Stan Krystaliczny Stan krystaliczny. Stan krystaliczny

Wielkość: px
Rozpocząć pokaz od strony:

Download "Stan Krystaliczny Stan krystaliczny. Stan krystaliczny"

Transkrypt

1 Stan Krystaliczny Stan krystaliczny Stan krystaliczny jest podstawową formą występowania nieorganicznych ciał stałych w przyrodzie (dlaczego?). Cechą wyróżniającą kryształy jest ich uporządkowana, periodyczna budowa przestrzenna z powtarzającymi się w przestrzeni elementami fizycznymi, atomami, jonami lub cząsteczkami. Jako materiały, substancje krystaliczne mogą występować w formie: pojedynczych dużych kryształów - monokryształy, drobnych kryształów w formach zdyspergowanych - proszki, włókien, również monokrystalicznych, warstw, mniej lub bardziej litych polikryształów, Stan krystaliczny Pełny opis budowy kryształu powinien zawierać: Skład chemiczny (wzór), Rodzaj układu krystalograficznego, typ sieci i grupy przestrzennej, Typ struktury i budowa komórki elementarnej, Parametry komórki elementarnej, 1

2 W rzeczywistości kryształy mają skończone wymiary i wady budowy (defekty). Powstawanie defektów może być uwarunkowane termodynamicznie (równowaga termodynamiczna) lub wynikać z warunków powstawania kryształów. Defekty mają silny wpływ, niekiedy decydujący, na właściwości materiałów. Rodzaje defektów: punktowe, liniowe, płaskie. Defekty punktowe - zaburzenia sieci krystalicznej o zasięgu wymiarów atomów, jonów, cząsteczek. Typy defektów na przykładzie struktury MX: wakancja (wakans) - brak atomu (jonu) w węźle sieci (V X, V M ) Defekty punktowe - zaburzenia sieci krystalicznej o zasięgu wymiarów atomów, jonów, cząsteczek. Typy defektów na przykładzie struktury MX: wakancja (wakans) - brak atomu (jonu) w węźle sieci (V X, V M ) atom (jon) w niewłaściwym położeniu (M X, X M ) 2

3 Defekty punktowe - zaburzenia sieci krystalicznej o zasięgu wymiarów atomów, jonów, cząsteczek. Typy defektów na przykładzie struktury MX: wakancja (wakans) - brak atomu (jonu) w węźle sieci (V X, V M ) atom (jon) w niewłaściwym położeniu, (M X, X M ) atomy (jony) w położeniach międzywęzłowych (M i, X i ) defekty ładunków, (e -, h) W kryształach jonowych konieczne jest zachowanie obojętności sieci. W konsekwencji powstają defekty złożone lub defekty jonowe i elektronowe. MeO Me V O i '' Me x O '' MeO Me V i Me '' O V i O defekt Schottky ego defekt Frenkla Obecność defektów punktowych w krysztale jest uzasadniona termodynamicznie, a ich stężenie jest zależne od temperatury i w niektórych przypadkach od ciśnienia parcjalnego jednego ze składników w fazie gazowej. : V E - v ~ exp kt np. Cu: 400 C [V]=10-14 mol -1, 900 C [V]=10-4 mol -1 Występowanie defektów punktowych związane jest ze możliwością powstania specyficznych formy materiałów, takich jak: roztwory stałe (substytucyjne i międzywęzłowe) czy związki niestechiometryczne (np. Fe 1-x S). 3

4 Defekty liniowe (dyslokacje) - jednowymiarowe zaburzenia sieci krystalicznej wzdłuż linii (prostej sieciowej) w krysztale: dyslokacje krawędziowe i dyslokacje śrubowe. Defekty liniowe (dyslokacje) przyczyną powstawania dyslokacji są siły ścinające. Dyslokacja opisywana jest wektorem Burgersa, zamykającym obwód odcinków sieciowych wokół zaburzenia. Defekty płaskie granice pomiędzy obszarami monokrystalicznymi (granice ziaren w polikryształach), błędy ułożenia, zewnętrzne powierzchnie kryształu. kryształów niskokątowe (wąskokątowe) i szerokokątowe, bliźniacze 4

5 Defekty płaskie granice międzyziarnowe niskokątowa (wąskokątowa) szerokokątowa bliźniacza Defekty płaskie błędy ułożenia Defekty płaskie atomy znajdujące się na granicy kryształ-gaz charakteryzują się nadmiarową energią w porównaniu z wnętrzem kryształu. Nadmiar energii wynika z naruszenia symetrii sił wzajemnego oddziaływania atomów na powierzchniach. G γ A n i,t,p 5

6 Energia powierzchniowa faza (hkl) S [J/m 2 ] faza (hkl) S [J/m 2 ] Al 2O 3 (1120) 0,90 Ti (110) 1,25 Al 2O 3 (0001) 1,00 C (diament) (100) 9,2-9,8 MgO (100) 1,15-1,20 C (diament) (110) 6,5 ZrO 2 0,77 C (diament) (111) 5,3-5,6 SiC (100) 5,3 TiC (100) 3,86 TiC (111) 2,28 TiN (100) 3,26 TiN (111) 2,26 Powierzchnia relaksacja, retrakcja, atomy lub jony z powierzchni przemieszczane są do wnętrza kryształu, Powierzchnia relaksacja, retrakcja, atomy lub jony z powierzchni przemieszczane są do wnętrza kryształu, rekonstrukcja, przebudowa warstwy powierzchniowej z utworzeniem nowych płaszczyzn, Si {100} 6

7 Powierzchnia relaksacja, retrakcja, atomy lub jony z powierzchni przemieszczane są do wnętrza kryształu, rekonstrukcja, przebudowa warstwy powierzchniowej z utworzeniem nowych płaszczyzn, adsorpcja, przyłączanie obcych jonów lub atomów z utworzeniem nowych wiązań lub za pomocą oddziaływań elektrostatycznych, Powierzchnia relaksacja, retrakcja, atomy lub jony z powierzchni przemieszczane są do wnętrza kryształu, rekonstrukcja, przebudowa warstwy powierzchniowej z utworzeniem nowych płaszczyzn, adsorpcja, przyłączanie obcych jonów lub atomów z utworzeniem nowych wiązań lub za pomocą oddziaływań elektrostatycznych, segregacja, wzbogacenie powierzchni w zanieczyszczenia lub elementy roztworu stałego, Energia granic w polikrysztale - zaburzenia budowy granic międzyziarnowych powodują, że atomy tworzące granice posiadają nadmiarową energię w porównaniu z atomami we wnętrzu kryształu. Wartość tej energii jest porównywalna z wielkością energii powierzchniowej. Energię granic mogą obniżać m.in.: koincydencji węzłów sieci, tworzenie struktur daszkowych, segregacja zanieczyszczeń. 7

8 Oddziaływania pomiędzy defektami defekty punktowe mogą tworzyć zespoły klastery, domeny i wtrącenia zmieniając lokalnie budowę kryształu, defekty liniowe zespoły dyslokacji, defekty płaskie zmieniają budowę idealnego kryształu w budowę mozaikową, Monokryształy Monokryształ z punktu widzenia materiału inżynierskiego to względnie doskonały kryształ o wielkości umożliwiającej wykorzystanie jego właściwości. Można je otrzymać: ze stopu, z roztworu, z fazy stałej (rekrystalizacja), z fazy gazowej, Krystalizacja termodynamika Warunkiem istnienia stabilnej termodynamicznie fazy jest niższa wartość entalpii swobodnej, zaś kierunek przemian jest zgodny z obniżeniem entalpii swobodnej tj. ΔG<0; p o p 8

9 Krystalizacja termodynamika Co jest siłą napędową procesu krystalizacji? Przemiana jest samorzutna, ΔG<0, a więc praca wykonana przez układ, W f : W f -ΔG -ΔH T ΔS ponieważ w temperaturze krytycznej, T m : więc: czyli: gdzie (T-T m ) to przechłodzenie. ΔH T m ΔS ΔH Wf -ΔH T Tm Wf ΔH - T - Tm T m Krystalizacja zarodkowanie Dla powstania stabilnej nowej fazy krystalicznej w ośrodku, konieczne jest przekroczenie bariery energetycznej dla wytworzenia nowej granicy międzyfazowej. Obszary te, zarodki, posiadają minimalną objętość w danych warunkach. Zmiana energii swobodnej obszaru konieczna do wytworzenia zarodka jest równa: ΔG V Δg n chem S γ ciało stałe ciecz entalpia powierzchnia właściwa Krystalizacja zarodkowanie Dla zarodka kulistego: stąd wielkość zarodka krytycznego (zdolnego do wzrostu): czyli ΔG π r Δgchem 4 π r γ 3 2γ r* - Δg chem 2 γ Tm r* - ΔH ( T - Tm) 9

10 Krystalizacja zarodkowanie Ze wzrostem przechłodzenia maleje wielkość zarodka krytycznego, tj. łatwiej wytworzyć zarodek, który może samorzutnie rosnąć. Stąd szybkość tworzenia się zarodków V 1 rośnie z przechłodzeniem: A V1 exp - 2 Tm ( T - T m ) Jednocześnie wraz ze wzrostem przechłodzenia maleje ruchliwość atomów w stopie więc szybkość V 2 tworzenia zarodków: B V2 exp - k T Szybkość tworzenia zarodków jest wypadkową i posiada ekstremum. Krystalizacja kinetyka wzrostu IZ ilość zarodków WK wzrost kryształów Zarodkowanie homogeniczne i heterogeniczne Krystalizacja kinetyka wzrostu Ściany kryształu rosną z szybkościami proporcjonalnymi do ich energii powierzchniowej (reguła Gibbsa-Curie-Wulffa), stąd w pokroju zewnętrznym kryształu powinny dominować ściany o najniższych energiach powierzchniowych. V 1 :V 2 :V 3 = γ 1 :γ 2 :γ 3 10

11 Krystalizacja kinetyka wzrostu Atomy są przyłączane na powierzchniach gładkich, gdzie energia wydzielająca się podczas przyłączania jest najmniejsza i dążą drogą dyfuzji powierzchniowej do pozycji, gdzie wiążą się trwale (energia największa). W toku krystalizacji w początkowych etapach dominują więc ściany o wyższych energiach (np. dla NaCl ściany {110}, {111}), które zanikają na rzecz ścian o niższej energii ({100}). Pokrój zewnętrzny kryształu jest odzwierciedleniem jego sieci krystalicznej. Krystalizacja mechanizmy wzrostu kryształów Przykład I. Wzrost kryształów na dyslokacji śrubowej Przykład II. Wzrost kryształów mechanizmem VLS (vapour-liquid-solid) Krystalizacja mechanizmy wzrostu kryształów Przykład III. Krystalizacja kontrolowana odprowadzeniem ciepła ze strefy krystalizacji wzrost dendrytyczny NASA Foundry Manual,

12 Krystalizacja otrzymywanie monokryształów Warunki wzrostu dużych kryształów: Minimalna ilość zarodków (jeden) = małe przechłodzenie + zarodkowanie heterogeniczne (kontrolowane); Równomierne odprowadzanie ciepła ze strefy reakcji; Metody tyglowe - metoda Bridgmana; Metody tyglowe - metoda Czochralskiego; meroli.web.cern.ch 12

13 Metody tyglowe - metoda Czochralskiego; Wyciąganie monokryształu ze stopu; Kryształy o wysokości do 50 cm i kilku cm średnicy; Wysoka czystość i doskonałość monokryształów; Metody tyglowe - metoda Kyropulosa; Metody tyglowe krystalizacja kierunkowa; 13

14 Metody beztyglowe - metoda Verneuil a; Stapianie proszku tlenku w palniku wodorotlenowym; Wzrost monokryształu wskutek krystalizacji stopionych kropli padających na zarodek; Monokryształy w kształcie gruszki o długości do kilku cm i średnicy 1 cm; Metody beztyglowe - metoda Verneuil a; Nazwa Barwa Dodatki leukoszafir bezbarwny - rubin czerwony Cr szafir niebieski Ti, Fe topaz żółty Fe, Ni, Ti, Tl szafir fioletowy fioletowy Mn, V aleksandryt zielony V, Co Dlaczego Al 2 O 3? Krystalizacja z fazy gazowej Warunki procesu wynikające z utrzymania się poniżej bariery zarodkowania to niskie stężenia par i względnie wysokie temperatury. Stąd w konsekwencji niskie prędkości narastania i małe wymiary proszki, warstwy. Podstawowa metoda w warstwowych materiałach elektronicznych. 14

15 Krystalizacja z fazy gazowej CVD (Chemical Vapor Deposition) Warstwy osadzane są w wyniku reakcji chemicznej gazowych reagentów na ogrzanym podłożu. Etapy tego procesu to: Transport reagentów nad podłoże (od źródła w strumieniu gazów), Adsorpcja reagentów na podłożu, Reakcja chemiczna np.: 3 SiH NH 3 = Si 3 N H 2, Dyfuzja produktu po powierzchni do miejsc wzrostu warstwy, Desorpcja produktów odpadowych, Krystalizacja z fazy gazowej PVD (Physical Vapor Deposition) Techniki wykorzystujące przy nanoszeniu warstw zjawiska fizyczne takie jak parowanie, rozpylanie, sublimację. Przykładowo, w metodzie reaktywnego parowania (ARE): Układ znajduje się w wysokiej próżni, Bombardowanie metalu wiązką elektronów powoduje parowanie (rozpylanie) metalu, jednocześnie wytwarzając stan zimnej plazmy nad tyglem (targetem), W strefę plazmy wprowadza się gaz reaktywny, który przenosi strumień cząstek nad podłoże, Cząstki osadzają się na podłożu (ew. reagują z gazem) tworząc warstwę; Inne techniki - wzbudzanie magnetronowe, platerowanie jonowe, ablacja laserowa, Krystalizacja z fazy gazowej PVD (Physical Vapor Deposition) Warstwy monokrystaliczne: warstwy metali, TiN, TiC, TaC, NbC, diament, C 4 N 3, narzędzia, elektronika, bariery, Zalety: niska temperatura procesu, wysoka przyczepność warstw do podłoża, wysokie gęstości, 15

16 Właściwości monokryształów małe zdefektowania, wysoka sztywność i twardość, wysoka wytrzymałość, kruchość, przeźroczystość (jonowe i kowalencyjne), anizotropia właściwości, rozszczepienie i załamanie światła, Zastosowanie monokryształów jubilerstwo, elementy maszyn i urządzeń, elektronika, optoelektronika, meroli.web.cern.ch meroli.web.cern.ch 16

Nauka o Materiałach Wykład II Monokryształy Jerzy Lis

Nauka o Materiałach Wykład II Monokryształy Jerzy Lis Wykład II Monokryształy Jerzy Lis Treść wykładu: 1. Wstęp stan krystaliczny 2. Budowa kryształów - krystalografia 3. Budowa kryształów rzeczywistych defekty WPROWADZENIE Stan krystaliczny jest podstawową

Bardziej szczegółowo

31/01/2018. Wykład II: Monokryształy. Treść wykładu: Wstęp - stan krystaliczny

31/01/2018. Wykład II: Monokryształy. Treść wykładu: Wstęp - stan krystaliczny Wykład II: Monokryształy JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Wstęp stan krystaliczny 2. Budowa kryształów 2.1. Budowa kryształów,

Bardziej szczegółowo

Wykład II: Monokryształy. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych

Wykład II: Monokryształy. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Wykład II: Monokryształy JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Wstęp stan krystaliczny 2. Budowa kryształów 2.1. Budowa kryształów,

Bardziej szczegółowo

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe Technologie wytwarzania metali Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe KRYSTALIZACJA METALI I STOPÓW Krzepnięcie - przemiana fazy

Bardziej szczegółowo

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe Technologie wytwarzania metali Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe KRYSTALIZACJA METALI I STOPÓW Krzepnięcie - przemiana fazy

Bardziej szczegółowo

KRYSTALIZACJA METALI I STOPÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

KRYSTALIZACJA METALI I STOPÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego KRYSTALIZACJA METALI I STOPÓW Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Krzepnięcie przemiana fazy ciekłej w fazę stałą Krystalizacja przemiana

Bardziej szczegółowo

DEFEKTY STRUKTURY KRYSTALICZNEJ

DEFEKTY STRUKTURY KRYSTALICZNEJ DEFEKTY STRUKTURY KRYSTALICZNEJ Rodzaje defektów (wad) budowy krystalicznej Punktowe Liniowe Powierzchniowe Defekty punktowe Wakanse: wolne węzły Atomy międzywęzłowe Liczba wad punktowych jest funkcją

Bardziej szczegółowo

7. Defekty samoistne Typy defektów Zdefektowanie samoistne w związkach stechiometrycznych

7. Defekty samoistne Typy defektów Zdefektowanie samoistne w związkach stechiometrycznych 7. Defekty samoistne 7.1. Typy defektów Zgodnie z trzecią zasadą termodynamiki, tylko w temperaturze 0[K] kryształ może mieć zerową entropię. Oznacza to, że jeśli temperatura jest wyższa niż 0[K] to w

Bardziej szczegółowo

STRUKTURA IDEALNYCH KRYSZTAŁÓW

STRUKTURA IDEALNYCH KRYSZTAŁÓW BUDOWA WEWNĘTRZNA MATERIAŁÓW METALICZNYCH Zakres tematyczny y 1 STRUKTURA IDEALNYCH KRYSZTAŁÓW 2 1 Sieć przestrzenna kryształu TRANSLACJA WĘZŁA TRANSLACJA PROSTEJ SIECIOWEJ TRANSLACJA PŁASZCZYZNY SIECIOWEJ

Bardziej szczegółowo

NIEDOSKONAŁOŚCI BUDOWY CIAŁA STAŁEGO KRYSZTAŁY RZECZYWISTE.

NIEDOSKONAŁOŚCI BUDOWY CIAŁA STAŁEGO KRYSZTAŁY RZECZYWISTE. NIEDOSKONAŁOŚCI BUDOWY CIAŁA STAŁEGO KRYSZTAŁY RZECZYWISTE http://home.agh.edu.pl/~grzesik KRYSZTAŁY IDEALNE Kryształ idealny ciało stałe, w którym atomy, jony lub cząsteczki wykazują idealne uporządkowanie

Bardziej szczegółowo

Materiały Reaktorowe. Efekty fizyczne uszkodzeń radiacyjnych c.d.

Materiały Reaktorowe. Efekty fizyczne uszkodzeń radiacyjnych c.d. Materiały Reaktorowe Efekty fizyczne uszkodzeń radiacyjnych c.d. Luki (pory) i pęcherze Powstawanie i formowanie luk zostało zaobserwowane w 1967 r. Podczas formowania luk w materiale następuje jego puchnięcie

Bardziej szczegółowo

III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski

III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski 1 1 Wstęp Materiały półprzewodnikowe, otrzymywane obecnie w warunkach laboratoryjnych, charakteryzują się niezwykle wysoką czystością.

Bardziej szczegółowo

DEFEKTY STRUKTURY KRYSTALICZNEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

DEFEKTY STRUKTURY KRYSTALICZNEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego DEFEKTY STRUKTURY KRYSTALICZNEJ Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Defekty struktury krystalicznej są to każdego rodzaju odchylenia od

Bardziej szczegółowo

Podstawy technologii monokryształów

Podstawy technologii monokryształów 1 Wiadomości ogólne Monokryształy - Pojedyncze kryształy o jednolitej sieci krystalicznej. Powstają w procesie krystalizacji z substancji ciekłych, gazowych i stałych, w określonych temperaturach oraz

Bardziej szczegółowo

INŻYNIERIA MATERIAŁOWA w elektronice

INŻYNIERIA MATERIAŁOWA w elektronice Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej... INŻYNIERIA MATERIAŁOWA w elektronice... Dr hab. inż. JAN FELBA Profesor nadzwyczajny PWr 1 PROGRAM WYKŁADU Struktura materiałów

Bardziej szczegółowo

Transport jonów: kryształy jonowe

Transport jonów: kryształy jonowe Transport jonów: kryształy jonowe JONIKA I FOTONIKA MICHAŁ MARZANTOWICZ Jodek srebra AgI W 42 K strukturalne przejście fazowe I rodzaju do fazy α stopiona podsieć kationowa. Fluorek ołowiu PbF 2 zdefektowanie

Bardziej szczegółowo

Termodynamiczne warunki krystalizacji

Termodynamiczne warunki krystalizacji KRYSTALIZACJA METALI ISTOPÓW Zakres tematyczny y 1 Termodynamiczne warunki krystalizacji hiq.linde-gas.fr Krystalizacja szczególny rodzaj krzepnięcia, w którym ciecz ulega przemianie w stan stały o budowie

Bardziej szczegółowo

Krystalizacja. Zarodkowanie

Krystalizacja. Zarodkowanie Krystalizacja Ciecz ciało stałe Para ciecz ciało stałe Para ciało stałe Przechłodzenie T = T L - T c Przesycenie p = p g - p z > 0 Krystalizacja Zarodkowanie Rozrost zarodków Homogeniczne Heterogeniczne

Bardziej szczegółowo

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ Zmiany makroskopowe Zmiany makroskopowe R e = R 0.2 - umowna granica plastyczności (0.2% odkształcenia trwałego); R m - wytrzymałość na rozciąganie (plastyczne); 1

Bardziej szczegółowo

Technologie wytwarzania. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG

Technologie wytwarzania. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG Technologie wytwarzania Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG Technologie wytwarzania Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki

Bardziej szczegółowo

Laboratorium inżynierii materiałowej LIM

Laboratorium inżynierii materiałowej LIM Laboratorium inżynierii materiałowej LIM wybrane zagadnienia fizyki ciała stałego czyli skrót skróconego skrótu dr hab. inż.. Ryszard Pawlak, P prof. PŁP Fizyka Ciała Stałego I. Wstęp Związki Fizyki Ciała

Bardziej szczegółowo

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)

Bardziej szczegółowo

Zaburzenia periodyczności sieci krystalicznej

Zaburzenia periodyczności sieci krystalicznej Zaburzenia periodyczności sieci krystalicznej Defekty liniowe dyslokacja krawędziowa dyslokacja śrubowa dyslokacja mieszana Defekty punktowe obcy atom w węźle luka w sieci (defekt Schottky ego) obcy atom

Bardziej szczegółowo

Dyslokacje w kryształach. ach. Keshra Sangwal, Politechnika Lubelska. Literatura

Dyslokacje w kryształach. ach. Keshra Sangwal, Politechnika Lubelska. Literatura Dyslokacje w kryształach ach Keshra Sangwal, Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: podstawowe pojęcie III. Własności mechaniczne kryształów IV. Źródła i rozmnażanie się dyslokacji

Bardziej szczegółowo

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne

Bardziej szczegółowo

Wpływ defektów punktowych i liniowych na własności węglika krzemu SiC

Wpływ defektów punktowych i liniowych na własności węglika krzemu SiC Wpływ defektów punktowych i liniowych na własności węglika krzemu SiC J. Łażewski, M. Sternik, P.T. Jochym, P. Piekarz politypy węglika krzemu SiC >250 politypów, najbardziej stabilne: 3C, 2H, 4H i 6H

Bardziej szczegółowo

Dyslokacje w kryształach. ach. Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska

Dyslokacje w kryształach. ach. Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska Dyslokacje w kryształach ach Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: Podstawowe pojęcie III. Własności mechaniczne kryształów

Bardziej szczegółowo

Wykład IV: Polikryształy I. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych

Wykład IV: Polikryształy I. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Wykład IV: Polikryształy I JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu (część I i II): 1. Budowa polikryształów - wiadomości wstępne.

Bardziej szczegółowo

Wstęp. Krystalografia geometryczna

Wstęp. Krystalografia geometryczna Wstęp Przedmiot badań krystalografii. Wprowadzenie do opisu struktury kryształów. Definicja sieci Bravais go i bazy atomowej, komórki prymitywnej i elementarnej. Podstawowe typy komórek elementarnych.

Bardziej szczegółowo

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis Nauka o Materiałach Wykład IX Odkształcenie materiałów właściwości plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Odkształcenie plastyczne 2. Parametry makroskopowe 3. Granica plastyczności

Bardziej szczegółowo

Nauka o Materiałach. Wykład IV. Polikryształy I. Jerzy Lis

Nauka o Materiałach. Wykład IV. Polikryształy I. Jerzy Lis Wykład IV Polikryształy I Jerzy Lis Treść wykładu I i II: 1. Budowa polikryształów - wiadomości wstępne. 2. Budowa polikryształów: jednofazowych porowatych z fazą ciekłą 3. Metody otrzymywania polikryształów

Bardziej szczegółowo

Wzrost fazy krystalicznej

Wzrost fazy krystalicznej Wzrost fazy krystalicznej Wydzielenie nowej fazy może różnić się of fazy pierwotnej : składem chemicznym strukturą krystaliczną orientacją krystalograficzną... faza pierwotna nowa faza Analogia elektryczna

Bardziej szczegółowo

TERMODYNAMIKA I TERMOCHEMIA

TERMODYNAMIKA I TERMOCHEMIA TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami

Bardziej szczegółowo

Czym się różni ciecz od ciała stałego?

Czym się różni ciecz od ciała stałego? Szkła Czym się różni ciecz od ciała stałego? gęstość Czy szkło to ciecz czy ciało stałe? Szkło powstaje w procesie chłodzenia cieczy. Czy szkło to ciecz przechłodzona? kryształ szkło ciecz przechłodzona

Bardziej szczegółowo

Defekty. Defekty strukturalne. Kryształ idealny nie istnieje

Defekty. Defekty strukturalne. Kryształ idealny nie istnieje Defekty Kryształ idealny nie istnieje Defekty strukturalne Każde zaburzenie periodycznego uporządkowania atomów w krysztale jest defektem. Może to być zaburzenie: Położenia atomów Typu atomów Typ i rodzaj

Bardziej szczegółowo

Wykład IX: Odkształcenie materiałów - właściwości plastyczne

Wykład IX: Odkształcenie materiałów - właściwości plastyczne Wykład IX: Odkształcenie materiałów - właściwości plastyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Odkształcenie

Bardziej szczegółowo

Materiały katodowe dla ogniw Li-ion wybrane zagadnienia

Materiały katodowe dla ogniw Li-ion wybrane zagadnienia Materiały katodowe dla ogniw Li-ion wybrane zagadnienia Szeroki zakres interkalacji y, a więc duża dopuszczalna zmiana zawartości litu w materiale, która powinna zachodzić przy minimalnych zaburzeniach

Bardziej szczegółowo

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska Defekty struktury Defekty struktury krystalicznej są to każdego rodzaju odchylenia od idealnej struktury. Najczęściej

Bardziej szczegółowo

STRUKTURA CIAŁA STAŁEGO

STRUKTURA CIAŁA STAŁEGO STRUKTURA CIAŁA STAŁEGO Podział ciał stałych Ciała - bezpostaciowe (amorficzne) Szkła, żywice, tłuszcze, niektóre proszki. Nie wykazują żadnych regularnych płaszczyzn ograniczających, nie można w nich

Bardziej szczegółowo

Budowa ciał stałych. sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych

Budowa ciał stałych. sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych Budowa ciał stałych sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych Ciała stałe to substancje o regularnej, przestrzennej budowie krystalicznej, czyli regularnym

Bardziej szczegółowo

TECHNOLOGIE OTRZYMYWANIA MONOKRYSZTAŁÓW

TECHNOLOGIE OTRZYMYWANIA MONOKRYSZTAŁÓW TECHNOLOGIE OTRZYMYWANIA MONOKRYSZTAŁÓW Gdzie spotykamy monokryształy? Rocznie, na świecie produkuje się 20000 ton kryształów. Większość to Si, Ge, GaAs, InP, GaP, CdTe. Monokryształy można otrzymywać:

Bardziej szczegółowo

1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych.

1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych. Tematy opisowe 1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych. 2. Dlaczego do kadłubów statków, doków, falochronów i filarów mostów przymocowuje się płyty z

Bardziej szczegółowo

Metody wytwarzania elementów półprzewodnikowych

Metody wytwarzania elementów półprzewodnikowych Metody wytwarzania elementów półprzewodnikowych Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Wytwarzanie

Bardziej szczegółowo

STRUKTURA KRYSTALICZNA

STRUKTURA KRYSTALICZNA PODSTAWY KRYSTALOGRAFII Struktura krystaliczna Wektory translacji sieci Komórka elementarna Komórka elementarna Wignera-Seitza Jednostkowy element struktury Sieci Bravais go 2D Sieci przestrzenne Bravais

Bardziej szczegółowo

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B

Bardziej szczegółowo

Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką

Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką Kilka definicji Faza Definicja Gibbsa = stan materii jednorodny wewnętrznie, nie tylko pod względem składu chemicznego,

Bardziej szczegółowo

OBRÓBKA CIEPLNA STOPÓW ŻELAZA. Cz. II. Przemiany austenitu przechłodzonego

OBRÓBKA CIEPLNA STOPÓW ŻELAZA. Cz. II. Przemiany austenitu przechłodzonego OBRÓBKA CIEPLNA STOPÓW ŻELAZA Cz. II. Przemiany austenitu przechłodzonego WPŁYW CHŁODZENIA NA PRZEMIANY AUSTENITU Ar 3, Ar cm, Ar 1 temperatury przy chłodzeniu, niższe od równowagowych A 3, A cm, A 1 A

Bardziej szczegółowo

Pasmowa teoria przewodnictwa. Anna Pietnoczka

Pasmowa teoria przewodnictwa. Anna Pietnoczka Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki

Bardziej szczegółowo

Związek rzeczywisty TiO TiO x 0.65<x<1.25 TiO 2 TiO x 1.998<x<2.0 VO VO x 0.79<x<1.29 MnO Mn x O 0.848<x<1.0 NiO Ni x O 0.999<x<1.

Związek rzeczywisty TiO TiO x 0.65<x<1.25 TiO 2 TiO x 1.998<x<2.0 VO VO x 0.79<x<1.29 MnO Mn x O 0.848<x<1.0 NiO Ni x O 0.999<x<1. 8. Defekty chemiczne 8.1. Związki niestechiometryczne Na poprzednich zajęciach rozważaliśmy defekty punktowe, powstałe w związkach stechiometrycznych. Niestety, rzeczywistość jest dużo bardziej złożona

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 2 v.16 Sieci płaskie i struktura powierzchni 1 Typy sieci dwuwymiarowych (płaskich) Przecinając monokryształ wzdłuż jednej z płaszczyzn

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 4 v.16 Wiązanie metaliczne Wiązanie metaliczne Zajmujemy się tylko metalami dlatego w zasadzie interesuje nas tylko wiązanie metaliczne.

Bardziej szczegółowo

Materiały Reaktorowe. - Struktura pasmowa - Defekty sieci

Materiały Reaktorowe. - Struktura pasmowa - Defekty sieci Materiały Reaktorowe - Struktura pasmowa - Defekty sieci Struktura pasmowa Właściwości elektronów w ciałach stałych wynikają z ich oddziaływania między sobą i oddziaływania z atomami (jonami) sieci. Jednakże

Bardziej szczegółowo

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis Nauka o Materiałach Wykład XI Właściwości cieplne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe 3. Przewodnictwo cieplne 4. Rozszerzalność

Bardziej szczegółowo

ZAMRAŻANIE PODSTAWY CZ.1

ZAMRAŻANIE PODSTAWY CZ.1 METODY PRZECHOWYWANIA I UTRWALANIA BIOPRODUKTÓW ZAMRAŻANIE PODSTAWY CZ.1 Opracował: dr S. Wierzba Katedra Biotechnologii i Biologii Molekularnej Uniwersytetu Opolskiego Zamrażaniem produktów nazywamy proces

Bardziej szczegółowo

INŻYNIERIA NOWYCH MATERIAŁÓW

INŻYNIERIA NOWYCH MATERIAŁÓW INŻYNIERIA NOWYCH MATERIAŁÓW Wykład: 15 h Seminarium 15 h Laboratorium 45 h Świat materiałów Metale Ceramika, szkło Kompozyty Polimery, elastomery Pianki Materiały naturalne Znaczenie różnych materiałów

Bardziej szczegółowo

Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony

Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony Elektrolity wykazują przewodnictwo jonowe Elektrolity ciekłe substancje rozpadające się w roztworze na jony Przewodniki jonowe elektrolity stałe duża przewodność jonowa w stanie stałym; mały wkład elektronów

Bardziej szczegółowo

Zadania treningowe na kolokwium

Zadania treningowe na kolokwium Zadania treningowe na kolokwium 3.12.2010 1. Stan układu binarnego zawierającego n 1 moli substancji typu 1 i n 2 moli substancji typu 2 parametryzujemy za pomocą stężenia substancji 1: x n 1. Stabilność

Bardziej szczegółowo

Co to jest cienka warstwa?

Co to jest cienka warstwa? Co to jest cienka warstwa? Gdzie i dlaczego stosuje się cienkie warstwy? Układy scalone, urządzenia optoelektroniczne, soczewki i zwierciadła, ogniwa paliwowe, rozmaite narzędzia,... 1 Warstwy w układach

Bardziej szczegółowo

WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ MATERIAŁ. Właściwości materiałów. Właściwości materiałów

WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ MATERIAŁ. Właściwości materiałów. Właściwości materiałów WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ Właściwości materiałów O możliwości zastosowania danego materiału decydują jego właściwości użytkowe; Zachowanie się danego materiału w środowisku pracy to zaplanowana

Bardziej szczegółowo

BUDOWA STOPÓW METALI

BUDOWA STOPÓW METALI BUDOWA STOPÓW METALI Stopy metali Substancje wieloskładnikowe, w których co najmniej jeden składnik jest metalem, wykazujące charakter metaliczny. Składnikami stopów mogą być pierwiastki lub substancje

Bardziej szczegółowo

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska UKŁADY RÓWNOWAGI FAZOWEJ Równowaga termodynamiczna pojęcie stosowane w termodynamice. Oznacza stan, w którym makroskopowe

Bardziej szczegółowo

Wykład 8. Przemiany zachodzące w stopach żelaza z węglem. Przemiany zachodzące podczas nagrzewania

Wykład 8. Przemiany zachodzące w stopach żelaza z węglem. Przemiany zachodzące podczas nagrzewania Wykład 8 Przemiany zachodzące w stopach żelaza z węglem Przemiany zachodzące podczas nagrzewania Nagrzewanie stopów żelaza powyżej temperatury 723 O C powoduje rozpoczęcie przemiany perlitu w austenit

Bardziej szczegółowo

Nauka o Materiałach. Wykład VI. Odkształcenie materiałów właściwości sprężyste i plastyczne. Jerzy Lis

Nauka o Materiałach. Wykład VI. Odkształcenie materiałów właściwości sprężyste i plastyczne. Jerzy Lis Nauka o Materiałach Wykład VI Odkształcenie materiałów właściwości sprężyste i plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Statyczna próba rozciągania.

Bardziej szczegółowo

Fizyka Ciała Stałego

Fizyka Ciała Stałego Wykład III Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć krystaliczną. Amorficzne, brak uporządkowania,

Bardziej szczegółowo

Kinetyka zarodkowania

Kinetyka zarodkowania Kinetyka zarodkowania Wyrażenie na liczbę zarodków n r o kształcie kuli i promieniu r w jednostce objętości cieczy przy założeniu, że tworzenie się zarodków jest zdarzeniem losowym: n r Ne G kt v ( 21

Bardziej szczegółowo

STRUKTURA STOPÓW CHARAKTERYSTYKA FAZ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

STRUKTURA STOPÓW CHARAKTERYSTYKA FAZ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STRUKTURA STOPÓW CHARAKTERYSTYKA FAZ Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Stop tworzywo składające się z metalu stanowiącego osnowę, do którego

Bardziej szczegółowo

Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką

Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką Kilka definicji Faza Stan materii jednorodny wewnętrznie, nie tylko pod względem składu chemicznego, ale również

Bardziej szczegółowo

Defekty punktowe II. M. Danielewski

Defekty punktowe II. M. Danielewski Defekty punktowe II 2008 M. Danielewski Defekty, niestechiometria, roztwory stałe i przewodnictwo jonowe w ciałach stałych Atkins, Shriver, Mrowec i inni Defekty w kryształach: nie można wytworzyć kryształu

Bardziej szczegółowo

Samopropagująca synteza spaleniowa

Samopropagująca synteza spaleniowa Samopropagująca synteza spaleniowa Inne zastosowania nauki o spalaniu Dyfuzja gazów w płomieniu Zachowanie płynnych paliw i aerozoli; Rozprzestrzenianie się płomieni wzdłuż powierzchni Synteza spaleniowa

Bardziej szczegółowo

Teoria pasmowa ciał stałych

Teoria pasmowa ciał stałych Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury

Bardziej szczegółowo

BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale

BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale BUDOWA KRYSTALICZNA CIAŁ STAŁYCH Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale na: kryształy ciała o okresowym regularnym uporządkowaniu atomów, cząsteczek w całej swojej

Bardziej szczegółowo

Warunki izochoryczno-izotermiczne

Warunki izochoryczno-izotermiczne WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne

Bardziej szczegółowo

1) Rozmiar atomu to około? Która z odpowiedzi jest nieprawidłowa? a) 0, m b) 10-8 mm c) m d) km e) m f)

1) Rozmiar atomu to około? Która z odpowiedzi jest nieprawidłowa? a) 0, m b) 10-8 mm c) m d) km e) m f) 1) Rozmiar atomu to około? Która z odpowiedzi jest nieprawidłowa? a) 0,0000000001 m b) 10-8 mm c) 10-10 m d) 10-12 km e) 10-15 m f) 2) Z jakich cząstek składają się dodatnio naładowane jądra atomów? (e

Bardziej szczegółowo

Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii

Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii 8.1.21 Zad. 1. Obliczyć ciśnienie potrzebne do przemiany grafitu w diament w temperaturze 25 o C. Objętość właściwa (odwrotność gęstości)

Bardziej szczegółowo

Wykład 14 Przejścia fazowe

Wykład 14 Przejścia fazowe Wykład 14 Przejścia fazowe Z izoterm gazu Van der Waalsa (rys.14.1) wynika, że dla T < T k izotermy zawierają obszary w których gaz Van der Waalsa zachowuje się niefizycznie. W tych niefizycznych obszarach

Bardziej szczegółowo

Transport jonów: kryształy jonowe

Transport jonów: kryształy jonowe Transport jonów: kryształy jonowe Jodek srebra AgI W 420 K strukturalne przejście fazowe I rodzaju do fazy α stopiona podsieć kationowa. Fluorek ołowiu PbF 2 zdefektowanie Frenkla podsieci anionowej, klastry

Bardziej szczegółowo

Efekty strukturalne przemian fazowych

Efekty strukturalne przemian fazowych Efekty strukturalne przemian fazowych Literatura 1. Zbigniew Kędzierski PRZEMIANY FAZOWE W UKŁADACH SKONDESOWANYCH, AGH Uczelniane Wydawnictwa Naukowo Dydaktyczne, 003. Marek Blicharski INŻYNIERIA MATERIAŁOWA

Bardziej szczegółowo

Synteza Nanoproszków Metody Chemiczne II

Synteza Nanoproszków Metody Chemiczne II Synteza Nanoproszków Metody Chemiczne II Bottom Up Metody chemiczne Wytrącanie, współstrącanie, Mikroemulsja, Metoda hydrotermalna, Metoda solwotermalna, Zol-żel, Synteza fotochemiczna, Synteza sonochemiczna,

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali Prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład dla studentów fizyki Rok akademicki 2017/18 (30 godz.) Wykład 1 Plan wykładu Struktura periodyczna kryształów, sieć odwrotna Struktura

Bardziej szczegółowo

TEORIA PASMOWA CIAŁ STAŁYCH

TEORIA PASMOWA CIAŁ STAŁYCH TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s

Bardziej szczegółowo

Rozwiązanie: Zadanie 2

Rozwiązanie: Zadanie 2 Podstawowe pojęcia. Definicja kryształu. Sieć przestrzenna i sieć krystaliczna. Osie krystalograficzne i jednostki osiowe. Ściana jednostkowa i stosunek osiowy. Położenie węzłów, prostych i płaszczyzn

Bardziej szczegółowo

Zjawiska powierzchniowe

Zjawiska powierzchniowe Zjawiska powierzchniowe Adsorpcja Model Langmuira Model BET 1 Zjawiska powierzchniowe Adsorpcja Proces gromadzenia się substancji z wnętrza fazy na granicy międzyfazowej; Wynika z tego, że w obszarze powierzchniowym

Bardziej szczegółowo

Zastosowanie programu DICTRA do symulacji numerycznej przemian fazowych w stopach technicznych kontrolowanych procesem dyfuzji" Roman Kuziak

Zastosowanie programu DICTRA do symulacji numerycznej przemian fazowych w stopach technicznych kontrolowanych procesem dyfuzji Roman Kuziak Zastosowanie programu DICTRA do symulacji numerycznej przemian fazowych w stopach technicznych kontrolowanych procesem dyfuzji" Roman Kuziak Instytut Metalurgii Żelaza DICTRA jest pakietem komputerowym

Bardziej szczegółowo

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11

Bardziej szczegółowo

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Krystalografia. Typowe struktury pierwiastków i związków chemicznych

Krystalografia. Typowe struktury pierwiastków i związków chemicznych Krystalografia Typowe struktury pierwiastków i związków chemicznych Wiązania w kryształach jonowe silne, bezkierunkowe kowalencyjne silne, kierunkowe metaliczne słabe lub silne, bezkierunkowe van der Waalsa

Bardziej szczegółowo

Kierunek i poziom studiów: Chemia budowlana, II stopień Sylabus modułu: Chemia ciała stałego 0310-CH-S2-B-065

Kierunek i poziom studiów: Chemia budowlana, II stopień Sylabus modułu: Chemia ciała stałego 0310-CH-S2-B-065 Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia budowlana, II stopień Sylabus modułu: Chemia ciała stałego 065 1. Informacje ogólne koordynator modułu rok akademicki 2014/2015

Bardziej szczegółowo

Sprawdzian 1. CHEMIA. Przed próbną maturą (poziom rozszerzony) Czas pracy: 90 minut Maksymalna liczba punktów: 30. Imię i nazwisko ...

Sprawdzian 1. CHEMIA. Przed próbną maturą (poziom rozszerzony) Czas pracy: 90 minut Maksymalna liczba punktów: 30. Imię i nazwisko ... CHEMIA Przed próbną maturą 2017 Sprawdzian 1. (poziom rozszerzony) Czas pracy: 90 minut Maksymalna liczba punktów: 30 Imię i nazwisko... Liczba punktów Procent 2 Zadanie 1. Chlor i brom rozpuszczają się

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

Politechnika Gdańska, Inżynieria Biomedyczna. Przedmiot: BIOMATERIAŁY. Metody pasywacji powierzchni biomateriałów. Dr inż. Agnieszka Ossowska

Politechnika Gdańska, Inżynieria Biomedyczna. Przedmiot: BIOMATERIAŁY. Metody pasywacji powierzchni biomateriałów. Dr inż. Agnieszka Ossowska BIOMATERIAŁY Metody pasywacji powierzchni biomateriałów Dr inż. Agnieszka Ossowska Gdańsk 2010 Korozja -Zagadnienia Podstawowe Korozja to proces niszczenia materiałów, wywołany poprzez czynniki środowiskowe,

Bardziej szczegółowo

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by Harcourt,

Bardziej szczegółowo

Niektóre zagadnienia inżynierii materiałowej, w których dyfuzja odgrywa podstawową rolę.

Niektóre zagadnienia inżynierii materiałowej, w których dyfuzja odgrywa podstawową rolę. Niektóre zagadnienia inżynierii materiałowej, w których dyfuzja odgrywa podstawową rolę. 1. Przewodnictwo jonowe. 2. Domieszkowanie półprzewodników. 3. Dyfuzja reakcyjna. 4. Synteza w fazie stałej. 5.

Bardziej szczegółowo

Diagramy fazowe graficzna reprezentacja warunków równowagi

Diagramy fazowe graficzna reprezentacja warunków równowagi Diagramy fazowe graficzna reprezentacja warunków równowagi Faza jednorodna część układu, oddzielona od innych części granicami faz, na których zachodzi skokowa zmiana pewnych własności fizycznych. B 0

Bardziej szczegółowo

Defekty. Każde zaburzenie periodyczności kryształu jest defektem.

Defekty. Każde zaburzenie periodyczności kryształu jest defektem. Defekty Każde zaburzenie periodyczności kryształu jest defektem. Może to być zaburzenie geometryczne, lub fizyczne: Położenia atomów Typu atomów Uporządkowania spinów, koncentracji elektronów itd. Zaburzenie

Bardziej szczegółowo

Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych

Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Wykład XIV: Właściwości optyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wiadomości wstępne: a) Załamanie

Bardziej szczegółowo

OBRÓBKA PLASTYCZNA METALI

OBRÓBKA PLASTYCZNA METALI OBRÓBKA PLASTYCZNA METALI Plastyczność: zdolność metali i stopów do trwałego odkształcania się bez naruszenia spójności Obróbka plastyczna: walcowanie, kucie, prasowanie, ciągnienie Produkty i półprodukty

Bardziej szczegółowo

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki

Bardziej szczegółowo

Transport jonów: kryształy jonowe

Transport jonów: kryształy jonowe Transport jonów: kryształy jonowe Jodek srebra AgI W 420 K strukturalne przejście fazowe I rodzaju do fazy α stopiona podsieć kationowa. Fluorek ołowiu PbF 2 zdefektowanie Frenkla podsieci anionowej, klastry

Bardziej szczegółowo

CHEMIA. Wymagania szczegółowe. Wymagania ogólne

CHEMIA. Wymagania szczegółowe. Wymagania ogólne CHEMIA Wymagania ogólne Wymagania szczegółowe Uczeń: zapisuje konfiguracje elektronowe atomów pierwiastków do Z = 36 i jonów o podanym ładunku, uwzględniając rozmieszczenie elektronów na podpowłokach [

Bardziej szczegółowo