Metody poprawy jakości obrazu (image enchancement)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody poprawy jakości obrazu (image enchancement)"

Transkrypt

1 Metody poprawy jakości obrazu imae echacemet) Są to metody wstępeo przetwarzaia obrazu. Celem tych metod jest oóla poprawa jakości obrazu poprzez modyikację jeo jasości, kotrastu lub historamu.

2 Metody poprawy jakości obrazu Metody poprawy jakości obrazu oparte są o kryteria subiektywe wrażeia wzrokowe człowieka). W tych metodach ie są wykorzystywae obiektywe kryteria matematycze.

3 METODY POPRAWY JAKOŚCI OBRAZU OPERACJE PUNKTOWE MODELOWANIE HISTOGRAMU OPERACJE PRZESTRZENNE NADAWANIE KOLORÓW POPRAWA KONTRASTU ELIMINACJA ZNIEKSZTAŁCEŃ POPRAWA KONTRASTU POPRZEZ MODELOWANIE HISTOGRAMU FILTRACJA LINIOWA FILTRACJA NIELINIOWA DETEKCJA KRAWĘDZI PSEUDOKOLORY NADAWANIE KOLORÓW FAŁSZYWYCH WYRÓWNYWANIE JASNOŚCI TŁA ZOOMING

4 Metody poprawy jakości obrazu Jasość J MN M N i j i, j) Kotrast C MN M N i j [ i, j) J ] M, N - wymiary obrazu, i,j) - poziom jasości w pukcie i,j)

5 Wpływ jasości i kotrastu a wyląd obrazu J94, C9 J9, C38 J, C47

6 Historam obrazu Imae : array[..m,..n]o byte; Hist : array[..l-]o loit;... Hist:; or i: to M do or j: to N do Ic Hist[ Imae[i, j] ] );...

7 8 oryialy Wpływ jasości i kotrastu a historam obrazu ciemy jasy

8 Liiowe odwzorowaie poziomów jasości L- m i,j) m i,j) + d d L- m ~ kotrast d ~ jasość OBRAZ WYNIKOWY OPERACJA PUNKTOWA OBRAZ ŹRÓDŁOWY

9 MATLB Demo zmiaa kotrastu i jasość

10 Rozciąaie historamu obrazu To jest rówież odwzorowaie liiowe???) M I N M A X L- i,j) i,j)< MIN L- MAX - i,j)- MIN ), MIN i,j) MAX MIN L- i,j)> MAX

11 Rozciąaie historamu obrazu - przykład MIN, MAX

12 Iwersja poziomów jasości obrazu L- L- Jak zaimplemetować iwersję???

13 Nieliiowe odwzorowaie poziomów jasości L- lx) i,j) T i,j)) sqrtx) x expx) Korekcja γ L- OBRAZ WYNIKOWY OBRAZ ŹRÓDŁOWY Normalizacja! OPERACJA PUNKTOWA

14 Nieliiowe odwzorowaie poziomów jasości - przykłady Obraz oryialy

15 Nieliiowe odwzorowaie poziomów jasości - przykłady Tx 5 5 Tsqrtx) 8 6 4

16 Nieliiowe odwzorowaie poziomów jasości - przykłady Te x 5 5 Tlox) 5 5

17 Nieliiowe odwzorowaie poziomów jasości - alorytm Przykład: ukcja kwadratowa ormalizacja: doly przedział - -> óry przedział > 55 współczyik ormalizacji: orm/55... or i: to M do or j: to N do [i,j]:roudsqr[i,j])*orm);...

18 Nieliiowe odwzorowaie poziomów jasości - alorytm Przykład: ukcja kwadratowa lut : array[..55]o byte;... or k: to 55 do lut[k]:roudk*k*orm) or i: to M do or j: to N do [i,j]:lut[[i,j])];...

19 Poprawa jakości zdjęć z teleskopu - przykład Tb loax)

20 Wyrówywaie historamu obrazu celem wyrówaia historamu jest uzyskaie maksymalie rówomiereo rozkładu poziomów jasości obrazu dla całeo jeo zakresu skutkiem wyrówaia historamu jest poprawa kotrastu obrazu ormalizacja obrazu

21 Wyrówywaie historamu obrazu p) p ) /L-) L- L- p )hist[]/mn p )/L-)

22 ] [ ) ] [ ) ) ) ),...,L -,,, ), ) ) ) hists L MN i hist L i p L L i p L L u L du L dh h p du u p dh h p i i i Wyrówywaie historamu obrazu

23 Obliczaie historamu skumulowaeo %hist day historam obrazu %hists wyzaczay historam skumuloway % M,N liczba wierszy i kolum obrazu % L liczba poziomów jasości, p. L56 histszeros,56); hist)hists); or i:56, hci)hci-)+hi); ed; histshists/m*n);

24 Historam oraz historam skumuloway

25 Wyróway historam Wyrówywaie historamu obrazu.8.6 Historam skumuloway Maxhisteq)maxhist) 8 Historam 6 4 L ) histc[ ] 5 5 5

26 Procedura wyrówywaia historamu obrazu -przykład

27 Wyrówywaie historamu obrazu

28 Wyrówywaie historamu obrazu

29 MATLB Demo zmiaa kotrastu i jasość

30 Elimiacja ziekształceń - sumowaie obrazów + + K l l K l l j i K j i j i j i K j i ), ), )], ), [ ), l i,j) - szum ieskoreloway z obrazem o wartości średiej i wariacji v l K UWAGA! - kotrola zakresu zmieych

31 Sumowaie obrazów - przypadek l v v v j i MN j i MN E E E E E E V E E E E M i N j M i N j ) 4 )]), [ )], [ 4 ]) } [{ ] } [{ 4 ] } { } }{ { } [{ 4 }]) { } [{ })) { } { }) { })] { }) { [ }) { } { }) { }) { } { } { { }, { } - szum o wartości średiej rówej i wariacji v v v, ieskoreloway z obrazem

32 Moża rówież wykazać, że średia wartość szczytowa szumu {} po uśredieiu) ulea zmiejszeiu K razy Sumowaie obrazów - przypadek l K v K v K K E E E V E K K E E K K l l K l l K l l K l l K l l }] { [ })) { } { }) { }) { }] { [ }) { } { } {

33 Elimiacja ziekształceń - przykład Szum aussowski, wartość średia, wariacja. Wyik sumowań Wyik 5 sumowań

34 Redukcja zakłóceń obrazu przez uśrediaie sekwecji obrazów N N N8 N6 Obraz mikroskopowy komórki

Przetwarzanie obrazów wykład 2

Przetwarzanie obrazów wykład 2 Przetwarzanie obrazów wykład 2 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Etapy obróbki pozyskanego obrazu Obróbka wstępna

Bardziej szczegółowo

Wyższa Szkoła Informatyki Stosowanej i Zarządzania

Wyższa Szkoła Informatyki Stosowanej i Zarządzania Wyższa Szkoła Informatyki Stosowanej i Zarządzania Grupa ID308, Zespół 11 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 6 Temat: Operacje sąsiedztwa wyostrzanie obrazu Wykonali: 1. Mikołaj Janeczek

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

Analiza obrazu. wykład 3. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009

Analiza obrazu. wykład 3. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Analiza obrazu komputerowego wykład 3 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Binaryzacja Binaryzacja jest jedną z ważniejszych ż czynności punktowego przetwarzania obrazów. Poprzedza prawie zawsze

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab

Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab Zygmunt Wróbel i Robert Koprowski Praktyka przetwarzania obrazów w programie Matlab EXIT 2004 Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja obrazu

Bardziej szczegółowo

Przetwarzanie obrazu

Przetwarzanie obrazu Przetwarzanie obrazu Przekształcenia geometryczne Obroty Przesunięcia Odbicia Rozciągnięcia itp Przekształcenia geometryczne Obroty Wielokrotność 90 stopni Inne Przekształcenia geometryczne Obroty Wielokrotność

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2.

Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Technika obrazu 24 W.3. Normalizacja w zakresie obrazu cyfrowego

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INORMATYKI

Bardziej szczegółowo

Techniki wizualizacji. Ćwiczenie 4. Podstawowe algorytmy przetwarzania obrazów

Techniki wizualizacji. Ćwiczenie 4. Podstawowe algorytmy przetwarzania obrazów Doc. dr inż. Jacek Jarnicki Instytut Informatyki, Automatyki i Robotyki Politechniki Wrocławskiej jacek.jarnicki@pwr.wroc.pl Techniki wizualizacji Ćwiczenie 4 Podstawowe algorytmy przetwarzania obrazów

Bardziej szczegółowo

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW. Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,

Bardziej szczegółowo

dr inż. Jacek Naruniec email: J.Naruniec@ire.pw.edu.pl

dr inż. Jacek Naruniec email: J.Naruniec@ire.pw.edu.pl dr inż. Jacek Naruniec email: J.Naruniec@ire.pw.edu.pl Coraz większa ilość danych obrazowych How much information, University of California Berkeley, 2002: przyrost zdjęć rentgenowskich to 17,2 PB rocznie

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Porównanie Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Spektroskopia FT-Raman Spektroskopia FT-Raman jest dostępna od 1987 roku. Systemy

Bardziej szczegółowo

Termodynamika defektów sieci krystalicznej

Termodynamika defektów sieci krystalicznej Termodyamika defektów sieci krystaliczej Defekty sieci krystaliczej puktowe (wakasje, atomy międzywęzłowe, obce atomy) jedowymiarowe (dyslokacje krawędziowe i śrubowe) dwuwymiarowe (graice międzyziarowe,

Bardziej szczegółowo

14. RACHUNEK BŁĘDÓW *

14. RACHUNEK BŁĘDÓW * 4. RACHUNEK BŁĘDÓW * Błędy, które pojawiają się w czasie doświadczeia mogą mieć włase źródła. Są imi błędy związae z błędą kalibracją torów pomiarowych, szumy, czas reagowaia przyrządu, ograiczeia kostrukcyje,

Bardziej szczegółowo

PRAKTYKA PRZETWARZANIA OBRAZU W PROGRAMIE MATLAB

PRAKTYKA PRZETWARZANIA OBRAZU W PROGRAMIE MATLAB Zygmunt Wróbel Robert Koprowski PRAKTYKA PRZETWARZANIA OBRAZU W PROGRAMIE MATLAB EXIT 2004 2 3 SPIS TREŚCI Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja

Bardziej szczegółowo

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Matematyka fiasowa 08.10.2007 r. Komisja Egzamiacyja dla Aktuariuszy XLIII Egzami dla Aktuariuszy z 8 paździerika 2007 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:...

Bardziej szczegółowo

Wykaz zmian wprowadzonych do skrótu prospektu informacyjnego KBC Parasol Funduszu Inwestycyjnego Otwartego w dniu 04 stycznia 2010 r.

Wykaz zmian wprowadzonych do skrótu prospektu informacyjnego KBC Parasol Funduszu Inwestycyjnego Otwartego w dniu 04 stycznia 2010 r. Wykaz zmia wprowadzoych do skróu prospeku iformacyjego KBC Parasol Fuduszu Iwesycyjego Owarego w diu 0 syczia 200 r. Rozdział I Dae o Fuduszu KBC Subfudusz Papierów DłuŜych Brzmieie doychczasowe: 6. Podsawowe

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

A B. 2 5 8 18 2 x x x 5 x x 8 x 18

A B. 2 5 8 18 2 x x x 5 x x 8 x 18 Narzędzia modelowania niezawodności 1 Arkusz kalkulacyjny - jest to program zbudowany na schemacie relacyjnych baz danych. Relacje pomiędzy dwiema (lub więcej) cechami można zapisać na kilka sposobów.

Bardziej szczegółowo

Teledetekcja środowiska przyrodniczego. Zajęcia IV.

Teledetekcja środowiska przyrodniczego. Zajęcia IV. Korekcja radiometryczna danych teledetekcyjnych poprzez rozciąganie histogramu. Klasyfikacja wybranych cech obrazu poprzez progowanie histogramu obrazu. Teledetekcja środowiska przyrodniczego. Zajęcia

Bardziej szczegółowo

MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic

MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic MTLB PODSTWY ZNKI SPECJLNE symbol przypisi [ ] tworzeie tblic, rgumety wyjściowe fukcji, łączeie tblic { } ideksy struktur i tblic komórkowych ( ) wisy do określi kolejości dziłń, do ujmowi ideksów tblic,

Bardziej szczegółowo

Profesjonalny monitor CCTV INSTRUKCJA OBSŁUGI LA19DA0N-D / LA22DA0N-D

Profesjonalny monitor CCTV INSTRUKCJA OBSŁUGI LA19DA0N-D / LA22DA0N-D Profesjonalny monitor CCTV INSTRUKCJA OBSŁUGI LA19DA0N-D / LA22DA0N-D OSTRZEŻENIA 1. Proszę nie otwierać obudowy urządzenia ani nie dokonywać naprawy na własną rękę. W razie problemu skontaktuj się ze

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

Zasady edycji (cyfrowej) grafiki nieruchomej

Zasady edycji (cyfrowej) grafiki nieruchomej Zasady edycji (cyfrowej) grafiki nieruchomej Trudno jest w czasie wykonywania fotografii widzieć i myśleć o wszystkim! Zasady ogólne wykonywania zdjęć (od strony wygody ich późniejszej edycji): 1. maksymalna

Bardziej szczegółowo

Jak obliczać podstawowe wskaźniki statystyczne?

Jak obliczać podstawowe wskaźniki statystyczne? Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań

Bardziej szczegółowo

Analiza obrazu. wykład 4. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009

Analiza obrazu. wykład 4. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Analiza obrazu komputerowego wykład 4 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Filtry górnoprzepustowe - gradienty Gradient - definicje Intuicyjnie, gradient jest wektorem, którego zwrot wskazuje

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

OCENA PRACY WZROKOWEJ NA STANOWISKACH KOMPUTEROWYCH W RÓśNYCH WARUNKACH OŚWIETLENIOWYCH

OCENA PRACY WZROKOWEJ NA STANOWISKACH KOMPUTEROWYCH W RÓśNYCH WARUNKACH OŚWIETLENIOWYCH STUDIA NIESTACJONARNE II STOPNIA wersja z dnia 3.12.2009 KIERUNEK ELEKTROTECHNIKA SEM 3. Laboratorium PODSTAW TECHNIKI ŚWIETLNEJ TEMAT: OCENA PRACY WZROKOWEJ NA STANOWISKACH KOMPUTEROWYCH W RÓśNYCH WARUNKACH

Bardziej szczegółowo

KARTA OCENY ZGODNOŚCI OPERACJI Z LSR NUMER KONKURSU:... NUMER WNIOSKU:... DATA WPŁYWU:. TYTUŁ OPERACJI :... NAZWA BENEFICJENTA:...

KARTA OCENY ZGODNOŚCI OPERACJI Z LSR NUMER KONKURSU:... NUMER WNIOSKU:... DATA WPŁYWU:. TYTUŁ OPERACJI :... NAZWA BENEFICJENTA:... KARTA OCENY ZGODNOŚCI OPERACJI Z LSR NUMER KONKURSU:... NUMER WNIOSKU:... DATA WPŁYWU: TYTUŁ OPERACJI :..... NAZWA BENEFICJENTA:.... Karta oceny zgodności operacji z LSR jest wypełniana przez Członków

Bardziej szczegółowo

Błędy kwantyzacji, zakres dynamiki przetwornika A/C

Błędy kwantyzacji, zakres dynamiki przetwornika A/C Błędy kwatyzacji, zakres dyamiki przetworika /C Celem ćwiczeia jest pozaie wpływu rozdzielczości przetworika /C a błąd kwatowaia oraz ocea dyamiki układu kwatującego. Kwatowaie przyporządkowaie kolejym

Bardziej szczegółowo

ROZDZIAŁ 1 Instrukcja obsługi Grand Video Console

ROZDZIAŁ 1 Instrukcja obsługi Grand Video Console ROZDZIAŁ 1 Instrukcja obsługi Grand Video Console 1.1 WSTĘP Przedstawiamy konwerter obrazu wysokiej rozdzielczości z sygnału Video na sygnał VGA (monitor CRT/LCD). Urządzenie pozwala wykorzystać monitor

Bardziej szczegółowo

PODSTAWY METALOGRAFII ILOŚCIOWEJ I KOMPUTEROWEJ ANALIZY OBRAZU

PODSTAWY METALOGRAFII ILOŚCIOWEJ I KOMPUTEROWEJ ANALIZY OBRAZU 1 PODSTAWY METALOGRAFII ILOŚCIOWEJ I KOMPUTEROWEJ ANALIZY OBRAZU 2 Metalografia - nauka o wewnętrznej budowie materiałów metalicznych (metale i ich stopy), oparta głównie na badaniach mikroskopowych. 3

Bardziej szczegółowo

Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących

Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących Cezary Dendek Wydział Matematyki i Nauk Informacyjnych PW Plan prezentacji Plan prezentacji Wprowadzenie

Bardziej szczegółowo

Grafika w dokumencie tekstowym. Technologia Informacyjna Lekcja 26

Grafika w dokumencie tekstowym. Technologia Informacyjna Lekcja 26 Grafika w dokumencie tekstowym Technologia Informacyjna Lekcja 26 Wstawianie obiektów Do dokumentu tekstowego moŝna wstawić róŝnego rodzaju obiekty, między innymi: grafikę,, animację,, tabelę, wykres.

Bardziej szczegółowo

Akwizycja obrazów HDR

Akwizycja obrazów HDR Akwizycja obrazów HDR Radosław Mantiuk radoslaw.mantiuk@gmail.com 1 Składanie HDRa z sekwencji zdjęć LDR (1) Seria zdjęć sceny wykonanych z różnymi ustawieniami ekspozycji 2 Składanie HDRa z sekwencji

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

Rozkłady statystyk z próby. Metody probabilistyczne i statystyka Wykład 2: Rozkłady statystyk z próby. Przedziały ufnoci

Rozkłady statystyk z próby. Metody probabilistyczne i statystyka Wykład 2: Rozkłady statystyk z próby. Przedziały ufnoci Rozkłady tatytyk z próby Metody probabilitycze i tatytyka Wykład : Rozkłady tatytyk z próby. rzedziały ufoci Małgorzata Krtowka Wydział Iformatyki olitechika Białotocka e-mail: mmac@ii.pb.bialytok.pl troa

Bardziej szczegółowo

Wyższa Szkoła Informatyki Stosowanej i Zarządzania Warsaw School of Information Technology WIT

Wyższa Szkoła Informatyki Stosowanej i Zarządzania Warsaw School of Information Technology WIT Wyższa Szkoła Informatyki Stosowanej i Zarządzania Warsaw School of Information Technology WIT Grupa ID306, Zespół 5 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 1 Temat: Akwizycja i przetwarzanie

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce a aklejkę z kodem szkoły dysleksja MIN-R_P-072 EGZAMIN MATURALNY Z INFORMATYKI MAJ ROK 2007 POZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy

Bardziej szczegółowo

MIKROSKOPIA OPTYCZNA 19.05.2014 AUTOFOCUS TOMASZ POŹNIAK MATEUSZ GRZONDKO

MIKROSKOPIA OPTYCZNA 19.05.2014 AUTOFOCUS TOMASZ POŹNIAK MATEUSZ GRZONDKO MIKROSKOPIA OPTYCZNA 19.05.2014 AUTOFOCUS TOMASZ POŹNIAK MATEUSZ GRZONDKO AUTOFOCUS (AF) system automatycznego ustawiania ostrości w aparatach fotograficznych Aktywny - wysyła w kierunku obiektu światło

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu

Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu dr hab. iż. KRYSTIAN KALINOWSKI WSIiZ w Bielsku Białej, Politechika Śląska dr iż. ROMAN KAULA Politechika Śląska Optymalizacja sieci powiązań układu adrzędego grupy kopalń ze względu a koszty trasportu

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

Operacje morfologiczne w przetwarzaniu obrazu

Operacje morfologiczne w przetwarzaniu obrazu Przekształcenia morfologiczne obrazu wywodzą się z morfologii matematycznej działu matematyki opartego na teorii zbiorów Wykorzystuje się do filtracji morfologicznej, wyszukiwania informacji i analizy

Bardziej szczegółowo

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures.

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. Algorytmy i struktury danych. Metody numeryczne ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. dzienne magisterskie Numerical methods. (Part 2. Numerical methods)

Bardziej szczegółowo

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3 L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie

Bardziej szczegółowo

Gimp Grafika rastrowa (konwersatorium)

Gimp Grafika rastrowa (konwersatorium) GIMP Grafika rastrowa Zjazd 1 Prowadzący: mgr Agnieszka Paradzińska 17 listopad 2013 Gimp Grafika rastrowa (konwersatorium) Przed przystąpieniem do omawiania cyfrowego przetwarzania obrazów niezbędne jest

Bardziej szczegółowo

Ciężkie wspaniałego początki

Ciężkie wspaniałego początki Ciężkie wspaniałego początki opowieść prawdziwa Filip Kucharski Pod kierunkiem Dominka Gronkiewicza http://pomagacze.blogspot.com Spis treści 1. Trudności w astrofotografii. 2. Uzyskane zdjęcie. 3. Widoczne

Bardziej szczegółowo

OBRÓBKA FOTOGRAFII. WYKŁAD 1 Korekcja obrazu. Jacek Wiślicki Katedra Informatyki Stosowanej

OBRÓBKA FOTOGRAFII. WYKŁAD 1 Korekcja obrazu. Jacek Wiślicki Katedra Informatyki Stosowanej OBRÓBKA FOTOGRAFII WYKŁAD 1 Korekcja obrazu Jacek Wiślicki Katedra Informatyki Stosowanej Korekcja i retusz Korekcja (pół)automatyczne operacje wykonywane na całym obrazie (lub jego dużych fragmentach)

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

EKSPLORACJA ZASOBÓW INTERNETU LABORATORIUM VIII WYSZUKIWANIE OBRAZÓW

EKSPLORACJA ZASOBÓW INTERNETU LABORATORIUM VIII WYSZUKIWANIE OBRAZÓW EKSPLORACJA ZASOBÓW INTERNETU LABORATORIUM VIII WYSZUKIWANIE OBRAZÓW 1. Motywacja Strony internetowe zawierają 70% multimediów Tradycyjne wyszukiwarki wspierają wyszukiwanie tekstu Kolekcje obrazów: Dwie

Bardziej szczegółowo

Oświetlenia & wskaźniki świetlne

Oświetlenia & wskaźniki świetlne Oświetlenia & wskaźniki świetlne www.bannerengineering.com/eu Montaż za pomocą gwintu Montaż płaski T8L M18 S18L T18 K80L K80L z dźwiękiem K80L, dzielony K50FL TL30F K30L T30 K50L K50L z dźwiękiem 2 Banner

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

Materiały do wykładu 4 ze Statystyki

Materiały do wykładu 4 ze Statystyki Materiały do wykładu 4 ze Statytyki CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (dok.) 1. miary położeia - wykład 2 2. miary zmieości (dyperji, rozprozeia) - wykład 3 3. miary aymetrii (kośości) 4.

Bardziej szczegółowo

KARTA OCENY ZGODNOŚCI OPERACJI Z LSR NUMER KONKURSU:... NUMER WNIOSKU:... DATA WPŁYWU:. TYTUŁ OPERACJI :... NAZWA BENEFICJENTA:...

KARTA OCENY ZGODNOŚCI OPERACJI Z LSR NUMER KONKURSU:... NUMER WNIOSKU:... DATA WPŁYWU:. TYTUŁ OPERACJI :... NAZWA BENEFICJENTA:... KARTA OCENY ZGODNOŚCI OPERACJI Z LSR NUMER KONKURSU:... NUMER WNIOSKU:... DATA WPŁYWU: TYTUŁ OPERACJI :... NAZWA BENEFICJENTA:.... Karta oceny zgodności operacji z LSR jest wypełniana przez Członków Rady

Bardziej szczegółowo

Zajęcia grafiki komputerowej 30 h

Zajęcia grafiki komputerowej 30 h Zajęcia grafiki komputerowej 30 h Poniższe tematy do wyboru. Właściwa tematyka zajęć zostanie ustalona z uczestnikami zajęć GRAFIKA Klonowanie i korygowanie elementów obrazu Retusz portretów usuwanie znamion,

Bardziej szczegółowo

Grafika komputerowa. Zajęcia IX

Grafika komputerowa. Zajęcia IX Grafika komputerowa Zajęcia IX Ćwiczenie 1 Usuwanie efektu czerwonych oczu Celem ćwiczenia jest usunięcie efektu czerwonych oczu u osób występujących na zdjęciu tak, aby plik wynikowy wyglądał jak wzor_1.jpg

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

Font komputerowy odporny na proces infiltracji elektromagnetycznej

Font komputerowy odporny na proces infiltracji elektromagnetycznej Ireneusz KUBIAK Wojskowy Instytut Łączności Font komputerowy odporny na proces infiltracji elektromagnetycznej Streszczenie. Ochrona przed elektromagnetycznym przenikaniem informacji to nie tylko rozwiązania

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz

Bardziej szczegółowo

Metoda badań terenów poprzemysłowych owych w celu weryfikacji hipotezy o zanieczyszczeniu terenu poprzemysłowego. owego.

Metoda badań terenów poprzemysłowych owych w celu weryfikacji hipotezy o zanieczyszczeniu terenu poprzemysłowego. owego. Metoda badań tereów poprzemysłowych owych w celu weryfikacji hipotezy o zaieczyszczeiu tereu poprzemysłowego owego Joachim Broder 009--9 Pla prezetacji. Prezetacja algorytmu badań tereów poprzemysłowych

Bardziej szczegółowo

Zeszyty naukowe nr 9

Zeszyty naukowe nr 9 Zeszyty aukowe r 9 Wyższej Szkoły Ekoomiczej w Bochi 2011 Piotr Fijałkowski Model zależości otowań giełdowych a przykładzie otowań ołowiu i spółki Orzeł Biały S.A. Streszczeie Niiejsza praca opisuje próbę

Bardziej szczegółowo

Oddajemy w Wasze rêce Katalog oœwietlenia diodowego LED 2010.

Oddajemy w Wasze rêce Katalog oœwietlenia diodowego LED 2010. katalog oœwietlenia diodowego LED 2010 Szanowni Pañstwo, Oddajemy w Wasze rêce Katalog oœwietlenia diodowego LED 2010. Nasze produkty dedykowane s¹ zarówno dla rynku oœwietlenia dekoracyjnego oraz oœwietlenia

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa 3a Rozkład łatwości zadań Średni wynik klasy.71 pkt 87% Średni wynik szkoły.38 pkt 85% Średni wynik ogólnopolski 8.50 pkt 47% 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7a 7b 8 9

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych 8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.

Bardziej szczegółowo

Analiza statystyczna trudności tekstu

Analiza statystyczna trudności tekstu Analiza statystyczna trudności tekstu Łukasz Dębowski ldebowsk@ipipan.waw.pl Problem badawczy Chcielibyśmy mieć wzór matematyczny,...... który dla dowolnego tekstu...... na podstawie pewnych statystyk......

Bardziej szczegółowo

Twoja firma. Podręcznik użytkownika. Aplikacja Grupa. V edycja, kwiecień 2013

Twoja firma. Podręcznik użytkownika. Aplikacja Grupa. V edycja, kwiecień 2013 Twoja firma Podręczik użytkowika Aplikacja Grupa V edycja, kwiecień 2013 Spis treści I. INFORMACJE WSTĘPNE I LOGOWANIE...3 I.1. Wstęp i defiicje...3 I.2. Iformacja o możliwości korzystaia z systemu Aplikacja

Bardziej szczegółowo

GRAFIK DTP - Adobe Photoshop, Adobe Illustrator, Adobe InDesign

GRAFIK DTP - Adobe Photoshop, Adobe Illustrator, Adobe InDesign GRAFIK DTP - Adobe Photoshop, Adobe Illustrator, Adobe InDesign Adobe Photoshop Wprowadzenie do grafiki czym jest dokument rastrowy - grafika rastrowa warstwa wektorowa w Photoshopie warstwa tekstowa Interfejs

Bardziej szczegółowo

Zajęcia fotograficzne plan wynikowy

Zajęcia fotograficzne plan wynikowy Zajęcia fotograficzne plan wynikowy GIMNAZJUM Dział zeszytu tematycznego Temat lekcji Liczba godzin Wymagania podstawowe Uczeń: Wymagania ponadpodstawowe Uczeń: Podstawy 1. Lekcja organizacyjna kryteria

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

HDR. Obrazy o rozszerzonym zakresie dynamiki

HDR. Obrazy o rozszerzonym zakresie dynamiki Synteza i obróbka obrazu HDR Obrazy o rozszerzonym zakresie dynamiki Dynamika obrazu Zakres dynamiki (dynamicrange) to różnica między najciemniejszymi i najjaśniejszymi elementami obrazu. W fotografice

Bardziej szczegółowo

OKREŚLENIE CHARAKTERYSTYK POMPY WIROWEJ I WYZNACZENIE PAGÓRKA SPRAWNOŚCI

OKREŚLENIE CHARAKTERYSTYK POMPY WIROWEJ I WYZNACZENIE PAGÓRKA SPRAWNOŚCI Ćwiczeie 5 OKREŚLENIE CARAKTERYSTYK POMPY WIROWEJ I WYZNACZENIE PAGÓRKA SPRAWNOŚCI Wykaz ważiejszych ozaczeń c 1 rędkość bezwzględa cieczy a wlocie do wirika, m/s c rędkość bezwzględa cieczy a wylocie

Bardziej szczegółowo

Technika świetlna. Przegląd rozwiązań i wymagań dla tablic rejestracyjnych. Dokumentacja zdjęciowa

Technika świetlna. Przegląd rozwiązań i wymagań dla tablic rejestracyjnych. Dokumentacja zdjęciowa Technika świetlna Przegląd rozwiązań i wymagań dla tablic rejestracyjnych. Dokumentacja zdjęciowa Wykonał: Borek Łukasz Tablica rejestracyjna tablica zawierająca unikatowy numer (kombinację liter i cyfr),

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

Technologie szyte na miarę MASZYNA DO GRAWEROWANIA MB2300

Technologie szyte na miarę MASZYNA DO GRAWEROWANIA MB2300 Technologie szyte na miarę MASZYNA DO GRAWEROWANIA MB2300 MASZYNA DO GRAWEROWANIA MB2300 Technologie szyte na miarę Chcemy zwiększać konkurencyjność naszych klientów i wiemy, że do tego potrzebne są proste

Bardziej szczegółowo

Arkusz kalkulacyjny MS Excel

Arkusz kalkulacyjny MS Excel Arkusz kalkulacyjny MS Excel I. Wprowadzenie do arkusza kalkulacyjnego Program Excel służy do tworzenia elektronicznego arkusza kalkulacyjnego, który umożliwia dokumentowanie i analizę danych numerycznych.

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);

Bardziej szczegółowo

Hurtownie danych. Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.

Hurtownie danych. Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw. Hurtownie danych Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.pl/hur UZASADNIENIE BIZNESOWE Po co nam hurtownia danych? Jakie mogą

Bardziej szczegółowo

KAM-TECH sklep internetowy Utworzono : 22 grudzień 2015

KAM-TECH sklep internetowy Utworzono : 22 grudzień 2015 MONITORING IP > kamery IP > kamery 3Mpx > Model : - Producent : BCS przetwornik: 1/3" 3MP PS Aptina CMOS wysokowydajny procesor DSP AMBARELLA rozdzielczość: 2048x1536 / 20kl/s interfejs: Ethernet 10/100

Bardziej szczegółowo

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY Weryfikacja hipotez statystyczych WNIOSKOWANIE STATYSTYCZNE Wioskowaie statystycze, to proces uogóliaia wyików uzyskaych a podstawie próby a całą

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = =

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = = WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Wprowadzeie. Przy przejśiu światła z jedego ośrodka do drugiego występuje zjawisko załamaia zgodie z prawem Selliusa siα

Bardziej szczegółowo

Politechnika Świętokrzyska. Laboratorium. Przetwarzanie obrazów medycznych. Ćwiczenie 5. Filtracja kontekstowa obrazów.

Politechnika Świętokrzyska. Laboratorium. Przetwarzanie obrazów medycznych. Ćwiczenie 5. Filtracja kontekstowa obrazów. Politechnika Świętokrzyska Laboratorium Przetwarzanie obrazów medycznych Ćwiczenie 5 Filtracja kontekstowa obrazów. Cel ćwiczenia Celem ćwiczenia jest zdobucie umiejętności tworzenia funkcji realizujących

Bardziej szczegółowo

Uniwersalny modem radiowy UMR433-S2/UK

Uniwersalny modem radiowy UMR433-S2/UK Uniwersalny modem radiowy UMR433-S2/UK Dziękujemy za wybór naszego produktu. Niniejsza instrukcja pomoże państwu w prawidłowym podłączeniu urządzenia, uruchomieniu, oraz umożliwi prawidłowe z niego korzystanie.

Bardziej szczegółowo

Jolly 30 plus DR. Rentgenowskie aparaty przyłóżkowe. Jolly 4 plus Jolly 15 plus Jolly 30 plus. Radiologia

Jolly 30 plus DR. Rentgenowskie aparaty przyłóżkowe. Jolly 4 plus Jolly 15 plus Jolly 30 plus. Radiologia Rentgenowskie aparaty przyłóżkowe Jolly 4 plus Jolly 15 plus Jolly 30 plus Jolly 30 plus DR Jolly 4 plus Producent: Filtracja całkowita Lampa ze stałą anodą Wielkość ognisk 3-punktowy tryb pracy (kv-ma-ms)

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych.

Przedmiot statystyki. Graficzne przedstawienie danych. Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 23 lutego 2009 Przedmiot statystyki Statystyka dzieli się na trzy części: -zbieranie danych; -opracowanie i kondensacja danych

Bardziej szczegółowo

Obliczanie zapotrzebowania na ciepło zgodnie z normą PN-EN ISO 12831. Mgr inż. Zenon Spik

Obliczanie zapotrzebowania na ciepło zgodnie z normą PN-EN ISO 12831. Mgr inż. Zenon Spik Obliczanie zapotrzebowania na ciepło zgodnie z normą PN-EN ISO 12831 Mgr inż. Zenon Spik Oznaczenia Nowością, która pojawia się w normie PN-EN ISO 12831 są nowe oznaczenia podstawowych wielkości fizycznych:

Bardziej szczegółowo

KAM-TECH sklep internetowy Utworzono : 02 luty 2016

KAM-TECH sklep internetowy Utworzono : 02 luty 2016 MONITORING IP > kamery IP > kamery 3Mpx > MOTOZOOM IR Model : - Producent : Dahua Kamera IP z wydajnym algorytmem kompresji obrazu H.264 zapewniającym czyste i bardziej płynne przesyłanie obrazu w maksymalnej

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

FACULTY OF ADVANCED TECHNOLOGIES AND CHEMISTRY. Wprowadzenie Podstawowe prawa Przetwarzanie sygnału obróbka optyczna obróbka elektroniczna

FACULTY OF ADVANCED TECHNOLOGIES AND CHEMISTRY. Wprowadzenie Podstawowe prawa Przetwarzanie sygnału obróbka optyczna obróbka elektroniczna Interferometry światłowodowe Wprowadzenie Podstawowe prawa Przetwarzanie sygnału obróbka optyczna obróbka elektroniczna Wprowadzenie Układy te stanowią nową klasę czujników, gdzie podstawowy mechanizm

Bardziej szczegółowo

Optymalizacja zapytań. Proces przetwarzania i obliczania wyniku zapytania (wyrażenia algebry relacji) w SZBD

Optymalizacja zapytań. Proces przetwarzania i obliczania wyniku zapytania (wyrażenia algebry relacji) w SZBD Optymalizacja zapytań Proces przetwarzania i obliczania wyniku zapytania (wyrażenia algebry relacji) w SZBD Elementy optymalizacji Analiza zapytania i przekształcenie go do lepszej postaci. Oszacowanie

Bardziej szczegółowo

Kluczowy aspekt wyszukiwania informacji:

Kluczowy aspekt wyszukiwania informacji: Wyszukiwaieiformacjitoproceswyszukiwaiawpewymzbiorze tychwszystkichdokumetów,którepoświęcoesąwskazaemuw kweredzietematowi(przedmiotowi)lubzawierająiezbędedla Wg M. A. Kłopotka: użytkowikafaktyiiformacje.

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo