Metody poprawy jakości obrazu (image enchancement)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody poprawy jakości obrazu (image enchancement)"

Transkrypt

1 Metody poprawy jakości obrazu imae echacemet) Są to metody wstępeo przetwarzaia obrazu. Celem tych metod jest oóla poprawa jakości obrazu poprzez modyikację jeo jasości, kotrastu lub historamu.

2 Metody poprawy jakości obrazu Metody poprawy jakości obrazu oparte są o kryteria subiektywe wrażeia wzrokowe człowieka). W tych metodach ie są wykorzystywae obiektywe kryteria matematycze.

3 METODY POPRAWY JAKOŚCI OBRAZU OPERACJE PUNKTOWE MODELOWANIE HISTOGRAMU OPERACJE PRZESTRZENNE NADAWANIE KOLORÓW POPRAWA KONTRASTU ELIMINACJA ZNIEKSZTAŁCEŃ POPRAWA KONTRASTU POPRZEZ MODELOWANIE HISTOGRAMU FILTRACJA LINIOWA FILTRACJA NIELINIOWA DETEKCJA KRAWĘDZI PSEUDOKOLORY NADAWANIE KOLORÓW FAŁSZYWYCH WYRÓWNYWANIE JASNOŚCI TŁA ZOOMING

4 Metody poprawy jakości obrazu Jasość J MN M N i j i, j) Kotrast C MN M N i j [ i, j) J ] M, N - wymiary obrazu, i,j) - poziom jasości w pukcie i,j)

5 Wpływ jasości i kotrastu a wyląd obrazu J94, C9 J9, C38 J, C47

6 Historam obrazu Imae : array[..m,..n]o byte; Hist : array[..l-]o loit;... Hist:; or i: to M do or j: to N do Ic Hist[ Imae[i, j] ] );...

7 8 oryialy Wpływ jasości i kotrastu a historam obrazu ciemy jasy

8 Liiowe odwzorowaie poziomów jasości L- m i,j) m i,j) + d d L- m ~ kotrast d ~ jasość OBRAZ WYNIKOWY OPERACJA PUNKTOWA OBRAZ ŹRÓDŁOWY

9 MATLB Demo zmiaa kotrastu i jasość

10 Rozciąaie historamu obrazu To jest rówież odwzorowaie liiowe???) M I N M A X L- i,j) i,j)< MIN L- MAX - i,j)- MIN ), MIN i,j) MAX MIN L- i,j)> MAX

11 Rozciąaie historamu obrazu - przykład MIN, MAX

12 Iwersja poziomów jasości obrazu L- L- Jak zaimplemetować iwersję???

13 Nieliiowe odwzorowaie poziomów jasości L- lx) i,j) T i,j)) sqrtx) x expx) Korekcja γ L- OBRAZ WYNIKOWY OBRAZ ŹRÓDŁOWY Normalizacja! OPERACJA PUNKTOWA

14 Nieliiowe odwzorowaie poziomów jasości - przykłady Obraz oryialy

15 Nieliiowe odwzorowaie poziomów jasości - przykłady Tx 5 5 Tsqrtx) 8 6 4

16 Nieliiowe odwzorowaie poziomów jasości - przykłady Te x 5 5 Tlox) 5 5

17 Nieliiowe odwzorowaie poziomów jasości - alorytm Przykład: ukcja kwadratowa ormalizacja: doly przedział - -> óry przedział > 55 współczyik ormalizacji: orm/55... or i: to M do or j: to N do [i,j]:roudsqr[i,j])*orm);...

18 Nieliiowe odwzorowaie poziomów jasości - alorytm Przykład: ukcja kwadratowa lut : array[..55]o byte;... or k: to 55 do lut[k]:roudk*k*orm) or i: to M do or j: to N do [i,j]:lut[[i,j])];...

19 Poprawa jakości zdjęć z teleskopu - przykład Tb loax)

20 Wyrówywaie historamu obrazu celem wyrówaia historamu jest uzyskaie maksymalie rówomiereo rozkładu poziomów jasości obrazu dla całeo jeo zakresu skutkiem wyrówaia historamu jest poprawa kotrastu obrazu ormalizacja obrazu

21 Wyrówywaie historamu obrazu p) p ) /L-) L- L- p )hist[]/mn p )/L-)

22 ] [ ) ] [ ) ) ) ),...,L -,,, ), ) ) ) hists L MN i hist L i p L L i p L L u L du L dh h p du u p dh h p i i i Wyrówywaie historamu obrazu

23 Obliczaie historamu skumulowaeo %hist day historam obrazu %hists wyzaczay historam skumuloway % M,N liczba wierszy i kolum obrazu % L liczba poziomów jasości, p. L56 histszeros,56); hist)hists); or i:56, hci)hci-)+hi); ed; histshists/m*n);

24 Historam oraz historam skumuloway

25 Wyróway historam Wyrówywaie historamu obrazu.8.6 Historam skumuloway Maxhisteq)maxhist) 8 Historam 6 4 L ) histc[ ] 5 5 5

26 Procedura wyrówywaia historamu obrazu -przykład

27 Wyrówywaie historamu obrazu

28 Wyrówywaie historamu obrazu

29 MATLB Demo zmiaa kotrastu i jasość

30 Elimiacja ziekształceń - sumowaie obrazów + + K l l K l l j i K j i j i j i K j i ), ), )], ), [ ), l i,j) - szum ieskoreloway z obrazem o wartości średiej i wariacji v l K UWAGA! - kotrola zakresu zmieych

31 Sumowaie obrazów - przypadek l v v v j i MN j i MN E E E E E E V E E E E M i N j M i N j ) 4 )]), [ )], [ 4 ]) } [{ ] } [{ 4 ] } { } }{ { } [{ 4 }]) { } [{ })) { } { }) { })] { }) { [ }) { } { }) { }) { } { } { { }, { } - szum o wartości średiej rówej i wariacji v v v, ieskoreloway z obrazem

32 Moża rówież wykazać, że średia wartość szczytowa szumu {} po uśredieiu) ulea zmiejszeiu K razy Sumowaie obrazów - przypadek l K v K v K K E E E V E K K E E K K l l K l l K l l K l l K l l }] { [ })) { } { }) { }) { }] { [ }) { } { } {

33 Elimiacja ziekształceń - przykład Szum aussowski, wartość średia, wariacja. Wyik sumowań Wyik 5 sumowań

34 Redukcja zakłóceń obrazu przez uśrediaie sekwecji obrazów N N N8 N6 Obraz mikroskopowy komórki

AKWIZYCJA I PRZETWARZANIE WSTĘPNE

AKWIZYCJA I PRZETWARZANIE WSTĘPNE WYKŁAD 2 AKWIZYCJA I PRZETWARZANIE WSTĘPNE Akwizycja (pozyskiwanie) obrazu Akwizycja obrazu - przetworzenie obrazu obiektu fizycznego (f(x,y)) do postaci zbioru danych dyskretnych (obraz cyfrowy) nadających

Bardziej szczegółowo

Przetwarzanie obrazów wykład 2

Przetwarzanie obrazów wykład 2 Przetwarzanie obrazów wykład 2 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Etapy obróbki pozyskanego obrazu Obróbka wstępna

Bardziej szczegółowo

Przetwarzanie obrazów rastrowych macierzą konwolucji

Przetwarzanie obrazów rastrowych macierzą konwolucji Przetwarzanie obrazów rastrowych macierzą konwolucji 1 Wstęp Obrazy rastrowe są na ogół reprezentowane w dwuwymiarowych tablicach złożonych z pikseli, reprezentowanych przez liczby określające ich jasność

Bardziej szczegółowo

Rozpoznawanie Twarzy i Systemy Biometryczne

Rozpoznawanie Twarzy i Systemy Biometryczne Filtry Plan wykładu Przegląd dostępnych filtrów Zastosowanie filtrów na różnych etapach pracy systemu Dalsze badania Kontrast i ostrość Kontrast różnica w kolorze i świetle między częściami ś i obrazu

Bardziej szczegółowo

Operator rozciągania. Obliczyć obraz q i jego histogram dla p 1 =4, p 2 =8; Operator redukcji poziomów szarości

Operator rozciągania. Obliczyć obraz q i jego histogram dla p 1 =4, p 2 =8; Operator redukcji poziomów szarości Operator rozciągania q = 15 ( p p1 ) ( p p ) 0 2 1 dla p < p p 1 2 dla p p, p > p 1 2 Obliczyć obraz q i jego histogram dla p 1 =4, p 2 =8; Operator redukcji poziomów szarości q = 0 dla p p1 q2 dla p1

Bardziej szczegółowo

Wyższa Szkoła Informatyki Stosowanej i Zarządzania

Wyższa Szkoła Informatyki Stosowanej i Zarządzania Wyższa Szkoła Informatyki Stosowanej i Zarządzania Grupa ID308, Zespół 11 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 6 Temat: Operacje sąsiedztwa wyostrzanie obrazu Wykonali: 1. Mikołaj Janeczek

Bardziej szczegółowo

Analiza obrazu. wykład 3. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009

Analiza obrazu. wykład 3. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Analiza obrazu komputerowego wykład 3 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Binaryzacja Binaryzacja jest jedną z ważniejszych ż czynności punktowego przetwarzania obrazów. Poprzedza prawie zawsze

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Przekształcenia kontekstowe. Filtry nieliniowe Typowy przykład usuwania zakłóceń z obrazu

Przekształcenia kontekstowe. Filtry nieliniowe Typowy przykład usuwania zakłóceń z obrazu Definicja Przekształcenia kontekstowe są to przekształcenia które dla wyznaczenia wartości jednego punktu obrazu wynikowego trzeba dokonać określonych obliczeń na wielu punktach obrazu źródłowego. Przekształcenia

Bardziej szczegółowo

Filtracja obrazu operacje kontekstowe

Filtracja obrazu operacje kontekstowe Filtracja obrazu operacje kontekstowe Podział metod filtracji obrazu Metody przestrzenne i częstotliwościowe Metody liniowe i nieliniowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu

Bardziej szczegółowo

Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab

Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab Zygmunt Wróbel i Robert Koprowski Praktyka przetwarzania obrazów w programie Matlab EXIT 2004 Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja obrazu

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

Przetwarzanie obrazu

Przetwarzanie obrazu Przetwarzanie obrazu Przekształcenia geometryczne Obroty Przesunięcia Odbicia Rozciągnięcia itp Przekształcenia geometryczne Obroty Wielokrotność 90 stopni Inne Przekształcenia geometryczne Obroty Wielokrotność

Bardziej szczegółowo

Ćwiczenie 6. Transformacje skali szarości obrazów

Ćwiczenie 6. Transformacje skali szarości obrazów Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 6. Transformacje skali szarości obrazów 1. Obraz cyfrowy Obraz w postaci cyfrowej

Bardziej szczegółowo

PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń. Ćwiczenie 2. Korekcja zniekształceń radiometrycznych

PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń. Ćwiczenie 2. Korekcja zniekształceń radiometrycznych WyŜsza Szkoła Informatyki Stosowanej i Zarządzania Warsaw School of Information Technology WIT Grupa ID306, Zespół 2 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 2 Temat: : Korekcja zniekształceń

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Obraz i komputer. Trzy dziedziny informatyki. Podział przede wszystkim ze względu na dane wejściowe i wyjściowe

Obraz i komputer. Trzy dziedziny informatyki. Podział przede wszystkim ze względu na dane wejściowe i wyjściowe Obraz i komputer Trzy dziedziny informatyki Grafika komputerowa Przetwarzanie obrazów Rozpoznawanie obrazów Podział przede wszystkim ze względu na dane wejściowe i wyjściowe Grafika komputerowa Dane wejściowe

Bardziej szczegółowo

Operacje przetwarzania obrazów monochromatycznych

Operacje przetwarzania obrazów monochromatycznych Operacje przetwarzania obrazów monochromatycznych Obraz pobrany z kamery lub aparatu często wymaga dalszej obróbki. Jej celem jest poprawienie jego jakości lub uzyskaniem na jego podstawie określonych

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2.

Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Technika obrazu 24 W.3. Normalizacja w zakresie obrazu cyfrowego

Bardziej szczegółowo

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i. Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla

Bardziej szczegółowo

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością

Bardziej szczegółowo

Anna Fabijańska. Algorytmy segmentacji w systemach analizy ilościowej obrazów

Anna Fabijańska. Algorytmy segmentacji w systemach analizy ilościowej obrazów POLITECHNIKA ŁÓDZKA Wydział Elektrotechniki Elektroniki Informatyki i Automatyki Katedra Informatyki Stosowanej Anna Fabijańska Nr albumu: 109647 Streszczenie pracy magisterskiej nt.: Algorytmy segmentacji

Bardziej szczegółowo

KAM-TECH sklep internetowy Utworzono : 09 listopad 2014

KAM-TECH sklep internetowy Utworzono : 09 listopad 2014 Model : - AWB, AGC, BLC, DZ OSD Effio-P Double Scan, 0,1Lux (kolor), Producent : CNB Kamera KAM-BFF-41F 700TVL TDN DSS 3D-DNR WDR Eclipsa AWB, AGC, BLC, DZ OSD Effio-P Double Scan, 0,1Lux (kolor), Kamera

Bardziej szczegółowo

Adam Korzeniewski p Katedra Systemów Multimedialnych

Adam Korzeniewski p Katedra Systemów Multimedialnych Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych camera obscura to pierwowzór aparatu fotograficznego Aparaty cyfrowe to urządzenia optoelektroniczne, które służą

Bardziej szczegółowo

Techniki wizualizacji. Ćwiczenie 4. Podstawowe algorytmy przetwarzania obrazów

Techniki wizualizacji. Ćwiczenie 4. Podstawowe algorytmy przetwarzania obrazów Doc. dr inż. Jacek Jarnicki Instytut Informatyki, Automatyki i Robotyki Politechniki Wrocławskiej jacek.jarnicki@pwr.wroc.pl Techniki wizualizacji Ćwiczenie 4 Podstawowe algorytmy przetwarzania obrazów

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INORMATYKI

Bardziej szczegółowo

maska 1 maska 2 maska 3 ogólnie

maska 1 maska 2 maska 3 ogólnie WYKŁAD 4 Detekcja krawędzi, operacje morfologiczne Detekcja (wykrywanie) krawędzi (edge detection) jest to technika segmentacji obrazu, polegająca na znajdowaniu piksli krawędziowych przez sprawdzanie

Bardziej szczegółowo

Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, Spis treści

Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, Spis treści Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, 2011 Spis treści Przedmowa 11 Rozdział 1. WPROWADZENIE 13 1.1. Czym jest automatyczne rozpoznawanie mowy 13 1.2. Poziomy

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie szóste Transformacje obrazu w dziedzinie częstotliwości 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami

Bardziej szczegółowo

Cyfrowe Przetwarzanie Obrazów. Karol Czapnik

Cyfrowe Przetwarzanie Obrazów. Karol Czapnik Cyfrowe Przetwarzanie Obrazów Karol Czapnik Podstawowe zastosowania (1) automatyka laboratoria badawcze medycyna kryminalistyka metrologia geodezja i kartografia 2/21 Podstawowe zastosowania (2) komunikacja

Bardziej szczegółowo

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac Kogruecje kwadratowe symbole Legedre a i Jacobiego Kogruecje Wykład 4 Defiicja 1 Kogruecję w ostaci x a (mod m), gdzie a m, azywamy kogruecją kwadratową; jej bardziej ogóla ostać ax + bx + c może zostać

Bardziej szczegółowo

Przetwarzanie obrazów wykład 4

Przetwarzanie obrazów wykład 4 Przetwarzanie obrazów wykład 4 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Filtry nieliniowe Filtry nieliniowe (kombinowane)

Bardziej szczegółowo

dr inż. Jacek Naruniec email: J.Naruniec@ire.pw.edu.pl

dr inż. Jacek Naruniec email: J.Naruniec@ire.pw.edu.pl dr inż. Jacek Naruniec email: J.Naruniec@ire.pw.edu.pl Coraz większa ilość danych obrazowych How much information, University of California Berkeley, 2002: przyrost zdjęć rentgenowskich to 17,2 PB rocznie

Bardziej szczegółowo

ZASTOSOWANIE MORFOLOGII MATEMATYCZNEJ DO PRZEMYSŁOWEGO PRZETWARZANIA OBRAZÓW

ZASTOSOWANIE MORFOLOGII MATEMATYCZNEJ DO PRZEMYSŁOWEGO PRZETWARZANIA OBRAZÓW Marcin IWANOWSKI Instytut Sterowania i Elektroniki Przemysłowej Politechnika Warszawska ul.koszykowa 75 00-662 Warszawa ZASTOSOWANIE MORFOLOGII MATEMATYCZNEJ DO PRZEMYSŁOWEGO PRZETWARZANIA ORAZÓW Artykuł

Bardziej szczegółowo

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Porównanie Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Spektroskopia FT-Raman Spektroskopia FT-Raman jest dostępna od 1987 roku. Systemy

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

Termodynamika defektów sieci krystalicznej

Termodynamika defektów sieci krystalicznej Termodyamika defektów sieci krystaliczej Defekty sieci krystaliczej puktowe (wakasje, atomy międzywęzłowe, obce atomy) jedowymiarowe (dyslokacje krawędziowe i śrubowe) dwuwymiarowe (graice międzyziarowe,

Bardziej szczegółowo

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW. Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA. Wykład wstępy. Teoria prawdopodobieństwa i elemety kombiatoryki 3. Zmiee losowe 4. Populacje i próby daych 5. Testowaie hipotez i estymacja parametrów 6. Test t 7. Test 8. Test

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

Definicja interpolacji

Definicja interpolacji INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję

Bardziej szczegółowo

Wybrane metody kompresji obrazów

Wybrane metody kompresji obrazów Wybrane metody kompresji obrazów Celem kodowania kompresyjnego obrazu jest redukcja ilości informacji w nim zawartej. Redukcja ta polega na usuwaniu informacji nadmiarowej w obrazie, tzw. redundancji.

Bardziej szczegółowo

PROGNOZY I SYMULACJE

PROGNOZY I SYMULACJE orecasig is he ar of saig wha will happe, ad he explaiig wh i did. Ch. Chafield (986 PROGNOZY I YMULACJE Kaarza Chud Laskowska kosulacje: p. 400A środa -4 czwarek -4 sroa iereowa: hp://kc.sd.prz.edu.pl/

Bardziej szczegółowo

WYBRANE ELEMENTY CYFROWEGO PRZETWARZANIA SYGNAŁÓW W RADARZE FMCW

WYBRANE ELEMENTY CYFROWEGO PRZETWARZANIA SYGNAŁÓW W RADARZE FMCW kpt. dr inż. Mariusz BODJAŃSKI Wojskowy Instytut Techniczny Uzbrojenia WYBRANE ELEMENTY CYFROWEGO PRZETWARZANIA SYGNAŁÓW W RADARZE FMCW W artykule przedstawiono zasadę działania radaru FMCW. Na przykładzie

Bardziej szczegółowo

14. RACHUNEK BŁĘDÓW *

14. RACHUNEK BŁĘDÓW * 4. RACHUNEK BŁĘDÓW * Błędy, które pojawiają się w czasie doświadczeia mogą mieć włase źródła. Są imi błędy związae z błędą kalibracją torów pomiarowych, szumy, czas reagowaia przyrządu, ograiczeia kostrukcyje,

Bardziej szczegółowo

A B. 2 5 8 18 2 x x x 5 x x 8 x 18

A B. 2 5 8 18 2 x x x 5 x x 8 x 18 Narzędzia modelowania niezawodności 1 Arkusz kalkulacyjny - jest to program zbudowany na schemacie relacyjnych baz danych. Relacje pomiędzy dwiema (lub więcej) cechami można zapisać na kilka sposobów.

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

Wykaz zmian wprowadzonych do skrótu prospektu informacyjnego KBC Parasol Funduszu Inwestycyjnego Otwartego w dniu 04 stycznia 2010 r.

Wykaz zmian wprowadzonych do skrótu prospektu informacyjnego KBC Parasol Funduszu Inwestycyjnego Otwartego w dniu 04 stycznia 2010 r. Wykaz zmia wprowadzoych do skróu prospeku iformacyjego KBC Parasol Fuduszu Iwesycyjego Owarego w diu 0 syczia 200 r. Rozdział I Dae o Fuduszu KBC Subfudusz Papierów DłuŜych Brzmieie doychczasowe: 6. Podsawowe

Bardziej szczegółowo

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,. Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,

Bardziej szczegółowo

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Matematyka fiasowa 08.10.2007 r. Komisja Egzamiacyja dla Aktuariuszy XLIII Egzami dla Aktuariuszy z 8 paździerika 2007 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:...

Bardziej szczegółowo

WYZNACZANIE CECH PUNKTOWYCH SYGNAŁÓW POMIAROWYCH

WYZNACZANIE CECH PUNKTOWYCH SYGNAŁÓW POMIAROWYCH PODSTAWY SYGNAŁÓW POMIAROWYCH I METROLOGII WYZNACZANIE CECH PUNKTOWYCH SYGNAŁÓW POMIAROWYCH WSTĘP TEORETYCZNY Sygnałem nazywamy przebieg dowolnej wielkości fizycznej mogącej być nośnikiem informacji Opis

Bardziej szczegółowo

Grafika komputerowa. Dr inż. Michał Kruk

Grafika komputerowa. Dr inż. Michał Kruk Grafika komputerowa Dr inż. Michał Kruk Operacje kontekstowe Z reguły filtry używane do analizy obrazów zakładają, że wykonywane na obrazie operacje będą kontekstowe Polega to na wyznaczeniu wartości funkcji,

Bardziej szczegółowo

Teledetekcja środowiska przyrodniczego. Zajęcia IV.

Teledetekcja środowiska przyrodniczego. Zajęcia IV. Korekcja radiometryczna danych teledetekcyjnych poprzez rozciąganie histogramu. Klasyfikacja wybranych cech obrazu poprzez progowanie histogramu obrazu. Teledetekcja środowiska przyrodniczego. Zajęcia

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie trzecie Operacje na dwóch obrazach 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z operacjami jakie możemy wykonywać na dwóch obrazach,

Bardziej szczegółowo

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności Edward Stachowski O trzech elemetarych ierówościach i ich zastosowaiach przy dowodzeiu iych ierówości Przy dowodzeiu ierówości stosujemy elemetare przejścia rówoważe, przeprowadzamy rozumowaie typu: jeżeli

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

Profesjonalny monitor CCTV INSTRUKCJA OBSŁUGI LA19DA0N-D / LA22DA0N-D

Profesjonalny monitor CCTV INSTRUKCJA OBSŁUGI LA19DA0N-D / LA22DA0N-D Profesjonalny monitor CCTV INSTRUKCJA OBSŁUGI LA19DA0N-D / LA22DA0N-D OSTRZEŻENIA 1. Proszę nie otwierać obudowy urządzenia ani nie dokonywać naprawy na własną rękę. W razie problemu skontaktuj się ze

Bardziej szczegółowo

Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4

Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4 Zadaia z Matematyka - SIMR 00/009 - szeregi zadaia z rozwiązaiami. Zbadać zbieżość szeregu Rozwiązaie: 0 4 4 + 6 0 : Dla dostateczie dużych 0 wyrazy szeregu są ieujeme 0 a = 4 4 + 6 0 0 Stosujemy kryterium

Bardziej szczegółowo

Zasady edycji (cyfrowej) grafiki nieruchomej

Zasady edycji (cyfrowej) grafiki nieruchomej Zasady edycji (cyfrowej) grafiki nieruchomej Trudno jest w czasie wykonywania fotografii widzieć i myśleć o wszystkim! Zasady ogólne wykonywania zdjęć (od strony wygody ich późniejszej edycji): 1. maksymalna

Bardziej szczegółowo

MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic

MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic MTLB PODSTWY ZNKI SPECJLNE symbol przypisi [ ] tworzeie tblic, rgumety wyjściowe fukcji, łączeie tblic { } ideksy struktur i tblic komórkowych ( ) wisy do określi kolejości dziłń, do ujmowi ideksów tblic,

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

Analiza obrazu. wykład 4. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009

Analiza obrazu. wykład 4. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Analiza obrazu komputerowego wykład 4 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Filtry górnoprzepustowe - gradienty Gradient - definicje Intuicyjnie, gradient jest wektorem, którego zwrot wskazuje

Bardziej szczegółowo

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne Technologie Informacyjne Wykªad 5 Paweª Witkowski MIM UW Wiosna 2012 P. Witkowski (MIM UW) Technologie Informacyjne Wiosna 2012 1 / 1 WYSZUKAJ.PIONOWO WYSZUKAJ.PIONOWO(kryterium wyszukiwania; macierz;

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

Jak obliczać podstawowe wskaźniki statystyczne?

Jak obliczać podstawowe wskaźniki statystyczne? Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań

Bardziej szczegółowo

KARTA OCENY ZGODNOŚCI OPERACJI Z LSR NUMER KONKURSU:... NUMER WNIOSKU:... DATA WPŁYWU:. TYTUŁ OPERACJI :... NAZWA BENEFICJENTA:...

KARTA OCENY ZGODNOŚCI OPERACJI Z LSR NUMER KONKURSU:... NUMER WNIOSKU:... DATA WPŁYWU:. TYTUŁ OPERACJI :... NAZWA BENEFICJENTA:... KARTA OCENY ZGODNOŚCI OPERACJI Z LSR NUMER KONKURSU:... NUMER WNIOSKU:... DATA WPŁYWU: TYTUŁ OPERACJI :..... NAZWA BENEFICJENTA:.... Karta oceny zgodności operacji z LSR jest wypełniana przez Członków

Bardziej szczegółowo

OCENA PRACY WZROKOWEJ NA STANOWISKACH KOMPUTEROWYCH W RÓśNYCH WARUNKACH OŚWIETLENIOWYCH

OCENA PRACY WZROKOWEJ NA STANOWISKACH KOMPUTEROWYCH W RÓśNYCH WARUNKACH OŚWIETLENIOWYCH STUDIA NIESTACJONARNE II STOPNIA wersja z dnia 3.12.2009 KIERUNEK ELEKTROTECHNIKA SEM 3. Laboratorium PODSTAW TECHNIKI ŚWIETLNEJ TEMAT: OCENA PRACY WZROKOWEJ NA STANOWISKACH KOMPUTEROWYCH W RÓśNYCH WARUNKACH

Bardziej szczegółowo

KONWERSJA OBRAZÓW CYFROWYCH DO POSTACI ZBIORÓW UCZĄCYCH DLA POTRZEB MODELOWANIA NEURONOWEGO

KONWERSJA OBRAZÓW CYFROWYCH DO POSTACI ZBIORÓW UCZĄCYCH DLA POTRZEB MODELOWANIA NEURONOWEGO Inżynieria Rolnicza 9(118)/2009 KONWERSJA OBRAZÓW CYFROWYCH DO POSTACI ZBIORÓW UCZĄCYCH DLA POTRZEB MODELOWANIA NEURONOWEGO Andrzej Przybylak, Piotr Boniecki, Krzysztof Nowakowski Instytut Inżynierii Rolniczej,

Bardziej szczegółowo

Wprowadzenie do przetwarzania obrazów

Wprowadzenie do przetwarzania obrazów Wprowadzenie do przetwarzania obrazów Radosław Mantiuk Zakład Grafiki Komputerowej Wydział Informatyki Politechnika Szczecińska Maj 2008 All Images in this presentation are the courtesy of Richard Alan

Bardziej szczegółowo

Ćwiczenie 2. Przetwarzanie graficzne plików. Wprowadzenie teoretyczne

Ćwiczenie 2. Przetwarzanie graficzne plików. Wprowadzenie teoretyczne Ćwiczenie Przetwarzanie graficzne plików Wprowadzenie teoretyczne ddytywne składanie kolorów (podstawowe barwy R, G, ) arwy składane addytywnie wykorzystywane są najczęściej w wyświetlaczach, czyli stosuje

Bardziej szczegółowo

PRAKTYKA PRZETWARZANIA OBRAZU W PROGRAMIE MATLAB

PRAKTYKA PRZETWARZANIA OBRAZU W PROGRAMIE MATLAB Zygmunt Wróbel Robert Koprowski PRAKTYKA PRZETWARZANIA OBRAZU W PROGRAMIE MATLAB EXIT 2004 2 3 SPIS TREŚCI Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja

Bardziej szczegółowo

Akwizycja obrazów HDR

Akwizycja obrazów HDR Akwizycja obrazów HDR Radosław Mantiuk radoslaw.mantiuk@gmail.com 1 Składanie HDRa z sekwencji zdjęć LDR (1) Seria zdjęć sceny wykonanych z różnymi ustawieniami ekspozycji 2 Składanie HDRa z sekwencji

Bardziej szczegółowo

Obiektywne metody pomiaru jakości obrazu

Obiektywne metody pomiaru jakości obrazu Systemy i Terminale Multimedialne Obiektywne metody pomiaru jakości obrazu Marcin Szykulski Wprowadzenie Kompresja Transmisja Jak osiągnąć kompromis przepływność/jakość? Podstawowe informacje Jakość obrazu

Bardziej szczegółowo

hurtowniakamer.com.pl

hurtowniakamer.com.pl Informacje o produkcie Kamera HikVision DS-2CD2010F-I Cena : 364,00 zł (netto) 447,72 zł (brutto) Producent : HikVision Dostępność : Dostępny Stan magazynowy : brak w magazynie Średnia ocena : brak recenzji

Bardziej szczegółowo

Grafika w dokumencie tekstowym. Technologia Informacyjna Lekcja 26

Grafika w dokumencie tekstowym. Technologia Informacyjna Lekcja 26 Grafika w dokumencie tekstowym Technologia Informacyjna Lekcja 26 Wstawianie obiektów Do dokumentu tekstowego moŝna wstawić róŝnego rodzaju obiekty, między innymi: grafikę,, animację,, tabelę, wykres.

Bardziej szczegółowo

Zadania z EXCELA. Zad. 3.

Zadania z EXCELA. Zad. 3. Zadania z EXCELA Zad. 1. Na podstawie danych zawartych w arkuszu Układ Słoneczny utwórz wykres liniowokolumnowy, w którym średnica równikowa planet (wykres liniowy) będzie pokazana na tle średniej odległości

Bardziej szczegółowo

Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących

Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących Cezary Dendek Wydział Matematyki i Nauk Informacyjnych PW Plan prezentacji Plan prezentacji Wprowadzenie

Bardziej szczegółowo

PODSTAWY METALOGRAFII ILOŚCIOWEJ I KOMPUTEROWEJ ANALIZY OBRAZU

PODSTAWY METALOGRAFII ILOŚCIOWEJ I KOMPUTEROWEJ ANALIZY OBRAZU 1 PODSTAWY METALOGRAFII ILOŚCIOWEJ I KOMPUTEROWEJ ANALIZY OBRAZU 2 Metalografia - nauka o wewnętrznej budowie materiałów metalicznych (metale i ich stopy), oparta głównie na badaniach mikroskopowych. 3

Bardziej szczegółowo

hurtowniakamer.com.pl

hurtowniakamer.com.pl Kamera Sunell SN-FXP59/21UIR Cena : 382,00 zł (netto) 469,86 zł (brutto) Producent : Sunell Dostępność : Dostępny Stan magazynowy : brak w magazynie Średnia ocena : brak recenzji Utworzono 27-09-2016 Kamera

Bardziej szczegółowo

ROZDZIAŁ 1 Instrukcja obsługi Grand Video Console

ROZDZIAŁ 1 Instrukcja obsługi Grand Video Console ROZDZIAŁ 1 Instrukcja obsługi Grand Video Console 1.1 WSTĘP Przedstawiamy konwerter obrazu wysokiej rozdzielczości z sygnału Video na sygnał VGA (monitor CRT/LCD). Urządzenie pozwala wykorzystać monitor

Bardziej szczegółowo

Rozkłady statystyk z próby. Metody probabilistyczne i statystyka Wykład 2: Rozkłady statystyk z próby. Przedziały ufnoci

Rozkłady statystyk z próby. Metody probabilistyczne i statystyka Wykład 2: Rozkłady statystyk z próby. Przedziały ufnoci Rozkłady tatytyk z próby Metody probabilitycze i tatytyka Wykład : Rozkłady tatytyk z próby. rzedziały ufoci Małgorzata Krtowka Wydział Iformatyki olitechika Białotocka e-mail: mmac@ii.pb.bialytok.pl troa

Bardziej szczegółowo

Błędy kwantyzacji, zakres dynamiki przetwornika A/C

Błędy kwantyzacji, zakres dynamiki przetwornika A/C Błędy kwatyzacji, zakres dyamiki przetworika /C Celem ćwiczeia jest pozaie wpływu rozdzielczości przetworika /C a błąd kwatowaia oraz ocea dyamiki układu kwatującego. Kwatowaie przyporządkowaie kolejym

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

KARTA OCENY ZGODNOŚCI OPERACJI Z LSR NUMER KONKURSU:... NUMER WNIOSKU:... DATA WPŁYWU:. TYTUŁ OPERACJI :... NAZWA BENEFICJENTA:......

KARTA OCENY ZGODNOŚCI OPERACJI Z LSR NUMER KONKURSU:... NUMER WNIOSKU:... DATA WPŁYWU:. TYTUŁ OPERACJI :... NAZWA BENEFICJENTA:...... KARTA OCENY ZGODNOŚCI OPERACJI Z LSR NUMER KONKURSU:... NUMER WNIOSKU:... DATA WPŁYWU: TYTUŁ OPERACJI :..... NAZWA BENEFICJENTA:..... Karta oceny zgodności operacji z LSR jest wypełniana przez Członków

Bardziej szczegółowo

Wyższa Szkoła Informatyki Stosowanej i Zarządzania Warsaw School of Information Technology WIT

Wyższa Szkoła Informatyki Stosowanej i Zarządzania Warsaw School of Information Technology WIT Wyższa Szkoła Informatyki Stosowanej i Zarządzania Warsaw School of Information Technology WIT Grupa ID306, Zespół 5 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 1 Temat: Akwizycja i przetwarzanie

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej). Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2004/2005

Internetowe Kółko Matematyczne 2004/2005 Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,

Bardziej szczegółowo

Laboratorium Metrologii I Nr ćwicz. Opracowanie serii wyników pomiaru 4

Laboratorium Metrologii I Nr ćwicz. Opracowanie serii wyników pomiaru 4 Laboratorium Metrologii I olitechika Rzeszowska Zakład Metrologii i Systemów omiarowych Laboratorium Metrologii I Grua Nr ćwicz. Oracowaie serii wyików omiaru 4... kierowik...... 4... Data Ocea I. Cel

Bardziej szczegółowo

Kamera CCD wysokiej rozdzielczości Dzień / Noc INSTRUKCJA OBSŁUGI

Kamera CCD wysokiej rozdzielczości Dzień / Noc INSTRUKCJA OBSŁUGI Kamera CCD wysokiej rozdzielczości Dzień / Noc INSTRUKCJA OBSŁUGI Przed instalacją i użyciem kamery proszę dokładnie przeczytać tą instrukcję. Proszę zachować ją dla późniejszego wykorzystania. U W A G

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce a aklejkę z kodem szkoły dysleksja MIN-R_P-072 EGZAMIN MATURALNY Z INFORMATYKI MAJ ROK 2007 POZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy

Bardziej szczegółowo