważony przez osobę przygotowującą dane do obróbki. Innym przykładem jest błąd polegający na interpretacji danych. W jaki sposób zinterpretować płeć użytkownika nr 6? Widać, że wartości w kolumnie wiek i płeć najprawdopodobniej zostały pomylone. Można je zamienić, ale nie ma wtedy żadnej pewności, że taki błąd był przyczyną zaistniałego stanu rzeczy. Nie ulega wątpliwości, że brak takich danych jak wiek użytkownika może być problemem przy wielu analizach. Istnieją metody wypełniania pustych komórek np. w oparciu o metody statystyczne.

6 Podsumowanie Celem pracy będzie przegląd stosowanych obecnie metod do przeprowadzania eksploracji danych i analiza uzyskanych w ten sposób informacji. Obszarem działania będą dane medyczne. Najpierw znajdą się w pracy podstawy teoretyczne do tego zagadnienia, a następnie praktycznie wykonany zostanie system wspomagający wykonanie takiej analizy danych. Literatura [1]. Daniel T. Larose, Odkrywanie wiedzy z danych. Wprowadzenie do eksploracji danych, PWN, Warszawa, 2006 [2]. Jerzy Surma, Business Intelligence. Systemy wspomagania decyzji biznesowych, PWN, Warszawa, 2009 [3]. [ ]

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel według przewidywań internetowego magazynu ZDNET News z 8 lutego 2001 roku eksploracja danych (ang. data mining ) będzie jednym z najbardziej rewolucyjnych osiągnięć następnej dekady. Rzeczywiście MIT Technology

Bardziej szczegółowo

dr inż. Olga Siedlecka-Lamch 14 listopada 2011 roku Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Eksploracja danych

dr inż. Olga Siedlecka-Lamch 14 listopada 2011 roku Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Eksploracja danych - Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska 14 listopada 2011 roku 1 - - 2 3 4 5 - The purpose of computing is insight, not numbers Richard Hamming Motywacja - Mamy informację,

Bardziej szczegółowo

Ewelina Dziura Krzysztof Maryański

Ewelina Dziura Krzysztof Maryański Ewelina Dziura Krzysztof Maryański 1. Wstęp - eksploracja danych 2. Proces Eksploracji danych 3. Reguły asocjacyjne budowa, zastosowanie, pozyskiwanie 4. Algorytm Apriori i jego modyfikacje 5. Przykład

Bardziej szczegółowo

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów Eksploracja danych Piotr Lipiński Informacje ogólne Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów UWAGA: prezentacja to nie

Bardziej szczegółowo

Transformacja wiedzy w budowie i eksploatacji maszyn

Transformacja wiedzy w budowie i eksploatacji maszyn Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces

Bardziej szczegółowo

Eksploracja danych - wykład II

Eksploracja danych - wykład II - wykład 1/29 wykład - wykład Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Październik 2015 - wykład 2/29 W kontekście odkrywania wiedzy wykład - wykład 3/29 CRISP-DM - standaryzacja

Bardziej szczegółowo

Eksploracja danych - wykład VIII

Eksploracja danych - wykład VIII I Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska 2 grudnia 2016 1/31 1 2 2/31 (ang. affinity analysis) polega na badaniu atrybutów lub cech, które są ze sobą powiązane. Metody

Bardziej szczegółowo

Data Mining Wykład 1. Wprowadzenie do Eksploracji Danych. Prowadzący. Dr inż. Jacek Lewandowski

Data Mining Wykład 1. Wprowadzenie do Eksploracji Danych. Prowadzący. Dr inż. Jacek Lewandowski Data Mining Wykład 1 Wprowadzenie do Eksploracji Danych Prowadzący Dr inż. Jacek Lewandowski Katedra Genetyki Wydział Biologii i Hodowli Zwierząt Uniwersytet Przyrodniczy we Wrocławiu ul. Kożuchowska 7,

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH

INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH 1. Czym jest eksploracja danych Eksploracja danych definiowana jest jako zbiór technik odkrywania nietrywialnych zależności i schematów w dużych

Bardziej szczegółowo

Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach PROGRAM KSZTAŁCENIA. Studia III stopnia (doktoranckie) kierunek Informatyka

Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach PROGRAM KSZTAŁCENIA. Studia III stopnia (doktoranckie) kierunek Informatyka Uniwersytet Śląski Wydział Informatyki i Nauki o Materiałach PROGRAM KSZTAŁCENIA Studia III stopnia (doktoranckie) kierunek Informatyka (przyjęty przez Radę Wydziału Informatyki i Nauki o Materiałach w

Bardziej szczegółowo

a) Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów

a) Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów 1. PROGRAM KSZTAŁCENIA 1) OPIS EFEKTÓW KSZTAŁCENIA a) Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów kształcenia dla obszaru nauk społecznych i technicznych Objaśnienie oznaczeń: I efekty

Bardziej szczegółowo

Analiza danych i data mining.

Analiza danych i data mining. Analiza danych i data mining. mgr Katarzyna Racka Wykładowca WNEI PWSZ w Płocku Przedsiębiorczy student 2016 15 XI 2016 r. Cel warsztatu Przekazanie wiedzy na temat: analizy i zarządzania danymi (data

Bardziej szczegółowo

KIERUNKOWE EFEKTY KSZTAŁCENIA

KIERUNKOWE EFEKTY KSZTAŁCENIA WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA II STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA NAUK TECHNICZNYCH Dyscyplina

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

Plan prezentacji 0 Wprowadzenie 0 Zastosowania 0 Przykładowe metody 0 Zagadnienia poboczne 0 Przyszłość 0 Podsumowanie 7 Jak powstaje wiedza? Dane Informacje Wiedza Zrozumienie 8 Przykład Teleskop Hubble

Bardziej szczegółowo

Efekty kształcenia dla kierunku studiów INFORMATYKA, Absolwent studiów I stopnia kierunku Informatyka WIEDZA

Efekty kształcenia dla kierunku studiów INFORMATYKA, Absolwent studiów I stopnia kierunku Informatyka WIEDZA Symbol Efekty kształcenia dla kierunku studiów INFORMATYKA, specjalność: 1) Sieciowe systemy informatyczne. 2) Bazy danych Absolwent studiów I stopnia kierunku Informatyka WIEDZA Ma wiedzę z matematyki

Bardziej szczegółowo

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2007 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę

Bardziej szczegółowo

Spis treści. Wstęp... 9

Spis treści. Wstęp... 9 Wstęp... 9 Rozdział 1 ZARYS TEORII STEROWANIA PROCESAMI PRZEDSIĘBIORSTWA... 11 1. Zakres i potencjalne zastosowania teorii... 11 2. Opis szkieletowego systemu EPC II... 12 2.1. Poziomy organizacyjne, warstwy

Bardziej szczegółowo

w ekonomii, finansach i towaroznawstwie

w ekonomii, finansach i towaroznawstwie w ekonomii, finansach i towaroznawstwie spotykane określenia: zgłębianie danych, eksploracyjna analiza danych, przekopywanie danych, męczenie danych proces wykrywania zależności w zbiorach danych poprzez

Bardziej szczegółowo

Inteligentne Multimedialne Systemy Uczące

Inteligentne Multimedialne Systemy Uczące Działanie realizowane w ramach projektu Absolwent informatyki lub matematyki specjalistą na rynku pracy Matematyka i informatyka może i trudne, ale nie nudne Inteligentne Multimedialne Systemy Uczące dr

Bardziej szczegółowo

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2012 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę

Bardziej szczegółowo

Analiza i wizualizacja danych Data analysis and visualization

Analiza i wizualizacja danych Data analysis and visualization KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów

LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów Łukasz Piątek, Jerzy W. Grzymała-Busse Katedra Systemów Ekspertowych i Sztucznej Inteligencji, Wydział Informatyki

Bardziej szczegółowo

UCHWAŁA NR 26/2016. SENATU AKADEMII MARYNARKI WOJENNEJ im. Bohaterów Westerplatte z dnia 02 czerwca 2016 roku

UCHWAŁA NR 26/2016. SENATU AKADEMII MARYNARKI WOJENNEJ im. Bohaterów Westerplatte z dnia 02 czerwca 2016 roku UCHWAŁA NR 26/2016 SENATU AKADEMII MARYNARKI WOJENNEJ im. Bohaterów Westerplatte z dnia 02 czerwca 2016 roku w sprawie: określenia efektów kształcenia dla kierunku Mechatronika studia II stopnia o profilu

Bardziej szczegółowo

Eksploracja Danych. wykład 3. Sebastian Zając. 5 kwietnia 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia / 21

Eksploracja Danych. wykład 3. Sebastian Zając. 5 kwietnia 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia / 21 Eksploracja Danych wykład 3 Sebastian Zając WMP.SNŚ UKSW 5 kwietnia 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia 2017 1 / 21 Struktura Danych Rozpatrzmy zbiór danych: Sebastian Zając

Bardziej szczegółowo

DLA SEKTORA INFORMATYCZNEGO W POLSCE

DLA SEKTORA INFORMATYCZNEGO W POLSCE DLA SEKTORA INFORMATYCZNEGO W POLSCE SRK IT obejmuje kompetencje najważniejsze i specyficzne dla samego IT są: programowanie i zarządzanie systemami informatycznymi. Z rozwiązań IT korzysta się w każdej

Bardziej szczegółowo

Państwowa Wyższa Szkoła Techniczno-Ekonomiczna w Jarosławiu

Państwowa Wyższa Szkoła Techniczno-Ekonomiczna w Jarosławiu Załącznik nr 1 do Uchwały nr 9/12 Rady Instytutu Inżynierii Technicznej PWSTE w Jarosławiu z dnia 30 marca 2012r Państwowa Wyższa Szkoła Techniczno-Ekonomiczna w Jarosławiu EFEKTY KSZTAŁCENIA DLA KIERUNKU

Bardziej szczegółowo

Projekt zarządzania jakością wykorzystujący STATISTICA Data Miner przynosi w voestalpine roczne oszczędności w wysokości 800 000 EUR

Projekt zarządzania jakością wykorzystujący STATISTICA Data Miner przynosi w voestalpine roczne oszczędności w wysokości 800 000 EUR Projekt zarządzania jakością wykorzystujący STATISTICA Data Miner przynosi w voestalpine roczne oszczędności w wysokości 800 000 EUR Przemysł samochodowy stawia najwyższe wymagania jakościowe w stosunku

Bardziej szczegółowo

Uchwała Nr 69 /2012. Senatu Uniwersytetu Jana Kochanowskiego w Kielcach. z dnia 31 maja 2012 roku

Uchwała Nr 69 /2012. Senatu Uniwersytetu Jana Kochanowskiego w Kielcach. z dnia 31 maja 2012 roku Uchwała Nr 69 /2012 Senatu Uniwersytetu Jana Kochanowskiego w Kielcach z dnia 31 maja 2012 roku w sprawie określenia efektów kształcenia dla kierunku zarządzanie na poziomie drugiego stopnia o profilu

Bardziej szczegółowo

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne

Bardziej szczegółowo

WYDZIAŁ TRANSPORTU I INFORMATYKI TRANSPORT II STOPIEŃ OGÓLNOAKADEMICKI

WYDZIAŁ TRANSPORTU I INFORMATYKI TRANSPORT II STOPIEŃ OGÓLNOAKADEMICKI Nazwa kierunku Poziom Profil Symbole efektów na kierunku WYDZIAŁ TRANSPORTU I INFORMATYKI TRANSPORT II STOPIEŃ OGÓLNOAKADEMICKI Efekty - opis słowny. Po ukończeniu studiów drugiego stopnia na kierunku

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

KIERUNKOWE EFEKTY KSZTAŁCENIA KIERUNEK TECHNOLOGIE OCHRONY ŚRODOWISKA P O L I T E C H N I K A POZNAŃSKA WYDZIAŁ TECHNOLOGII CHEMICZNEJ

KIERUNKOWE EFEKTY KSZTAŁCENIA KIERUNEK TECHNOLOGIE OCHRONY ŚRODOWISKA P O L I T E C H N I K A POZNAŃSKA WYDZIAŁ TECHNOLOGII CHEMICZNEJ P O L I T E C H N I K A POZNAŃSKA WYDZIAŁ TECHNOLOGII CHEMICZNEJ ul. Piotrowo 3 60-965 POZNAŃ tel. 061 6652351 fax 061 6652852 E-mail: office_dctf@put.poznan.pl http://www.fct.put.poznan.pl KIERUNKOWE

Bardziej szczegółowo

Szczegółowy opis przedmiotu zamówienia

Szczegółowy opis przedmiotu zamówienia ZP/ITS/19/2013 SIWZ Załącznik nr 1.1 do Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych dla studentów

Bardziej szczegółowo

Informatyka, studia I stopnia (profil ogólnoakademicki) - wersja

Informatyka, studia I stopnia (profil ogólnoakademicki) - wersja Informatyka, studia I stopnia (profil ogólnoakademicki) - wersja 120327 Obszar kształcenia: nauki techniczne. Dziedzina: nauki techniczne. Dyscyplina: Informatyka. MNiSW WI PP Symb. Efekty kształcenia

Bardziej szczegółowo

Model procesu dydaktycznego

Model procesu dydaktycznego Model procesu dydaktycznego w zakresie Business Intelligence Zenon Gniazdowski 1,2), Andrzej Ptasznik 1) 1) Warszawska Wyższa Szkoła Informatyki, ul. Lewartowskiego 17, Warszawa 2) Instytut Technologii

Bardziej szczegółowo

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW. TRANSPORT studia stacjonarne i niestacjonarne

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW. TRANSPORT studia stacjonarne i niestacjonarne Załącznik do uchwały Nr 000-8/4/2012 Senatu PRad. z dnia 28.06.2012r. EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW TRANSPORT studia stacjonarne i niestacjonarne Nazwa wydziału: Wydział Transportu i Elektrotechniki

Bardziej szczegółowo

Efekty kształcenia wymagane do podjęcia studiów 2 stopnia na kierunku Informatyka

Efekty kształcenia wymagane do podjęcia studiów 2 stopnia na kierunku Informatyka Efekty kształcenia wymagane do podjęcia studiów 2 stopnia na kierunku Informatyka Test kwalifikacyjny obejmuje weryfikację efektów kształcenia oznaczonych kolorem szarym, efektów: K_W4 (!), K_W11-12, K_W15-16,

Bardziej szczegółowo

Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279

Przeszukiwanie z nawrotami. Wykład 8. Przeszukiwanie z nawrotami. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 Wykład 8 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 238 / 279 sformułowanie problemu przegląd drzewa poszukiwań przykłady problemów wybrane narzędzia programistyczne J. Cichoń, P. Kobylański

Bardziej szczegółowo

RELACYJNE BAZY DANYCH

RELACYJNE BAZY DANYCH RELACYJNE BAZY DANYCH Aleksander Łuczyk Bielsko-Biała, 15 kwiecień 2015 r. Ludzie używają baz danych każdego dnia. Książka telefoniczna, zbiór wizytówek przypiętych nad biurkiem, encyklopedia czy chociażby

Bardziej szczegółowo

Baza danych to zbiór wzajemnie powiązanych ze sobą i zintegrowanych danych z pewnej dziedziny.

Baza danych to zbiór wzajemnie powiązanych ze sobą i zintegrowanych danych z pewnej dziedziny. PI-14 01/12 Baza danych to zbiór wzajemnie powiązanych ze sobą i zintegrowanych danych z pewnej dziedziny.! Likwidacja lub znaczne ograniczenie redundancji (powtarzania się) danych! Integracja danych!

Bardziej szczegółowo

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania

Bardziej szczegółowo

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW ZARZĄDZANIE STUDIA PIERWSZEGO STOPNIA - PROFIL OGÓLNOAKADEMICKI

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW ZARZĄDZANIE STUDIA PIERWSZEGO STOPNIA - PROFIL OGÓLNOAKADEMICKI EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW ZARZĄDZANIE STUDIA PIERWSZEGO STOPNIA - PROFIL OGÓLNOAKADEMICKI Umiejscowienie kierunku w obszarach kształcenia Kierunek studiów Zarządzanie reprezentuje dziedzinę

Bardziej szczegółowo

Algorytmy i bazy danych (wykład obowiązkowy dla wszystkich)

Algorytmy i bazy danych (wykład obowiązkowy dla wszystkich) MATEMATYKA I EKONOMIA PROGRAM STUDIÓW DLA II STOPNIA Data: 2010-11-07 Opracowali: Krzysztof Rykaczewski Paweł Umiński Streszczenie: Poniższe opracowanie przedstawia projekt planu studiów II stopnia na

Bardziej szczegółowo

Systemy baz danych w zarządzaniu przedsiębiorstwem. W poszukiwaniu rozwiązania problemu, najbardziej pomocna jest znajomość odpowiedzi

Systemy baz danych w zarządzaniu przedsiębiorstwem. W poszukiwaniu rozwiązania problemu, najbardziej pomocna jest znajomość odpowiedzi Systemy baz danych w zarządzaniu przedsiębiorstwem W poszukiwaniu rozwiązania problemu, najbardziej pomocna jest znajomość odpowiedzi Proces zarządzania danymi Zarządzanie danymi obejmuje czynności: gromadzenie

Bardziej szczegółowo

Sylabus. Zaawansowana analiza danych eksperymentalnych Advanced analysis of experimental data

Sylabus. Zaawansowana analiza danych eksperymentalnych Advanced analysis of experimental data Sylabus Nazwa przedmiotu (w j. polskim i angielskim) Nazwisko i imię prowadzącego (stopień i tytuł naukowy) Zaawansowana analiza danych eksperymentalnych Advanced analysis of experimental data dr Grzegorz

Bardziej szczegółowo

Proces badawczy schemat i zasady realizacji

Proces badawczy schemat i zasady realizacji Proces badawczy schemat i zasady realizacji Agata Górny Zaoczne Studia Doktoranckie z Ekonomii Warszawa, 23 października 2016 Metodologia i metoda naukowa 1 Metodologia Metodologia nauka o metodach nauki

Bardziej szczegółowo

Nowe narzędzia zarządzania jakością

Nowe narzędzia zarządzania jakością Nowe narzędzia zarządzania jakością Agnieszka Michalak 106947 Piotr Michalak 106928 Filip Najdek 106946 Co to jest? Nowe narzędzia jakości - grupa siedmiu nowych narzędzi zarządzania jakością, które mają

Bardziej szczegółowo

STUDIA I MONOGRAFIE NR

STUDIA I MONOGRAFIE NR STUDIA I MONOGRAFIE NR 21 WYBRANE ZAGADNIENIA INŻYNIERII WIEDZY Redakcja naukowa: Andrzej Cader Jacek M. Żurada Krzysztof Przybyszewski Łódź 2008 3 SPIS TREŚCI WPROWADZENIE 7 SYSTEMY AGENTOWE W E-LEARNINGU

Bardziej szczegółowo

INŻYNIERIA OPROGRAMOWANIA

INŻYNIERIA OPROGRAMOWANIA INSTYTUT INFORMATYKI STOSOWANEJ 2013 INŻYNIERIA OPROGRAMOWANIA Inżynieria Oprogramowania Proces ukierunkowany na wytworzenie oprogramowania Jak? Kto? Kiedy? Co? W jaki sposób? Metodyka Zespół Narzędzia

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

Bazy danych. wprowadzenie teoretyczne. Piotr Prekurat 1

Bazy danych. wprowadzenie teoretyczne. Piotr Prekurat 1 Bazy danych wprowadzenie teoretyczne Piotr Prekurat 1 Baza danych Jest to zbiór danych lub jakichkolwiek innych materiałów i elementów zgromadzonych według określonej systematyki lub metody. Zatem jest

Bardziej szczegółowo

Odniesienie do efektów kształcenia w obszarze kształcenia w zakresie nauk przyrodniczych i technicznych

Odniesienie do efektów kształcenia w obszarze kształcenia w zakresie nauk przyrodniczych i technicznych Wydział Biotechnologii i Hodowli Zwierząt Nazwa kierunku studiów: bioinformatyka Poziom kształcenia: studia pierwszego stopnia Profil kształcenia: ogólnoakademicki Obszar kształcenia: w zakresie nauk przyrodniczych

Bardziej szczegółowo

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia

Bardziej szczegółowo

Sylabus. Zaawansowana analiza danych eksperymentalnych Advanced analysis of experimental data

Sylabus. Zaawansowana analiza danych eksperymentalnych Advanced analysis of experimental data Sylabus Nazwa przedmiotu (w j. polskim i angielskim) Nazwisko i imię prowadzącego (stopień i tytuł naukowy) Zaawansowana analiza danych eksperymentalnych Advanced analysis of experimental data dr Veslava

Bardziej szczegółowo

STATYSTYKA EKONOMICZNA

STATYSTYKA EKONOMICZNA STATYSTYKA EKONOMICZNA Analiza statystyczna w ocenie działalności przedsiębiorstwa Opracowano na podstawie : E. Nowak, Metody statystyczne w analizie działalności przedsiębiorstwa, PWN, Warszawa 2001 Dr

Bardziej szczegółowo

Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych. Data Mining Wykład 2

Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych. Data Mining Wykład 2 Data Mining Wykład 2 Odkrywanie asocjacji Plan wykładu Wprowadzenie Sformułowanie problemu Typy reguł asocjacyjnych Proces odkrywania reguł asocjacyjnych Geneza problemu Geneza problemu odkrywania reguł

Bardziej szczegółowo

WYDZIAŁ TRANSPORTU I INFORMATYKI TRANSPORT II STOPIEŃ OGÓLNOAKADEMICKI

WYDZIAŁ TRANSPORTU I INFORMATYKI TRANSPORT II STOPIEŃ OGÓLNOAKADEMICKI Nazwa kierunku Poziom kształcenia Profil kształcenia Symbole efektów kształcenia na kierunku WYDZIAŁ TRANSPORTU I INFORMATYKI TRANSPORT II STOPIEŃ OGÓLNOAKADEMICKI Efekty kształcenia - opis słowny. Po

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

PROGRAM KSZTAŁCENIA NA STUDIACH III STOPNIA Informatyka (nazwa kierunku)

PROGRAM KSZTAŁCENIA NA STUDIACH III STOPNIA Informatyka (nazwa kierunku) PROGRAM KSZTAŁCENIA NA STUDIACH III STOPNIA Informatyka (nazwa kierunku) 1. OPIS ZAKŁADANYCH EFEKTÓW KSZTAŁCENIA: 1) Tabela odniesień kierunkowych efektów kształcenia (EKK) do obszarowych efektów kształcenia

Bardziej szczegółowo

Metody eksploracji danych. Reguły asocjacyjne

Metody eksploracji danych. Reguły asocjacyjne Metody eksploracji danych Reguły asocjacyjne Analiza podobieństw i koszyka sklepowego Analiza podobieństw jest badaniem atrybutów lub cech, które są powiązane ze sobą. Metody analizy podobieństw, znane

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Lingwistyczny system definicyjny wykorzystujący korpusy tekstów oraz zasoby internetowe.

Lingwistyczny system definicyjny wykorzystujący korpusy tekstów oraz zasoby internetowe. Lingwistyczny system definicyjny wykorzystujący korpusy tekstów oraz zasoby internetowe. Autor: Mariusz Sasko Promotor: dr Adrian Horzyk Plan prezentacji 1. Wstęp 2. Cele pracy 3. Rozwiązanie 3.1. Robot

Bardziej szczegółowo

ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia

ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia ZP/ITS/11/2012 Załącznik nr 1a do SIWZ ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych

Bardziej szczegółowo

6 Metody badania i modele rozwoju organizacji

6 Metody badania i modele rozwoju organizacji Spis treści Przedmowa 11 1. Kreowanie systemu zarządzania wiedzą w organizacji 13 1.1. Istota systemu zarządzania wiedzą 13 1.2. Cechy dobrego systemu zarządzania wiedzą 16 1.3. Czynniki determinujące

Bardziej szczegółowo

Opis efektów kształcenia dla studiów podyplomowych

Opis efektów kształcenia dla studiów podyplomowych Opis efektów kształcenia dla studiów podyplomowych Nazwa studiów podyplomowych Nazwa obszaru kształcenia, w zakresie którego są prowadzone studia podyplomowe Nazwa kierunku studiów, z którym jest związany

Bardziej szczegółowo

Wprowadzenie do technologii informacyjnej.

Wprowadzenie do technologii informacyjnej. Wprowadzenie do technologii informacyjnej. Data mining i jego biznesowe zastosowania dr Tomasz Jach Definicje Eksploracja danych polega na torturowaniu danych tak długo, aż zaczną zeznawać. Eksploracja

Bardziej szczegółowo

Podstawy fizyki: Budowa materii. Podstawy fizyki: Mechanika MS. Podstawy fizyki: Mechanika MT. Podstawy astronomii. Analiza matematyczna I, II MT

Podstawy fizyki: Budowa materii. Podstawy fizyki: Mechanika MS. Podstawy fizyki: Mechanika MT. Podstawy astronomii. Analiza matematyczna I, II MT Zajęcia wyrównawcze z matematyki Zajęcia wyrównawcze z fizyki Analiza matematyczna I, II MS Analiza matematyczna I, II MT Podstawy fizyki: Budowa materii Podstawy fizyki: Mechanika MS Podstawy fizyki:

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 FORMUŁA DO 2014 ( STARA MATURA ) INFORMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MIN-R1, R2 MAJ 2015 Uwaga: Akceptowane są wszystkie odpowiedzi

Bardziej szczegółowo

Tabela odniesień efektów kierunkowych do efektów obszarowych (tabele odniesień efektów kształcenia)

Tabela odniesień efektów kierunkowych do efektów obszarowych (tabele odniesień efektów kształcenia) Załącznik nr 7 do uchwały nr 514 Senatu Uniwersytetu Zielonogórskiego z dnia 25 kwietnia 2012 r. w sprawie określenia efektów kształcenia dla kierunków studiów pierwszego i drugiego stopnia prowadzonych

Bardziej szczegółowo

Pytania SO Oprogramowanie Biurowe. Pytania: Egzamin Zawodowy

Pytania SO Oprogramowanie Biurowe. Pytania: Egzamin Zawodowy Pytania SO Oprogramowanie Biurowe Pytania: Egzamin Zawodowy Pytania SO Oprogramowanie Biurowe (1) Gdzie w edytorze tekstu wprowadza się informację lub ciąg znaków, który ma pojawić się na wszystkich stronach

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Eksploracja danych Rok akademicki: 2030/2031 Kod: MIS-2-105-MT-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Informatyka Stosowana Specjalność: Modelowanie

Bardziej szczegółowo

K.Pieńkosz Badania Operacyjne Wprowadzenie 1. Badania Operacyjne. dr inż. Krzysztof Pieńkosz

K.Pieńkosz Badania Operacyjne Wprowadzenie 1. Badania Operacyjne. dr inż. Krzysztof Pieńkosz K.Pieńkosz Wprowadzenie 1 dr inż. Krzysztof Pieńkosz Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej pok. 560 A tel.: 234-78-64 e-mail: K.Pienkosz@ia.pw.edu.pl K.Pieńkosz Wprowadzenie

Bardziej szczegółowo

Informatyczne wspomaganie decyzji logistycznych

Informatyczne wspomaganie decyzji logistycznych Logistyka, studia stacjonarne I stopnia Informatyczne wspomaganie decyzji logistycznych OPIEKUNOWIE SPECJALNOŚCI: dr Dorota Miszczyńska Katedra Badań Operacyjnych pok. E138, tel. 635-50-62 dmiszczynska@uni.lodz.pl

Bardziej szczegółowo

Proces badawczy schemat i zasady realizacji

Proces badawczy schemat i zasady realizacji Proces badawczy schemat i zasady realizacji Agata Górny Zaoczne Studia Doktoranckie z Ekonomii Warszawa, 14 grudnia 2014 Metodologia i metoda badawcza Metodologia Zadania metodologii Metodologia nauka

Bardziej szczegółowo

Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU

Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Hurtownie danych Przetwarzanie zapytań. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Magazyny danych operacyjnych, źródła Centralna hurtownia danych Hurtownie

Bardziej szczegółowo

Metody wypełniania braków w danych ang. Missing values in data

Metody wypełniania braków w danych ang. Missing values in data Analiza danych wydobywanie wiedzy z danych III Metody wypełniania braków w danych ang. Missing values in data W rzeczywistych zbiorach danych dane są często nieczyste: - niekompletne (brakujące ważne atrybuty,

Bardziej szczegółowo

ZARZĄDZANIE I INŻYNIERIA PRODUKCJI

ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZARZĄDZANIE I INŻYNIERIA PRODUKCJI STUDIA PIERWSZEGO STOPNIA PROFIL OGÓLNOAKADEMICKI Załącznik nr 2 Odniesienie efektów kierunkowych do efektów obszarowych i odwrotnie Załącznik nr 2a - Tabela odniesienia

Bardziej szczegółowo

Metodologia badań psychologicznych

Metodologia badań psychologicznych Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Psychologia jako nauka empiryczna Wprowadzenie pojęć Wykład 5 Cele badań naukowych 1. Opis- (funkcja deskryptywna) procedura definiowania

Bardziej szczegółowo

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)

Bardziej szczegółowo

Proces i narzędzia analizy potencjału wybranych obszarów rynku farmaceutycznego

Proces i narzędzia analizy potencjału wybranych obszarów rynku farmaceutycznego Proces i narzędzia analizy potencjału wybranych obszarów rynku farmaceutycznego Przyglądając się rynkowi farmaceutycznemu w Polsce możemy zauważyć, że jest to jedna z lepiej zwymiarowanych i opisanych

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 1

KARTA KURSU. Kod Punktacja ECTS* 1 KARTA KURSU Nazwa Nazwa w j. ang. Wprowadzenie do statystyki Introduction to statistics Kod Punktacja ECTS* 1 Koordynator Prof. dr hab. Jerzy Wołek Zespół dydaktyczny Prof. dr hab. Jerzy Wołek doktoranci

Bardziej szczegółowo

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW INFORMATYKA

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW INFORMATYKA EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW INFORMATYKA poziom kształcenia profil kształcenia tytuł zawodowy uzyskiwany przez absolwenta studia drugiego stopnia ogólnoakademicki magister inżynier 1. Umiejscowienie

Bardziej szczegółowo

Odniesienie do obszarowych efektów kształcenia 1 2 3. Kierunkowe efekty kształcenia WIEDZA (W)

Odniesienie do obszarowych efektów kształcenia 1 2 3. Kierunkowe efekty kształcenia WIEDZA (W) EFEKTY KSZTAŁCENIA NA KIERUNKU "MECHATRONIKA" nazwa kierunku studiów: Mechatronika poziom kształcenia: studia pierwszego stopnia profil kształcenia: ogólnoakademicki symbol kierunkowych efektów kształcenia

Bardziej szczegółowo

Dopasowywanie modelu do danych

Dopasowywanie modelu do danych Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;

Bardziej szczegółowo

Efekty kształcenia dla studiów podyplomowych: Sposób dokumentacji efektów kształcenia

Efekty kształcenia dla studiów podyplomowych: Sposób dokumentacji efektów kształcenia Efekty kształcenia dla studiów podyplomowych: Lp. K_W01 K_W02 K_W06 K_W08 K_W09 Efekty kształcenia dla studiów podyplomowych zna terminologię używaną w pedagogice a w szczególności w oraz jej zastosowanie

Bardziej szczegółowo

Uchwała obowiązuje od dnia podjęcia przez Senat. Traci moc Uchwała nr 144/06/2013 Senatu Uniwersytetu Rzeszowskiego z 27 czerwca 2013 r.

Uchwała obowiązuje od dnia podjęcia przez Senat. Traci moc Uchwała nr 144/06/2013 Senatu Uniwersytetu Rzeszowskiego z 27 czerwca 2013 r. Rektor Uniwersytetu Rzeszowskiego al. Rejtana 16c; 35-959 Rzeszów tel.: + 48 17 872 10 00 (centrala) + 48 17 872 10 10 fax: + 48 17 872 12 65 e-mail: rektorur@ur.edu.pl Uchwała nr 282/03/2014 Senatu Uniwersytetu

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka

Stanisław Cichocki. Natalia Nehrebecka Stanisław Cichocki Natalia Nehrebecka - adres mailowy: scichocki@o2.pl - strona internetowa: www.wne.uw.edu.pl/scichocki - dyżur: po zajęciach lub po umówieniu mailowo - 80% oceny: egzaminy - 20% oceny:

Bardziej szczegółowo

Definicje. Algorytm to:

Definicje. Algorytm to: Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi

Bardziej szczegółowo

KIERUNKOWE EFEKTY KSZTAŁCENIA

KIERUNKOWE EFEKTY KSZTAŁCENIA KIERUNKOWE EFEKTY KSZTAŁCENIA Wydział: INŻYNIERIA ŚRODOWISKA Kierunek: INŻYNIERIA ŚRODOWISKA (IS) Stopień studiów: I Efekty na I stopniu dla kierunku IS K1IS_W01 K1IS_W02 K1IS_W03 OPIS KIERUNKOWYCH EFEKTÓW

Bardziej szczegółowo

Opis. Wymagania wstępne (tzw. sekwencyjny system zajęć i egzaminów) Liczba godzin zajęć dydaktycznych z podziałem na formy prowadzenia zajęć

Opis. Wymagania wstępne (tzw. sekwencyjny system zajęć i egzaminów) Liczba godzin zajęć dydaktycznych z podziałem na formy prowadzenia zajęć Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. nazwa SYLABUS A. Informacje ogólne Tę część wypełnia koordynator (w porozumieniu ze wszystkimi prowadzącymi dany przedmiot w jednostce)

Bardziej szczegółowo

Metody analizy przestrzennej. Liczba godzin stacjonarne: Wykłady: 30 Ćwiczenia: 30. niestacjonarne: Wykłady: 18 Ćwiczenia: 18

Metody analizy przestrzennej. Liczba godzin stacjonarne: Wykłady: 30 Ćwiczenia: 30. niestacjonarne: Wykłady: 18 Ćwiczenia: 18 Karta przedmiotu Wydział: Wydział Finansów Kierunek: Gospodarka przestrzenna I. Informacje podstawowe Nazwa przedmiotu Metody analizy przestrzennej Nazwa przedmiotu w j. ang. Język prowadzenia przedmiotu

Bardziej szczegółowo

Od szczegółu do ogółu, praktyczne refleksje o nauczaniu informatyki wg nowej podstawy programowej

Od szczegółu do ogółu, praktyczne refleksje o nauczaniu informatyki wg nowej podstawy programowej Od szczegółu do ogółu, praktyczne refleksje o nauczaniu informatyki wg nowej podstawy programowej Konferencja w ramach XII edycji Akademii TIK Nowa podstawa programowa z informatyki w świetle reformy oświaty

Bardziej szczegółowo

Spis treści. Analiza i modelowanie_nowicki, Chomiak_Księga1.indb :03:08

Spis treści. Analiza i modelowanie_nowicki, Chomiak_Księga1.indb :03:08 Spis treści Wstęp.............................................................. 7 Część I Podstawy analizy i modelowania systemów 1. Charakterystyka systemów informacyjnych....................... 13 1.1.

Bardziej szczegółowo

Efekty kształcenia dla kierunku Mechanika i budowa maszyn

Efekty kształcenia dla kierunku Mechanika i budowa maszyn Załącznik nr 18 do Uchwały Nr 673 Senatu UWM w Olsztynie z dnia 6 marca 2015 roku w sprawie zmiany Uchwały Nr 187 Senatu UWM w Olsztynie z dnia 26 marca 2013 roku zmieniającej Uchwałę Nr 916 Senatu UWM

Bardziej szczegółowo

Projektowanie (design) Eurostat

Projektowanie (design) Eurostat Projektowanie (design) Eurostat Podstawa prezentacji moduł Overall design autor Eva Elvers ze Statistics Sweden Prezentacja autora na szkoleniu w Hadze 28-29 listopada 2013 r. Zarys Badanie statystyczne

Bardziej szczegółowo

ZARZĄDZANIE PROCESAMI I PROJEKTAMI. Zakres projektu. dr inż. ADAM KOLIŃSKI ZARZĄDZANIE PROCESAMI I PROJEKTAMI. Zakres projektu. dr inż.

ZARZĄDZANIE PROCESAMI I PROJEKTAMI. Zakres projektu. dr inż. ADAM KOLIŃSKI ZARZĄDZANIE PROCESAMI I PROJEKTAMI. Zakres projektu. dr inż. 1 ZARZĄDZANIE PROCESAMI I PROJEKTAMI 2 ZAKRES PROJEKTU 1. Ogólna specyfika procesów zachodzących w przedsiębiorstwie 2. Opracowanie ogólnego schematu procesów zachodzących w przedsiębiorstwie za pomocą

Bardziej szczegółowo

Import danych z plików Excel. (pracownicy, limity urlopowe i inne)

Import danych z plików Excel. (pracownicy, limity urlopowe i inne) Import danych z plików Excel (pracownicy, limity urlopowe i inne) 1. Wstęp BeeOffice umożliwia import z plików Excel kilku rodzajów danych, najczęściej wykorzystywanych podczas tworzenia nowego systemu

Bardziej szczegółowo

Zakładane efekty kształcenia dla kierunku

Zakładane efekty kształcenia dla kierunku Zakładane efekty dla kierunku Jednostka prowadząca kierunek studiów Nazwa kierunku studiów Specjalności Obszar Profil Poziom Tytuł zawodowy uzyskiwany przez absolwenta Dziedziny nauki / sztuki i dyscypliny

Bardziej szczegółowo