Metody zbiorów przybliżonych w uczeniu się podobieństwa z wielowymiarowych zbiorów danych

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody zbiorów przybliżonych w uczeniu się podobieństwa z wielowymiarowych zbiorów danych"

Transkrypt

1 Metody zbiorów przybliżonych w uczeniu się podobieństwa z wielowymiarowych zbiorów danych WMIM, Uniwersytet Warszawski ul. Banacha 2, Warszawa, Polska

2 Dlaczego właśnie podobieństwo? Myślenie... Podejmowanie decyzji sampl eid AFFX- 3_at 3322_i _at 4969_s _at _ s_at _at GSM GSM GSM GSM Diagno sis GSM i formowanie pojęć Podobieństwo Rozwiązywanie problemów Uczenie się

3 Zastosowania modeli podobieństwa Przykłady: klasyfikacja i regresja, segmentacja danych, planowanie, rozwiązywanie problemów, wykrywanie nietypowych obiektów, wizualizacja i streszczanie danych. Podstawowa zasada: Podobne obiekty powinny być traktowane podobnie (np. należeć do tej samej klasy decyzyjnej, czy grupy).

4 Czym tak naprawdę jest podobieństwo? Trudności ze ścisłą definicją podobieństwa: relacja, czy funkcja? obiektywne, czy subiektywne? bezkontekstowe, czy kontekstowe? globalne, czy lokalne? Czynniki, które wpływają na kontekst to: cel lub zadanie, któremu służy ewaluacja podobieństwa, wiedza o innych znanych obiektach.

5 Czym tak naprawdę jest podobieństwo? Trudności ze ścisłą definicją podobieństwa: relacja, czy funkcja? obiektywne, czy subiektywne? bezkontekstowe, czy kontekstowe? globalne, czy lokalne? Czynniki, które wpływają na kontekst to: cel lub zadanie, któremu służy ewaluacja podobieństwa, wiedza o innych znanych obiektach.

6 Idea Tversky-ego Model kontrastu cech: obiekty postrzegane są jako zbiory cech jakościowych, cechy są zazwyczaj na wyższym poziomie abstrakcji niż dane sensoryczne, np. dwa samochody są podobne ponieważ są małe i szybkie, ważne są zarówno wspólne jak i wyróżniające cechy obiektów, S(a, b) = θf (A B) αf (A \ B) βf (B \ A), gdzie θ, α, β 0

7 Idea Tversky-ego Model kontrastu cech: obiekty postrzegane są jako zbiory cech jakościowych, cechy są zazwyczaj na wyższym poziomie abstrakcji niż dane sensoryczne, np. dwa samochody są podobne ponieważ są małe i szybkie, ważne są zarówno wspólne jak i wyróżniające cechy obiektów, S(a, b) = θf (A B) αf (A \ B) βf (B \ A), gdzie θ, α, β 0 Model Tversky-ego trudno jest zaaplikować do rzeczywistych danych: jak definiować wysokopoziomowe cechy? jak wybrać te istotne w danym kontekście? Propozycja: można wykorzystać teorię zbiorów przybliżonych!

8 Założenia proponowanego modelu podobieństwa: Uczenie się podobieństwa w języku zbiorów przybliżonych: wybór istotnych aspektów podobieństwa wysokopoziomowe cechy agregacja argumentów za i przeciw podobieństwu funkcja podobieństwa wybór przestrzeni aproksymacji lewe strony reguł aproksymacja pojęć bycia podobnym i niepodobnym do obiektu funkcja przynależności do aproksymacji pojęcia Wysokopoziomowe cechy można traktować jak argumenty za lub przeciw podobieństwu obiektów! Aproksymacja podobieństwa do obiektu to zbiór obiektów, do który pasują argumenty za podobieństwem a nie pasują argumety przeciwko.

9 Konstrukcja proponowanego modelu podobieństwa Dyskretyzacja i generowanie reduktów decyzyjnych osobno dla każdej klasy Generowanie reguł decyzyjnych i wzbraniających Argumenty za Podobieństwem dla Klasy 1 Aproksymacja pojęć podobieństwa i niepodobieństwa do poszczególnych obiektów System Decyzyjny Redukt dla Klasy 1 Decision Decision Reduct Decision Reduct Decision Reduct Reduct Argumenty przeciw Podobieństwu dla Klasy 1 Regułowy Model Podobieństwa

10 Opis formalny modelu Aproksymacja podobieństwa i niepodobieństwa: F + (i) oraz F (i) zbiory cech dla i-tej klasy decyzyjnej, wyznaczone przez reguły decyzyjne i wzbraniające; F + (i) = { ( ) f : f (d = i) RuleSet(DR i ) } ; F (i) = { ( ) f : f (d i) RuleSet(DR i ) } ; SIM (i) (u) = [u] f DIS(i) 0 (u) = U\[u] f DIS(i) 1 (u) = [u] f f F + f (u)=1 (i) f F f (u)=0 (i) f F f (u)=1 (i) Przynależność do SIM d(u1 )(u 1 ): Przynależność do DIS 0 d(u 1 ) (u 1): µ(u 2, SIM i (u 1 ))= SIM i (u 1 ) SIM i (u 2 ) SIM i (u 1 ) ψ(u 2, DIS 0 i (u 1))= DIS0 i (u 1) DIS 1 i (u 2) DIS 0 i (u 1)

11 Dlaczego dane wielowymiarowe? Rysunek: Ilustracja przekleństwa wielu wymiarów (z książki Elements of Statistical Learning: Data Mining, Inference and Prediction). typowe metody nie radzą sobie z problemem niewielu obiektów o dużej liczbie cech, duża złożoność obliczeniowa algorytmów uczenia się podobieństwa z danych wielowymiarowych.

12 Rozszerzenia modelu dla danych wielowymiarowych Główna idea: W przypadku danych wielowymiarowych konieczne jest rozpatrywanie wielu lokalnych modeli podobieństwa, które można interpretować jako autonomicznych agentów z własnymi preferencjami i doświadczeniem. Dwa typy wielowymiarowych danych Dane mikromacierzowe: uczenie z nadzorem redukty dynamiczne reguły decyzyjne i wzbraniające Dane tekstowe: uczenie bez nadzoru biredukty informacyjne pojęcia z ontologii dziedzinowej

13 Opis eksperymentów na danych mikromacierzowych Microarray data: few-objects-many-attributes problem 40k genes (attributes) Opis danych sampleid AFFX-3_at 3322_i_at 4969_s_at _s_at 22379_at Diagnosis GSM1.CEL GSM2.CEL GSM3.CEL GSM4.CEL GSM149. CEL 11 zbiorów mikromacierzy, liczba obiektów: , liczba atrybutów: 22k 61k, zbiory pochodzą z repozytorium ArrayExpress Opis eksperymentu wielokrotnie powtarzana weryfikacja krzyżowa, miary jakości: ACC i BAC, porównywane klasyfikatory: k-nn, RF, SVM.

14 Wyniki porównania z wybranymi modelami podobieństwa Balanced classification accuracy (%) NN + cortest 1 NN + t test 1 NN + relief RBS DRBS ALL BTu GPe HFF HGl SSh

15 Wyniki porównania z wybranymi metodami klasyfikacji Balanced classification accuracy (%) RF RF_b. ALL ATC BTu BLy GPe HFF HeC HGl OTu SSh SPs SVM DRBS

16 Opis eksperymentów na danych tekstowych Opis danych zbior 1000 artykułów naukowych z repozytorium PubMed Central, ontologia dziedzinowa MeSH ( 26k pojęć), metoda automatycznego etykietowania: ESA, zbiory etykiet nadanych przez ekspertów. Ewaluacja wyników Opis eksperymentu grupowanie hierarchiczne artykułów, stosowane algorytmy: agnes i diana, porównywane modele: dwa oparte o miarę kosinusową, zewnętrzna miara oceny jakości grupowania. Miara zgodności etykiet nadanych przez ekspertów wewnątrz grup.

17 Wyniki ewaluacji modelu Average semantic homogenity agnes RBS bireduct diana RBS bireduct agnes RBS single diana RBS single agnes Cosine single diana Cosine single agnes Cosine ensemble diana Cosine ensemble random clustering Average semantic homogenity agnes RBS bireduct diana RBS bireduct agnes RBS single diana RBS single agnes Cosine single diana Cosine single agnes Cosine ens. diana Cosine ens. random clustering Number of clusters Number of clusters

18 Podsumowanie Co się udało? dokonano interpretacji problemu uczenia się podobieństwa z punktu widzenia teorii zbiorów przybliżonych, zaproponowano intuicyjny i elastyczny model uczenia się podobieństwa z danych, opracowano efektywne algorytmy działające dla wielowymiarowych zbiorów danych, przeprowadzono dokładną ewaluację zaproponowanego podejścia. Kierunki na przyszłość: lepsze wykorzystanie wiedzy dziedzinowej, optymalizacja wydajności obliczeniowej dla dużych zbiorów danych, stworzenie wysokopoziomowego środowiska do eksperymentów.

19 Dziękuję za uwagę!

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

Systemy Agentowe główne cechy. Mariusz.Matuszek WETI PG

Systemy Agentowe główne cechy. Mariusz.Matuszek WETI PG Systemy Agentowe główne cechy Mariusz.Matuszek WETI PG Definicja agenta Wiele definicji, w zależności od rozpatrywanego zakresu zastosowań. Popularna definicja: Jednostka obliczeniowa (program, robot),

Bardziej szczegółowo

SPOTKANIE 2: Wprowadzenie cz. I

SPOTKANIE 2: Wprowadzenie cz. I Wrocław University of Technology SPOTKANIE 2: Wprowadzenie cz. I Piotr Klukowski Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.edu.pl 17.10.2016 UCZENIE MASZYNOWE 2/27 UCZENIE MASZYNOWE = Konstruowanie

Bardziej szczegółowo

Pattern Classification

Pattern Classification Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors

Bardziej szczegółowo

Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne. Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych

Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne. Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych Plan wystąpienia Co to jest sztuczna inteligencja? Pojęcie słabej

Bardziej szczegółowo

Python : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop Spis treści

Python : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop Spis treści Python : podstawy nauki o danych / Alberto Boschetti, Luca Massaron. Gliwice, cop. 2017 Spis treści O autorach 9 0 recenzencie 10 Wprowadzenie 11 Rozdział 1. Pierwsze kroki 15 Wprowadzenie do nauki o danych

Bardziej szczegółowo

Szczegółowy opis przedmiotu zamówienia

Szczegółowy opis przedmiotu zamówienia ZP/ITS/19/2013 SIWZ Załącznik nr 1.1 do Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych dla studentów

Bardziej szczegółowo

Wprowadzenie do technologii informacyjnej.

Wprowadzenie do technologii informacyjnej. Wprowadzenie do technologii informacyjnej. Data mining i jego biznesowe zastosowania dr Tomasz Jach Definicje Eksploracja danych polega na torturowaniu danych tak długo, aż zaczną zeznawać. Eksploracja

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu

Bardziej szczegółowo

Ontogeniczne sieci neuronowe. O sieciach zmieniających swoją strukturę

Ontogeniczne sieci neuronowe. O sieciach zmieniających swoją strukturę Norbert Jankowski Ontogeniczne sieci neuronowe O sieciach zmieniających swoją strukturę Warszawa 2003 Opracowanie książki było wspierane stypendium Uniwersytetu Mikołaja Kopernika Spis treści Wprowadzenie

Bardziej szczegółowo

Agnieszka Nowak Brzezińska Wykład III

Agnieszka Nowak Brzezińska Wykład III Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe

Bardziej szczegółowo

Uczenie się maszyn. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki

Uczenie się maszyn. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Machine Learning (uczenie maszynowe, uczenie się maszyn, systemy uczące się) interdyscyplinarna nauka, której celem jest stworzenie

Bardziej szczegółowo

Algorytmy metaheurystyczne Wykład 11. Piotr Syga

Algorytmy metaheurystyczne Wykład 11. Piotr Syga Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,

Bardziej szczegółowo

Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji

Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji Identyfikacja istotnych atrybutów za pomocą Baysowskich miar konfirmacji Jacek Szcześniak Jerzy Błaszczyński Roman Słowiński Poznań, 5.XI.2013r. Konspekt Wstęp Wprowadzenie Metody typu wrapper Nowe metody

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu. SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu

Bardziej szczegółowo

Techniki uczenia maszynowego nazwa przedmiotu SYLABUS

Techniki uczenia maszynowego nazwa przedmiotu SYLABUS Techniki uczenia maszynowego nazwa SYLABUS Obowiązuje od cyklu kształcenia: 2014/20 Część A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej studiów Poziom kształcenia Profil studiów

Bardziej szczegółowo

Transformacja wiedzy w budowie i eksploatacji maszyn

Transformacja wiedzy w budowie i eksploatacji maszyn Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces

Bardziej szczegółowo

Szybkość instynktu i rozsądek rozumu$

Szybkość instynktu i rozsądek rozumu$ Szybkość instynktu i rozsądek rozumu$ zastosowania rozwiązań BigData$ Bartosz Dudziński" Architekt IT! Już nie tylko dokumenty Ilość Szybkość Różnorodność 12 terabajtów milionów Tweet-ów tworzonych codziennie

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne Systemy Uczące się Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności January 16, 2017 1 Wprowadzenie 2 Uczenie nadzorowane 3 Uczenie bez nadzoru 4 Uczenie ze wzmocnieniem Uczenie się - proces

Bardziej szczegółowo

AUTOMATYKA INFORMATYKA

AUTOMATYKA INFORMATYKA AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław Kowalczuk Inteligentne wydobywanie informacji z internetowych serwisów

Bardziej szczegółowo

Hierarchiczna analiza skupień

Hierarchiczna analiza skupień Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym

Bardziej szczegółowo

JAKIMI REGUŁAMI RZĄDZI SIĘ ZBIOROWOŚĆ? WYKORZYSTANIE MODELOWANIA I SYMULACJI ZACHOWAŃ GRUPOWYCH NA POTRZEBY BEZPIECZEŃSTWA IMPREZY MASOWEJ

JAKIMI REGUŁAMI RZĄDZI SIĘ ZBIOROWOŚĆ? WYKORZYSTANIE MODELOWANIA I SYMULACJI ZACHOWAŃ GRUPOWYCH NA POTRZEBY BEZPIECZEŃSTWA IMPREZY MASOWEJ JAKIMI REGUŁAMI RZĄDZI SIĘ ZBIOROWOŚĆ? WYKORZYSTANIE MODELOWANIA I SYMULACJI ZACHOWAŃ GRUPOWYCH NA POTRZEBY BEZPIECZEŃSTWA IMPREZY MASOWEJ MICHAŁ KAPAŁKA Wydział Cybernetyki, Instytut Systemów Informatycznych

Bardziej szczegółowo

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB IV ZBIORY PRZYBLIŻONE I ODKRYWANIE REGUŁ DECYZYJNYCH

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB IV ZBIORY PRZYBLIŻONE I ODKRYWANIE REGUŁ DECYZYJNYCH WSOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB IV ZBIORY RZYBLIŻONE I ODKRYWANIE REGUŁ DECYZYJNYCH 1. Definicje Zbiory, które nie są zbiorami definiowalnymi, są nazywane zbiorami przybliżonymi. Zbiory definiowalne

Bardziej szczegółowo

Modelowanie i symulacja zachowania tłumu.

Modelowanie i symulacja zachowania tłumu. Bydgoszcz / 2017 Modelowanie i symulacja zachowania tłumu. MICHAŁ KAPAŁKA Wydział Cybernetyki Instytut Systemów Informatycznych Wojskowa Akademia Techniczna, 00-908 Warszawa, ul. Kaliskiego 2 Czy w tłumie

Bardziej szczegółowo

MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH

MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH 1. Przedmiot nie wymaga przedmiotów poprzedzających 2. Treść przedmiotu Proces i cykl decyzyjny. Rola modelowania matematycznego w procesach decyzyjnych.

Bardziej szczegółowo

Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści

Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji

Bardziej szczegółowo

Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania

Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza Skupień Elementy składowe procesu grupowania obiekt Ekstrakcja cech Sprzężenie zwrotne Grupowanie klastry Reprezentacja

Bardziej szczegółowo

w ekonomii, finansach i towaroznawstwie

w ekonomii, finansach i towaroznawstwie w ekonomii, finansach i towaroznawstwie spotykane określenia: zgłębianie danych, eksploracyjna analiza danych, przekopywanie danych, męczenie danych proces wykrywania zależności w zbiorach danych poprzez

Bardziej szczegółowo

Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji

Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji Michał Witczak Data Mining 20 maja 2012 r. 1. Wstęp Dostarczone zostały nam 4 pliki, z których dwa stanowiły zbiory uczące

Bardziej szczegółowo

Eksploracja danych. Grupowanie. Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne. Grupowanie wykład 1

Eksploracja danych. Grupowanie. Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne. Grupowanie wykład 1 Grupowanie Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Grupowanie wykład 1 Sformułowanie problemu Dany jest zbiór obiektów (rekordów). Znajdź naturalne pogrupowanie

Bardziej szczegółowo

Plan prezentacji 0 Wprowadzenie 0 Zastosowania 0 Przykładowe metody 0 Zagadnienia poboczne 0 Przyszłość 0 Podsumowanie 7 Jak powstaje wiedza? Dane Informacje Wiedza Zrozumienie 8 Przykład Teleskop Hubble

Bardziej szczegółowo

8. Drzewa decyzyjne, bagging, boosting i lasy losowe

8. Drzewa decyzyjne, bagging, boosting i lasy losowe Algorytmy rozpoznawania obrazów 8. Drzewa decyzyjne, bagging, boosting i lasy losowe dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Drzewa decyzyjne Drzewa decyzyjne (ang. decision trees), zwane

Bardziej szczegółowo

Zastosowania metod odkrywania wiedzy do diagnostyki maszyn i procesów

Zastosowania metod odkrywania wiedzy do diagnostyki maszyn i procesów Zastosowania metod odkrywania wiedzy do diagnostyki maszyn i procesów Wojciech Moczulski Politechnika Śląska Katedra Podstaw Konstrukcji Maszyn Sztuczna inteligencja w automatyce i robotyce Zielona Góra,

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 1. INFORMACJE WSTĘPNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 1. INFORMACJE WSTĘPNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 1. INFORMACJE WSTĘPNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PLAN WYKŁADU WSTĘP W 1 Uczenie się w ujęciu algorytmicznym. W

Bardziej szczegółowo

Metody selekcji cech

Metody selekcji cech Metody selekcji cech A po co to Często mamy do dyspozycji dane w postaci zbioru cech lecz nie wiemy które z tych cech będą dla nas istotne. W zbiorze cech mogą wystąpić cechy redundantne niosące identyczną

Bardziej szczegółowo

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania 2/32 Cel analizy Celem fazy określania wymagań jest udzielenie odpowiedzi na pytanie:

Bardziej szczegółowo

Adrian Horzyk

Adrian Horzyk Metody Inteligencji Obliczeniowej Metoda K Najbliższych Sąsiadów (KNN) Adrian Horzyk horzyk@agh.edu.pl AGH Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych

Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych mgr inż. C. Dendek prof. nzw. dr hab. J. Mańdziuk Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych Outline 1 Uczenie

Bardziej szczegółowo

Odkrywanie wiedzy z danych przy użyciu zbiorów przybliżonych. Wykład 3

Odkrywanie wiedzy z danych przy użyciu zbiorów przybliżonych. Wykład 3 Odkrywanie wiedzy z danych przy użyciu zbiorów przybliżonych Wykład 3 W internecie Teoria zbiorów przybliżonych zaproponowany w 1982 r. przez prof. Zdzisława Pawlaka formalizm matematyczny, stanowiący

Bardziej szczegółowo

Wprowadzenie do uczenia maszynowego

Wprowadzenie do uczenia maszynowego Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania

Bardziej szczegółowo

RILL - przyrostowy klasyfikator regułowy uczący się ze zmiennych środowisk

RILL - przyrostowy klasyfikator regułowy uczący się ze zmiennych środowisk Wprowadzenie RILL - przyrostowy klasyfikator regułowy uczący się ze zmiennych środowisk Magdalena Deckert Politechnika Poznańska, Instytut Informatyki Seminarium ISWD, 21.05.2013 M. Deckert Przyrostowy

Bardziej szczegółowo

Eksploracja danych w środowisku R

Eksploracja danych w środowisku R Eksploracja danych w środowisku R Moi drodzy, niniejszy konspekt nie omawia eksploracji danych samej w sobie. Nie dowiecie się tutaj o co chodzi w generowaniu drzew decyzyjnych czy grupowaniu danych. Te

Bardziej szczegółowo

Kognitywne hierarchiczne aktywne podziały. Arkadiusz Tomczyk.

Kognitywne hierarchiczne aktywne podziały. Arkadiusz Tomczyk. Arkadiusz Tomczyk arkadiusz.tomczyk@p.lodz.pl projekt finansowany przez: Narodowe Centrum Nauki numer projektu: 2012/05/D/ST6/03091 Przykładowy problem Diagnostyka zatorowości płucnej Obrazowanie CT sprzężone

Bardziej szczegółowo

Nowe narzędzia zarządzania jakością

Nowe narzędzia zarządzania jakością Nowe narzędzia zarządzania jakością Agnieszka Michalak 106947 Piotr Michalak 106928 Filip Najdek 106946 Co to jest? Nowe narzędzia jakości - grupa siedmiu nowych narzędzi zarządzania jakością, które mają

Bardziej szczegółowo

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną

Bardziej szczegółowo

CogGGP - kognitywnie inspirowany agent GGP - opis architektury

CogGGP - kognitywnie inspirowany agent GGP - opis architektury CogGGP - kognitywnie inspirowany agent GGP - opis architektury C. Dendek prof nzw. dr hab. J. Mańdziuk Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych C. Dendek, prof nzw. dr hab. J.

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 3. SYSTEMY UCZĄCE SIĘ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska LITERATURA [Cic] * Cichosz P.: Systemy uczące się. WNT, 2003

Bardziej szczegółowo

Badania marketingowe

Badania marketingowe Badania marketingowe Dr hab. prof. SGH Katedra Rynku i Marketingu SGH teresataranko@o2.pl Konsultacje pokój 302 Madalińskiego 6/8 Wtorek -15.00-16.00 Struktura problematyki 1. Definicja i funkcje badań

Bardziej szczegółowo

Prof. Stanisław Jankowski

Prof. Stanisław Jankowski Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny

Bardziej szczegółowo

dr inż. Olga Siedlecka-Lamch 14 listopada 2011 roku Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Eksploracja danych

dr inż. Olga Siedlecka-Lamch 14 listopada 2011 roku Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Eksploracja danych - Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska 14 listopada 2011 roku 1 - - 2 3 4 5 - The purpose of computing is insight, not numbers Richard Hamming Motywacja - Mamy informację,

Bardziej szczegółowo

Systemy Wspomagania Decyzji

Systemy Wspomagania Decyzji Teoria decyzji Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności February 5, 2016 1 Definicje 2 Normatywna teoria decyzji 3 Opisowa teoria decyzji 4 Naturalistyczny model podejmowania decyzji

Bardziej szczegółowo

Reguły decyzyjne, algorytm AQ i CN2. Reguły asocjacyjne, algorytm Apriori.

Reguły decyzyjne, algorytm AQ i CN2. Reguły asocjacyjne, algorytm Apriori. Analiza danych Reguły decyzyjne, algorytm AQ i CN2. Reguły asocjacyjne, algorytm Apriori. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ REGUŁY DECYZYJNE Metoda reprezentacji wiedzy (modelowania

Bardziej szczegółowo

Zbiory przybliżone, cz. 1 (wersja do druku) dr. Piotr Szczuko

Zbiory przybliżone, cz. 1 (wersja do druku) dr. Piotr Szczuko Zbiory przybliżone, cz. 1 (wersja do druku) dr. Piotr Szczuko Katedra Systemów Multimedialnych 2009 Plan wykładu Historia zbiorów przybliżonych System informacyjny i decyzyjny Reguły decyzyjne Tożsamość

Bardziej szczegółowo

DRZEWA REGRESYJNE I LASY LOSOWE JAKO

DRZEWA REGRESYJNE I LASY LOSOWE JAKO DRZEWA REGRESYJNE I LASY LOSOWE JAKO NARZĘDZIA PREDYKCJI SZEREGÓW CZASOWYCH Z WAHANIAMI SEZONOWYMI Grzegorz Dudek Instytut Informatyki Wydział Elektryczny Politechnika Częstochowska www.gdudek.el.pcz.pl

Bardziej szczegółowo

Metody optymalizacji dyskretnej

Metody optymalizacji dyskretnej Metody optymalizacji dyskretnej Spis treści Spis treści Metody optymalizacji dyskretnej...1 1 Wstęp...5 2 Metody optymalizacji dyskretnej...6 2.1 Metody dokładne...6 2.2 Metody przybliżone...6 2.2.1 Poszukiwanie

Bardziej szczegółowo

LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów

LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów Łukasz Piątek, Jerzy W. Grzymała-Busse Katedra Systemów Ekspertowych i Sztucznej Inteligencji, Wydział Informatyki

Bardziej szczegółowo

Poza sztuczną CTO 15 maj, Watson Warsaw Summit 2017

Poza sztuczną CTO 15 maj, Watson Warsaw Summit 2017 Poza sztuczną inteligencję @piotrpietrzak CTO 15 maj, 2017 Watson Warsaw Summit 2017 3 ZMIANA Postęp w dziedzinie NLP i ML daje nam możliwość budowania ekspertyz, dowodzenia i odkrywania na niespotykaną

Bardziej szczegółowo

Systemy Wspomagania Decyzji

Systemy Wspomagania Decyzji Wprowadzenie Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności January 24, 2014 Tarnów, Październik 2004, 2 Strażaków Zginęło w Pożarze Neuilly, Wrzesień 2002, 5 Strażaków Zginęło w Backdrafcie

Bardziej szczegółowo

CLUSTERING. Metody grupowania danych

CLUSTERING. Metody grupowania danych CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means

Bardziej szczegółowo

Data Mining z wykorzystaniem programu Rapid Miner

Data Mining z wykorzystaniem programu Rapid Miner Data Mining z wykorzystaniem programu Rapid Miner Michał Bereta www.michalbereta.pl Program Rapid Miner jest dostępny na stronie: http://rapid-i.com/ Korzystamy z bezpłatnej wersji RapidMiner Community

Bardziej szczegółowo

Mail: Pokój 214, II piętro

Mail: Pokój 214, II piętro Wykład 2 Mail: agnieszka.nowak@us.edu.pl Pokój 214, II piętro http://zsi.tech.us.edu.pl/~nowak Predykcja zdolność do wykorzystania wiedzy zgromadzonej w systemie do przewidywania wartości dla nowych danych,

Bardziej szczegółowo

WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU

WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU WYDZIAŁ MATEMATYKI KARTA PRZEDMIOTU Nazwa w języku polskim: Eksploracja Danych Nazwa w języku angielskim: Data Mining Kierunek studiów (jeśli dotyczy): MATEMATYKA I STATYSTYKA Stopień studiów i forma:

Bardziej szczegółowo

Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych

Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław

Bardziej szczegółowo

Modelowanie i Programowanie Obiektowe

Modelowanie i Programowanie Obiektowe Modelowanie i Programowanie Obiektowe Wykład I: Wstęp 20 październik 2012 Programowanie obiektowe Metodyka wytwarzania oprogramowania Metodyka Metodyka ustandaryzowane dla wybranego obszaru podejście do

Bardziej szczegółowo

Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010

Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010 Materiały/konsultacje Automatyczna predykcja http://www.ibp.pwr.wroc.pl/kotulskalab Konsultacje wtorek, piątek 9-11 (uprzedzić) D1-115 malgorzata.kotulska@pwr.wroc.pl Co to jest uczenie maszynowe? Uczenie

Bardziej szczegółowo

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ;

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ; Algorytm LEM1 Oznaczenia i definicje: U - uniwersum, tj. zbiór obiektów; A - zbiór atrybutów warunkowych; d - atrybut decyzyjny; IND(B) = {(x, y) U U : a B a(x) = a(y)} - relacja nierozróżnialności, tj.

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski

Bardziej szczegółowo

System informacyjny a system decyzyjny Relacja nierozróżnialności Klasy abstrakcji Teoria zbiorów przybliżonych Usuwanie niespójności z tablicy

System informacyjny a system decyzyjny Relacja nierozróżnialności Klasy abstrakcji Teoria zbiorów przybliżonych Usuwanie niespójności z tablicy System informacyjny a system decyzyjny Relacja nierozróżnialności Klasy abstrakcji Teoria zbiorów przybliżonych Usuwanie niespójności z tablicy decyzyjnej System informacyjny System informacyjny SI zdefiniowany

Bardziej szczegółowo

Analiza zmienności czasowej danych mikromacierzowych

Analiza zmienności czasowej danych mikromacierzowych Systemy Inteligencji Obliczeniowej Analiza zmienności czasowej danych mikromacierzowych Kornel Chromiński Instytut Informatyki Uniwersytet Śląski Plan prezentacji Dane mikromacierzowe Cel badań Prezentacja

Bardziej szczegółowo

Drzewa decyzyjne i lasy losowe

Drzewa decyzyjne i lasy losowe Drzewa decyzyjne i lasy losowe Im dalej w las tym więcej drzew! ML Gdańsk http://www.mlgdansk.pl/ Marcin Zadroga https://www.linkedin.com/in/mzadroga/ 20 Czerwca 2017 WPROWADZENIE DO MACHINE LEARNING CZYM

Bardziej szczegółowo

Agnieszka Nowak Brzezińska

Agnieszka Nowak Brzezińska Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia

Bardziej szczegółowo

komputery? Andrzej Skowron, Hung Son Nguyen Instytut Matematyki, Wydział MIM, UW

komputery? Andrzej Skowron, Hung Son Nguyen  Instytut Matematyki, Wydział MIM, UW Czego moga się nauczyć komputery? Andrzej Skowron, Hung Son Nguyen son@mimuw.edu.pl; skowron@mimuw.edu.pl Instytut Matematyki, Wydział MIM, UW colt.tex Czego mogą się nauczyć komputery? Andrzej Skowron,

Bardziej szczegółowo

z wyszczególnieniem usług automatyzacji procesów mgr inż. Adam Smółkowski mgr inż. Marcin Wójciuk Aspartus (Grupa ProService FINTECO)

z wyszczególnieniem usług automatyzacji procesów mgr inż. Adam Smółkowski mgr inż. Marcin Wójciuk Aspartus (Grupa ProService FINTECO) Przewidywane kierunki outsourcingu w ubezpieczeniach z wyszczególnieniem usług automatyzacji procesów mgr inż. Adam Smółkowski mgr inż. Marcin Wójciuk Aspartus (Grupa ProService FINTECO) Outsourcing definicja

Bardziej szczegółowo

Systemy ekspertowe : Tablice decyzyjne

Systemy ekspertowe : Tablice decyzyjne Instytut Informatyki Uniwersytetu Śląskiego 16 marzec 2010 Tablica decyzyjna Klasy nierozróżnialności i klasy decyzyjne Rdzeń Redukt Macierz nierozróżnialności Rdzeń i redukt w macierzy nierozróżnialności

Bardziej szczegółowo

Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 2. Wojciech Waloszek. Teresa Zawadzka.

Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 2. Wojciech Waloszek. Teresa Zawadzka. Eksploracja danych KLASYFIKACJA I REGRESJA cz. 2 Wojciech Waloszek wowal@eti.pg.gda.pl Teresa Zawadzka tegra@eti.pg.gda.pl Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki

Bardziej szczegółowo

Badania marketingowe. Omówione zagadnienia

Badania marketingowe. Omówione zagadnienia Społeczna Wyższa Szkoła Przedsiębiorczości i Zarządzania kierunek: Zarządzanie Badania marketingowe Wykład 6 Opracowanie: dr Joanna Krygier 1 Omówione zagadnienia Rodzaje badań bezpośrednich Porównanie

Bardziej szczegółowo

Analiza metod wykrywania przekazów steganograficznych. Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl

Analiza metod wykrywania przekazów steganograficznych. Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl Analiza metod wykrywania przekazów steganograficznych Magdalena Pejas Wydział EiTI PW magdap7@gazeta.pl Plan prezentacji Wprowadzenie Cel pracy Tezy pracy Koncepcja systemu Typy i wyniki testów Optymalizacja

Bardziej szczegółowo

Algorytmy klasyfikacji

Algorytmy klasyfikacji Algorytmy klasyfikacji Konrad Miziński Instytut Informatyki Politechnika Warszawska 6 maja 2015 1 Wnioskowanie 2 Klasyfikacja Zastosowania 3 Drzewa decyzyjne Budowa Ocena jakości Przycinanie 4 Lasy losowe

Bardziej szczegółowo

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel według przewidywań internetowego magazynu ZDNET News z 8 lutego 2001 roku eksploracja danych (ang. data mining ) będzie jednym z najbardziej rewolucyjnych osiągnięć następnej dekady. Rzeczywiście MIT Technology

Bardziej szczegółowo

Przykładowa analiza danych

Przykładowa analiza danych Przykładowa analiza danych W analizie wykorzystano dane pochodzące z publicznego repozytorium ArrayExpress udostępnionego na stronach Europejskiego Instytutu Bioinformatyki (http://www.ebi.ac.uk/). Zbiór

Bardziej szczegółowo

Kombinacja jądrowych estymatorów gęstości w klasyfikacji - zastosowanie na sztucznym zbiorze danych

Kombinacja jądrowych estymatorów gęstości w klasyfikacji - zastosowanie na sztucznym zbiorze danych Kombinacja jądrowych estymatorów gęstości w klasyfikacji - zastosowanie na sztucznym zbiorze danych Mateusz Kobos, 07.04.2010 Seminarium Metody Inteligencji Obliczeniowej Spis treści Opis algorytmu i zbioru

Bardziej szczegółowo

Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej. Adam Żychowski

Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej. Adam Żychowski Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej Adam Żychowski Definicja problemu Każdy z obiektów może należeć do więcej niż jednej kategorii. Alternatywna definicja Zastosowania

Bardziej szczegółowo

Ewelina Dziura Krzysztof Maryański

Ewelina Dziura Krzysztof Maryański Ewelina Dziura Krzysztof Maryański 1. Wstęp - eksploracja danych 2. Proces Eksploracji danych 3. Reguły asocjacyjne budowa, zastosowanie, pozyskiwanie 4. Algorytm Apriori i jego modyfikacje 5. Przykład

Bardziej szczegółowo

SYLABUS. Dotyczy cyklu kształcenia Realizacja w roku akademickim 2016/2017. Wydział Matematyczno - Przyrodniczy

SYLABUS. Dotyczy cyklu kształcenia Realizacja w roku akademickim 2016/2017. Wydział Matematyczno - Przyrodniczy Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS Dotyczy cyklu kształcenia 2014-2018 Realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu

Bardziej szczegółowo

Wprowadzenie w tematykę zarządzania projektami/przedsięwzięciami

Wprowadzenie w tematykę zarządzania projektami/przedsięwzięciami Wprowadzenie w tematykę zarządzania projektami/przedsięwzięciami punkt 2 planu zajęć dr inż. Agata Klaus-Rosińska 1 DEFINICJA PROJEKTU Zbiór działań podejmowanych dla zrealizowania określonego celu i uzyskania

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

WYKŁAD 1. Wprowadzenie w tematykę kursu

WYKŁAD 1. Wprowadzenie w tematykę kursu Wrocław University of Technology WYKŁAD 1 Wprowadzenie w tematykę kursu autor: Maciej Zięba Politechnika Wrocławska Informacje dotyczące zajęć Cykl 8 wykładów. Konsultacje odbywają się w sali 121 w budynku

Bardziej szczegółowo

Wybrane zagadnienia uczenia maszynowego. Zastosowania Informatyki w Informatyce W2 Krzysztof Krawiec

Wybrane zagadnienia uczenia maszynowego. Zastosowania Informatyki w Informatyce W2 Krzysztof Krawiec Wybrane zagadnienia uczenia maszynowego Zastosowania Informatyki w Informatyce W2 Krzysztof Krawiec Przygotowane na podstawie T. Mitchell, Machine Learning S.J. Russel, P. Norvig, Artificial Intelligence

Bardziej szczegółowo

Wyk lad 8: Leniwe metody klasyfikacji

Wyk lad 8: Leniwe metody klasyfikacji Wyk lad 8: Leniwe metody Wydzia l MIM, Uniwersytet Warszawski Outline 1 2 lazy vs. eager learning lazy vs. eager learning Kiedy stosować leniwe techniki? Eager learning: Buduje globalna hipoteze Zaleta:

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18

Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18 Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)

Bardziej szczegółowo

Narzędzia do automatycznej analizy semantycznej tekstu na poziomach: leksykalnym i struktur

Narzędzia do automatycznej analizy semantycznej tekstu na poziomach: leksykalnym i struktur Narzędzia do automatycznej analizy semantycznej tekstu na poziomach: leksykalnym i struktur Maciej Piasecki, Paweł Kędzia Politechnika ska Katedra Inteligencji Obliczeniowej Grupa Naukowa G4.19 Plan prezentacji

Bardziej szczegółowo

ZAGADNIENIA DO EGZAMINU DYPLOMOWEGO NA STUDIACH INŻYNIERSKICH. Matematyka dyskretna, algorytmy i struktury danych, sztuczna inteligencja

ZAGADNIENIA DO EGZAMINU DYPLOMOWEGO NA STUDIACH INŻYNIERSKICH. Matematyka dyskretna, algorytmy i struktury danych, sztuczna inteligencja Kierunek Informatyka Rok akademicki 2016/2017 Wydział Matematyczno-Przyrodniczy Uniwersytet Rzeszowski ZAGADNIENIA DO EGZAMINU DYPLOMOWEGO NA STUDIACH INŻYNIERSKICH Technika cyfrowa i architektura komputerów

Bardziej szczegółowo

Metody Optymalizacji: Przeszukiwanie z listą tabu

Metody Optymalizacji: Przeszukiwanie z listą tabu Metody Optymalizacji: Przeszukiwanie z listą tabu Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: wtorek

Bardziej szczegółowo

Jakość uczenia i generalizacja

Jakość uczenia i generalizacja Jakość uczenia i generalizacja Dokładność uczenia Jest koncepcją miary w jakim stopniu nasza sieć nauczyła się rozwiązywać określone zadanie Dokładność mówi na ile nauczyliśmy się rozwiązywać zadania które

Bardziej szczegółowo

Systemy Optymalizacji Oświetlenia Zewnętrznego Kontekst Informatyczny. Dr hab. Leszek Kotulski, prof. AGH Dr Adam Sędziwy KIS WEAIiIB AGH

Systemy Optymalizacji Oświetlenia Zewnętrznego Kontekst Informatyczny. Dr hab. Leszek Kotulski, prof. AGH Dr Adam Sędziwy KIS WEAIiIB AGH Systemy Optymalizacji Oświetlenia Zewnętrznego Kontekst Informatyczny Dr hab. Leszek Kotulski, prof. AGH Dr Adam Sędziwy KIS WEAIiIB AGH Motywacja Dlaczego my zajmujemy się oświetleniem? Wymiana infrastruktury

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 0/03 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:

Bardziej szczegółowo

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników

Bardziej szczegółowo