Scilab - wprowadzenie

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Scilab - wprowadzenie"

Transkrypt

1 Strona 1 Scilab jest darmowym programem (freeware) przeznaczonym do badań matematycznych. Może pomóc w statystycznym opracowaniu wyników badań (pomiarów). Można przy jego pomocy rysować grafy, wykresy 2- i 3- wymiarowe, tworzyć animacje. Powstał we Francji we współpracy INRIA (narodowy instytut badań w dziedzinie komputerów) oraz ENPC (słynna francuska uczelnia techniczna). Najnowszą wersję programu (5.3.3) można pobrać stąd. W tej wersji interfejs użytkownika jest w dużej części po polsku. Tutoriale internetowe: Wprowadzenie do Scilaba. Materiały z Politechniki Łódzkiej, autor Andrzej Brozi. Manual, po angielsku.

2 Strona 2 Po uruchomieniu programu pojawi się okno: W tym oknie wpisujemy kolejne polecenia i odczytujemy odpowiedzi. Praca z programem Całe wpisane polecenie wykonywane jest po naciśnięciu klawisza Enter, niezależnie od aktualnego położenia kursora. Można wpisywać polecenie w kilku wierszach, kończymy wiersz wpisaniem dwóch kropek.. i naciskamy Enter.

3 Strona 3 Zakończenie polecenia średnikiem ; zapobiega pojawieniu się wyniku polecenia na ekranie. Polecenie diary('nazwapliku', ['new' 'append']) powoduje, że wszystkie polecenia i odpowiedzi zapisywane są do wskazanego pliku. Rejestrowanie kończymy poleceniem diary(0). Plik zostanie utworzony w katalogu bieżącym, polecenie pwd (print work directory) wyświetli nazwę tego katalogu. Drugi parametr polecenia diary nie jest obowiązkowy, domyślna wartość, to 'new'.istniejący plik o takiej samej nazwie zostanie, bez uprzedzenia, nadpisany. Najważniejsze funkcje matematyczne abs wartość bezwzględna, moduł exp funkcja wykładnicza exp x = e x log logarytm naturalny (o podstawie e ) log10 logarytm o podstawie 10 sin sinus (argument w radianach) cos cosinus (argument w radianach) tan tangens (argument w radianach) cotag kotangens (argument w radianach)

4 abs cosh sinh sqrt round floor ceil int rand wartość bezwzględna, moduł cosinus hiperboliczny cosh x = e x e x sinus hiperboliczny sinh x = ex e x pierwiastek kwadratowy (sqrt(-1)=i) przybliżenie całkowite (zaokrąglenie) round( )=0 round( )=1 przybliżenie całkowite z dołu (floor(2.3)=2) przybliżenie całkowite z góry (ceil(2.3)=3) obcięcie części ułamkowej (int(-3.4)=-3) liczba (macierz) losowa, losowane są liczby z przedziału [0,1 rand() liczba rand(5,4) macierz 5 4 ** operator potęgowania (2**5=32, 1.3**5.2= ) 2 2 Strona 4 Po wykonaniu polecenia: zm=wyrażenie (np. x=sqrt(17)+exp(0)+sin(%pi/2)) powstanie zmienna o nazwie zm, jej wartością będzie obliczone wyrażenie (jeżeli zmienna o nazwie zm już istniała, to zmieni swoją wartość). Po wykonaniu polecenia: wyrażenie

5 (np. sqrt(17)+exp(0)+sin(%pi/2)) wartość wyrażenia zostanie obliczona i przypisana do zawsze istniejącej zmiennej o nazwie ans. Operacje na wektorach i macierzach W programie Scilab działa się właściwie tylko na macierzach (tablicach liczb). Pojedyncza liczba jest macierzą 1 1, wektor jest macierzą n 1. Definiujemy macierze tak: A=[1 2 3;4 5 6;7 8 9] Strona 5 ; jest separatorem wierszy. Wszystkie wiersze muszą mieć taką samą długość. Jeśli macierz jest jednoelementowa, to możemy opuścić nawiasy: x=37. Definiując macierz, możemy się posłużyć istniejącymi już macierzami lub innymi poleceniami (funkcjami). Polecenia: A=1:10 B=11:20 D=[A;B]

6 Strona 6 utworzą macierz dwuwierszową D =[ ]. A=1:0.17: B=2:-0.22: Polecenie x=linspace(2,3,10) utworzy macierz jednowierszową mająca 10 wyrazów, pierwszym wyrazem macierzy jest liczba 2, ostatnim 3. Operator ' transponuje macierz, tzn. zamienia wiersze na kolumny i vice versa. [1 5] 2 A=[1:5]' 3 4 [ A=[[1:100]' [1:100]'] ] Jeżeli wpiszemy polecenie postaci: A=fun(matrix) (np. linspace(0,1,101) A=exp(ans)), to wartości

7 Strona 7 funkcji fun zostaną obliczone dla każdego elementu macierzy matrix. Jak otrzymać taką macierz (z obliczonymi wartościami)? [ 2 99 ] sin 0 sin 2 99 sin sin sin A=linspace(0,%pi,101) B=sin(A) C=[A;B]. W programie Scilab istnieją dwa operatory mnożenia macierzy. A=[1 2;3 4] [ ] B=[1 2;3 4] [ ] A*B [ ], * oznacza operator mnożenia znany z algebry liniowej, A.*B [ ],.* oznacza operator mnożenia wyraz po wyrazie.

8 Strona 8

9 Strona 9 Wykorzystanie macierzy Rozwiązywanie układów równań liniowych. Równanie postaci ax = b a,b R rozwiązujemy tak: x = b a. Układ równań a 11 x 1 a 12 x 2 a 1n x n b 1 = a n1 x 1 a n2 x 2 a nn x n b n możemy zapisać za pomocą macierzy A =[a 11 a 12 a 1n a n1 a n2 a nn] i wektorów x = [x 1 n] b x =[b1 n] w b postaci A x = b i rozwiązać analogicznie (przez dzielenie) x = A b. Nietypowy jest zapis: najpierw dzielnik, potem dzielna oraz odwrotna kreska ułamkowa (backslash). Istnieje tez operator dzielenia wyraz po wyrazie, [2 3 4].\[3 4 5]=[ ] Przykład: { x y z = 3 x y z = 1 x y z = 3 A=[1 1 1;1-1 1;1-1 -1]

10 Strona 10 b=[3 1-3]' x=a\b Wykresy dwuwymiarowe, podstawowym poleceniem jest plot2d. Można je wywoływać z argumentami różnych typów. plot2d(matrix). Matrix jest macierzą n 1, lub 1 n. Na osi Ox umieszczane zostaną numery współrzędnych wektora matrix, na osi Oy natomiast współrzędne tego wektora. Chcemy zbadać eksperymentalnie zachowanie ciągu a n = sin n 2. b=1:10000; b=b.*b; a=sin(b) W macierzy jednowierszowej a mamy początkowych wyrazów tego ciągu. Polecenie plot2d(a(801:1000)) rysuje wykres fragmentu tego ciągu. Niestety, skalowanie na osi X jest mylące.

11 Strona 11 Polecenie plot2d(801:1000,a(801:1000)) skaluje poprawnie oś X.

12 Strona 12 Rysowanie wykresu funkcji y = e x sin x. x=linspace(0,2*%pi,101) y=sin(x).*exp(x) plot2d(y)

13 Strona 13 Po kolejnych poleceniach z=exp(x) plot2d(z) okno graficzne wygląda tak:

14 Strona 14 Wykres został dorysowany w tym samym oknie graficznym, skalowanie osi Y zostało zmienione. Można takie zachowanie programu zmienić poleceniem xset. xset( window,numer_okna) xset( auto clear, on ) Po poleceniach:

15 Strona 15 y=linspace(0,1,11) plot2d(y) nie pasują oznaczenia na osi Ox, nic nie jest dorysowywane. plot2d(matrix), matrix jest macierzą n k n, k > 1. Na osi Ox umieszczane są numery wierszy macierzy, natomiast na osi Oy współrzędne (wyrazy) macierzy matrix. Powstaje tyle wykresów, ile macierz ma kolumn ( k ). Narysowanie jednym poleceniem wykresu dwóch funkcji. x=linspace(0,%pi,201) y=[sin(x)' cos(x)'] plot2d(y)

16 Strona 16 plot2d(wektorx,wektory), wektory wektorx oraz wektory muszą mieć taką samą długość. Na osiach Ox oraz Oy umieszczane są współrzędne tych wektorów. Polecenie to nadaje się do rysowania tradycyjnych

17 Strona 17 wykresów funkcji. x=linspace(-3,3,101) y=exp(-(x.*x)) plot2d(x,y) Polecenie plot2d(..) ma odmiany inaczej łączące punkty wykresu.

18 Strona 18 subplot(2,2,1) plot2d(x,y) normalny wykres subplot(2,2,2) plot2d2(x,y) wykres stały pomiędzy punktami subplot(2,2,3) plot2d3(x,y) wykres słupkowy subplot(2,2,4) plot2d4(x,y) wykres strzałkowy

19 Strona 19 x=[ ] y=[ ] plot2d4(x,y) x=[2 3.5] y=[2 0.5] plot2d4(x,y)

20 Strona 20 Wykresy trójwymiarowe, podstawowym poleceniem jest plot3d(wektorx,wektory,values), wektor wektorx ma długość n x, wektory ma długość n y (liczby n x, n y nie muszą być równe), values jest macierzą o rozmiarze n x n y. Jak sporządzić wykres funkcji f x, y = x 2 y 2 x, y [ 3,3]?

21 [ Scilab - wprowadzenie Strona 21 Inaczej, jak (w wygodny sposób) uzyskać macierz values? Skorzystamy z funkcji ones(...), która tworzy macierz złożoną z samych jedynek. Argumentem funkcji ones może być para liczb (ilość wierszy, ilość kolumn) lub macierz wzorcowa. Istnieje analogiczna funkcja zeros(...). x=linspace(-3,3,51) [ ] y=linspace(-3,3,61) [ ] xx=x'*ones(y) Otrzymamy macierz o rozmiarach ze stałymi wierszami yy=ones(x)'*y ] Otrzymamy macierz o rozmiarach ze stałymi kolumnami [ ]. z=xx.*xx+yy.*yy

22 Strona 22 plot3d(x,y,z) Wykresy trajektorii (krzywych w R 3 ), podstawowe polecenie to, param3d(x,y,z), x, y, z są wektorami o takiej długości, opisującymi punkty w przestrzeni. Rysowanie linii śrubowej. t=linspace(0,4*%pi,101)

23 Strona 23 x=2*cos(t) y=2*sin(t) z=4*t xset( thickness,3) param3d(x,y,z) xset( thickness,1) param3d(x,y,zeros(z))

24 Strona 24

Metody optymalizacji - wprowadzenie do SciLab a

Metody optymalizacji - wprowadzenie do SciLab a Metody optymalizacji - wprowadzenie do SciLab a 1 Zmienne Nazwy: dozwolone nazwy zawierają znaki: od a do z, od A do Z, od 0 do 9 oraz _, #,!, $,? Operator przypisania wartości zmiennej = Przykład x=2

Bardziej szczegółowo

Wprowadzenie. SciLab Zmienne. Operatory. Macierze. Macierze. Tomasz Łukaszewski. Politechnika Poznańska Instytut Informatyki

Wprowadzenie. SciLab Zmienne. Operatory. Macierze. Macierze. Tomasz Łukaszewski. Politechnika Poznańska Instytut Informatyki SciLab 2016 Tomasz Łukaszewski Wprowadzenie Politechnika Poznańska Instytut Informatyki 2 Zmienne Operatory Nazwy: dozwolone nazwy zawierają znaki: od a do z, od A do Z, od 0 do 9 oraz _, #,!, $,? Przypisanie

Bardziej szczegółowo

WPROWADZENIE DO ŚRODOWISKA SCILAB

WPROWADZENIE DO ŚRODOWISKA SCILAB Politechnika Gdańska Wydział Elektrotechniki i Automatyki WPROWADZENIE DO ŚRODOWISKA SCILAB Materiały pomocnicze do ćwiczeń laboratoryjnych Opracowanie: Paweł Lieder Gdańsk, 007 Podstawy pracy z Scilab.

Bardziej szczegółowo

Wprowadzenie do Scilab: macierze

Wprowadzenie do Scilab: macierze Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje

Bardziej szczegółowo

Matlab MATrix LABoratory Mathworks Inc.

Matlab MATrix LABoratory Mathworks Inc. Małgorzata Jakubowska Matlab MATrix LABoratory Mathworks Inc. MATLAB pakiet oprogramowania matematycznego firmy MathWorks Inc. (www.mathworks.com) rozwijany od roku 1984 język programowania i środowisko

Bardziej szczegółowo

Wprowadzenie do Scilab: macierze

Wprowadzenie do Scilab: macierze Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje

Bardziej szczegółowo

Obliczenia w programie MATLAB

Obliczenia w programie MATLAB Obliczenia w programie MATLAB Na zajęciach korzystamy z programu MATLAB, w którym wykonywać będziemy większość obliczeń. Po uruchomieniu programu w zależności od wersji i konfiguracji może pojawić się

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości

Bardziej szczegółowo

1) Podstawowe obliczenia. PODSTAWY AUTOMATYKI I ROBOTYKI Laboratorium. Wykonał: Łukasz Konopacki Sala 125. Grupa: poniedziałek/p,

1) Podstawowe obliczenia. PODSTAWY AUTOMATYKI I ROBOTYKI Laboratorium. Wykonał: Łukasz Konopacki Sala 125. Grupa: poniedziałek/p, PODSTAWY AUTOMATYKI I ROBOTYKI Laboratorium Wykonał: Sala 125 Łukasz Konopacki 155796 Grupa: poniedziałek/p, 16.10 18.10 Prowadzący: Dr.inż.Ewa Szlachcic Termin oddania sprawozdania: Ocena: Matlab - firmy

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Drugi sposób definiowania funkcji polega na wykorzystaniu polecenia:

Drugi sposób definiowania funkcji polega na wykorzystaniu polecenia: ĆWICZENIE 6. Scilab: Obliczenia symboliczne i numeryczne Uwaga: Podczas operacji kopiowania i wklejania potrzeba skasować wklejone pojedyńcze cudzysłowy i wpisać je ręcznie dla każdego ich wystąpienia

Bardziej szczegółowo

Funkcje Andrzej Musielak 1. Funkcje

Funkcje Andrzej Musielak 1. Funkcje Funkcje Andrzej Musielak 1 Funkcje Funkcja liniowa Funkcja liniowa jest postaci f(x) = a x + b, gdzie a, b R Wartość a to tangens nachylenia wykresu do osi Ox, natomiast b to wartość funkcji w punkcie

Bardziej szczegółowo

gnuplot czyli jak zrobić wykres, żeby się nie narobić

gnuplot czyli jak zrobić wykres, żeby się nie narobić gnuplot czyli jak zrobić wykres, żeby się nie narobić Uniwersytet Śląski, Instytut Informatyki 14 listopada 2008 Co to jest gnuplot i co nam oferuje? program do tworzenia wykresów oraz wizualizacji danych

Bardziej szczegółowo

Zakłócenia w układach elektroenergetycznych LABORATORIUM

Zakłócenia w układach elektroenergetycznych LABORATORIUM Zakłócenia w układach elektroenergetycznych LABORATORIUM Obliczenia w programie MATLAB Na zajęciach korzystamy z programu MATLAB, w którym wykonywać będziemy większość obliczeń. Po uruchomieniu programu

Bardziej szczegółowo

Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych

Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych Ćwiczenie 3. MatLab: Algebra liniowa. Rozwiązywanie układów liniowych Wszystko proszę zapisywać komendą diary do pliku o nazwie: imie_ nazwisko 1. Definiowanie macierzy i odwoływanie się do elementów:

Bardziej szczegółowo

Podstawowe operacje na macierzach

Podstawowe operacje na macierzach Podstawowe operacje na macierzach w pakiecie GNU octave. (wspomaganie obliczeń inżynierskich) Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z tworzeniem macierzy i wektorów w programie GNU octave.

Bardziej szczegółowo

ANALIZA DANYCH I PROCESÓW. Mgr inż. Paweł Wojciech Herbin

ANALIZA DANYCH I PROCESÓW. Mgr inż. Paweł Wojciech Herbin ANALIZA DANYCH I PROCESÓW Mgr inż. Paweł Wojciech Herbin SZCZECIN 29 LUTEGO 2016 Spis treści 1. Wprowadzenie... 4 2. MATLAB wprowadzenie do interfejsu... 5 3. Praca w trybie bezpośrednim... 6 3.1. Wprowadzanie

Bardziej szczegółowo

Elementy metod numerycznych - zajęcia 9

Elementy metod numerycznych - zajęcia 9 Poniższy dokument zawiera informacje na temat zadań rozwiązanych w trakcie laboratoriów. Elementy metod numerycznych - zajęcia 9 Tematyka - Scilab 1. Labolatoria Zajęcia za 34 punktów. Proszę wysłać krótkie

Bardziej szczegółowo

Wartości x-ów : Wartości x ów można w Scilabie zdefiniować na kilka sposobów, wpisując odpowiednie polecenie na konsoli.

Wartości x-ów : Wartości x ów można w Scilabie zdefiniować na kilka sposobów, wpisując odpowiednie polecenie na konsoli. Notatki z sesji Scilaba Istnieje możliwość dokładnego zapisu przebiegu aktualnej sesji pracy ze Scilabem: polecenie diary('nazwa_pliku.txt') powoduje zapis do podanego pliku tekstowego wszystkich wpisywanych

Bardziej szczegółowo

, h(x) = sin(2x) w przedziale [ 2π, 2π].

, h(x) = sin(2x) w przedziale [ 2π, 2π]. Informatyczne podstawy projektowania, IŚ, / Maima, część II. Rysowanie wykresów w dwu i trzech wymiarach (zob. 5). a. Otwórz panel okna Wykres D i zapoznaj się z nim. Wyrażenie(a) - tutaj wpisujemy funkcję

Bardziej szczegółowo

opracował: mgr inż. Piotr Marchel Instrukcja obsługi programu Struktura

opracował: mgr inż. Piotr Marchel Instrukcja obsługi programu Struktura POLITECHNIKA WARSZAWSKA Instytut Elektroenergetyki, Zakład Elektrowni i Gospodarki Elektroenergetycznej Bezpieczeństwo elektroenergetyczne i niezawodność zasilania laboratorium opracował: mgr inż. Piotr

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Matlab Składnia + podstawy programowania

Matlab Składnia + podstawy programowania Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe

Bardziej szczegółowo

GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej.

GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. 1 GNU Octave GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. Octave zapewnia: sporą bibliotęke użytecznych funkcji i algorytmów; możliwośc tworzenia przeróżnych wykresów; możliwość

Bardziej szczegółowo

SciLab Literatura. Tomasz Łukaszewski. Politechnika Poznańska Instytut Informatyki

SciLab Literatura. Tomasz Łukaszewski. Politechnika Poznańska Instytut Informatyki SciLab 2016 Tomasz Łukaszewski Politechnika Poznańska Instytut Informatyki Literatura A. Brozi, Scilab w przykładach, Nakom 2007 W. Treichelt i M.Stachurski, Matlab dla studentów, Witkom 2009 2 1 Wprowadzenie

Bardziej szczegółowo

Microsoft Small Basic

Microsoft Small Basic Microsoft Small Basic Obiekt Math Szacowany czas trwania lekcji: 1 godzina Obiekt Math Podczas tej lekcji dowiesz się, jak: Używać różnych właściwości obiektu Math. Używać różnych operacji obiektu Math.

Bardziej szczegółowo

WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7.

WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7. Strona z WEKTORY I MACIERZE Wektory i macierze ogólnie nazywamy tablicami. Wprowadzamy je:. W sposób jawny: - z menu Insert Matrix, - skrót klawiszowy: {ctrl}+m, - odpowiedni przycisk z menu paska narzędziowego

Bardziej szczegółowo

Pętle iteracyjne i decyzyjne

Pętle iteracyjne i decyzyjne Pętle iteracyjne i decyzyjne. Pętla iteracyjna for Pętlę iteracyjną for stosuje się do wykonywania wyrażeń lub ich grup określoną liczbę razy. Licznik pętli w pakiecie MatLab może być zwiększany bądź zmniejszany

Bardziej szczegółowo

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie: Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11

Bardziej szczegółowo

Programowanie: grafika w SciLab Slajd 1. Programowanie: grafika w SciLab

Programowanie: grafika w SciLab Slajd 1. Programowanie: grafika w SciLab Programowanie: grafika w SciLab Slajd 1 Programowanie: grafika w SciLab Programowanie: grafika w SciLab Slajd 2 Plan zajęć 1. Wprowadzenie 2. Wykresy 2-D 3. Wykresy 3-D 4. Rysowanie figur geometrycznych

Bardziej szczegółowo

x a 1, podając założenia, przy jakich jest ono wykonywalne. x a 1 = x a 2 ( a 1) = x 1 = 1 x.

x a 1, podając założenia, przy jakich jest ono wykonywalne. x a 1 = x a 2 ( a 1) = x 1 = 1 x. Zestaw. Funkcja potęgowa, wykładnicza i logarytmiczna. Elementarne równania i nierówności. Przykład 1. Wykonać działanie x a x a 1, podając założenia, przy jakich jest ono wykonywalne. Rozwiązanie. Niech

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy

Bardziej szczegółowo

Laboratorium metod numerycznych - SCILAB Laboratorium 2

Laboratorium metod numerycznych - SCILAB Laboratorium 2 Laboratorium metod numerycznych - SCILAB Laboratorium 2 W najprostszym przypadku, Scilab jest wykorzystywany jako kalkulator zdolny wykonywać obliczenia na wektorach i macierzach. W prostych zadaniach

Bardziej szczegółowo

do MATLABa podstawowe operacje na macierzach WYKŁAD Piotr Ciskowski

do MATLABa podstawowe operacje na macierzach WYKŁAD Piotr Ciskowski Wprowadzenie do MATLABa podstawowe operacje na macierzach WYKŁAD Piotr Ciskowski M A T L A B : Computation Visualization Programming easy to use environment MATLAB = matrix laboratory podstawowa jednostka

Bardziej szczegółowo

Pomimo rozwoju programów klikologicznych w ekonometrii, istnieje wiele osób, które wciąż cenią sobie programy typu Matlab, czy Gauss. W programach klikologicznych typu EViews użytkownik ma małą kontrolę

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

ARKUSZ KALKULACYJNY MICROSOFT EXCEL cz.2 Formuły i funkcje macierzowe, obliczenia na liczbach zespolonych, wykonywanie i formatowanie wykresów.

ARKUSZ KALKULACYJNY MICROSOFT EXCEL cz.2 Formuły i funkcje macierzowe, obliczenia na liczbach zespolonych, wykonywanie i formatowanie wykresów. Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni z przedmiotu Podstawy Informatyki Kod przedmiotu: ENS1C 100 003 oraz ENZ1C 100 003 Ćwiczenie pt. ARKUSZ KALKULACYJNY

Bardziej szczegółowo

Widoczność zmiennych Czy wartości każdej zmiennej można zmieniać w dowolnym miejscu kodu? Czy można zadeklarować dwie zmienne o takich samych nazwach?

Widoczność zmiennych Czy wartości każdej zmiennej można zmieniać w dowolnym miejscu kodu? Czy można zadeklarować dwie zmienne o takich samych nazwach? Część XVIII C++ Funkcje Widoczność zmiennych Czy wartości każdej zmiennej można zmieniać w dowolnym miejscu kodu? Czy można zadeklarować dwie zmienne o takich samych nazwach? Umiemy już podzielić nasz

Bardziej szczegółowo

. Funkcja ta maleje dla ( ) Zadanie 1 str. 180 b) i c) Zadanie 2 str. 180 a) i b)

. Funkcja ta maleje dla ( ) Zadanie 1 str. 180 b) i c) Zadanie 2 str. 180 a) i b) Lekcja 1 -. Lekcja organizacyjna kontrakt diagnoza i jej omówienie Podręcznik: W. Babiański, L. Chańko, D. Ponczek Matematyka. Zakres podstawowy. Wyd. Nowa Era. Zakres materiału: Funkcje kwadratowe Wielomiany

Bardziej szczegółowo

SCILAB. Wprowadzenie do Scilaba: http://www.scilab.org/content/download/1754/19024/file/introscilab.pdf

SCILAB. Wprowadzenie do Scilaba: http://www.scilab.org/content/download/1754/19024/file/introscilab.pdf SCILAB Wprowadzenie Scilab jest środowiskiem programistycznym i numerycznym dostępnym za darmo z INRIA (Institut Nationale de Recherche en Informatique et Automatique). Jest programem podobnym do MATLABa

Bardziej szczegółowo

Laboratorium Komputerowego Wspomagania Analizy i Projektowania

Laboratorium Komputerowego Wspomagania Analizy i Projektowania Laboratorium Komputerowego Wspomagania Analizy i Projektowania Ćwiczenie 2. Podstawowe operacje macierzowe. Opracował: dr inż. Sebastian Dudzik 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z tworzeniem

Bardziej szczegółowo

Metody i analiza danych

Metody i analiza danych 2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach

Bardziej szczegółowo

Lekcja 2. Pojęcie równania kwadratowego. Str Teoria 1. Równaniem wielomianowym nazywamy równanie postaci: n

Lekcja 2. Pojęcie równania kwadratowego. Str Teoria 1. Równaniem wielomianowym nazywamy równanie postaci: n Lekcja 1. Lekcja organizacyjna kontrakt. Podręcznik: A. Ceve, M. Krawczyk, M. Kruk, A. Magryś-Walczak, H. Nahorska Matematyka w zasadniczej szkole zawodowej. Wydawnictwo Podkowa. Zakres materiału: Równania

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres podstawowy) klasa 2 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.

Bardziej szczegółowo

1 Funkcje elementarne

1 Funkcje elementarne 1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N

Bardziej szczegółowo

Scilab - podstawy. Wersje instalacyjne programu Scilab mogą zostać pobrane ze strony

Scilab - podstawy. Wersje instalacyjne programu Scilab mogą zostać pobrane ze strony Scilab - podstawy Scilab jest środowiskiem numerycznym, programistycznym i numerycznym dostępnym za darmo z INRIA (Institut Nationale de Recherche en Informatique et Automatique). Jest programem podobnym

Bardziej szczegółowo

PODSTAWY INFORMATYKI 1 MATLAB CZ. 3

PODSTAWY INFORMATYKI 1 MATLAB CZ. 3 PODSTAWY INFORMATYKI 1 MATLAB CZ. 3 TEMAT: Program Matlab: Instrukcje sterujące, grafika. Wyrażenia logiczne Wyrażenia logiczne służą do porównania wartości zmiennych o tych samych rozmiarach. W wyrażeniach

Bardziej szczegółowo

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008 Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5

Bardziej szczegółowo

Wprowadzenie do programowania w SciLab: typy danych, wyrażenia, operatory, funkcje własne, skrypty.

Wprowadzenie do programowania w SciLab: typy danych, wyrażenia, operatory, funkcje własne, skrypty. 13 listopad 2012 Podstawowe obliczenia w programie SciLab slajd 1 Wprowadzenie do programowania w SciLab: typy danych, wyrażenia, operatory, funkcje własne, skrypty. 13 listopad 2012 Podstawowe obliczenia

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

Przykład 1 -->s="hello World!" s = Hello World! -->disp(s) Hello World!

Przykład 1 -->s=hello World! s = Hello World! -->disp(s) Hello World! Scilab jest środowiskiem programistycznym i numerycznym dostępnym za darmo z INRIA (Institut Nationale de Recherche en Informatique et Automatique). Jest programem podobnym do MATLABa oraz jego darmowego

Bardziej szczegółowo

Literatura podstawowa

Literatura podstawowa 1 Wstęp Literatura podstawowa 1. Grażyna Kwiecińska: Matematyka : kurs akademicki dla studentów nauk stosowanych. Cz. 1, Wybrane zagadnienia algebry liniowej, Wydaw. Uniwersytetu Gdańskiego, Gdańsk, 2003.

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa II technikum

Wymagania edukacyjne z matematyki klasa II technikum Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą

Bardziej szczegółowo

Baltie 3. Podręcznik do nauki programowania dla klas I III gimnazjum. Tadeusz Sołtys, Bohumír Soukup

Baltie 3. Podręcznik do nauki programowania dla klas I III gimnazjum. Tadeusz Sołtys, Bohumír Soukup Baltie 3 Podręcznik do nauki programowania dla klas I III gimnazjum Tadeusz Sołtys, Bohumír Soukup Czytanie klawisza lub przycisku myszy Czytaj klawisz lub przycisk myszy - czekaj na naciśnięcie Polecenie

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura

Standardy wymagań maturalnych z matematyki - matura Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania

Bardziej szczegółowo

Scilab skrypty (programowanie)

Scilab skrypty (programowanie) Strona 1 Skrypt (program interpretowany) możemy napisać w dowolnym edytorze. Warto posługiwać się edytorem wbudowanym w program Scilab. Wykonać skrypt możemy na dwa sposoby: wpisując polecenie exec('nazwaskryptu')

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego.

Bardziej szczegółowo

Sin[Pi / 4] Log[2, 1024] Prime[10]

Sin[Pi / 4] Log[2, 1024] Prime[10] In[1]:= (* WSTĘP DO PAKIETU MATHEMATICA *) (* autorzy: Łukasz Płociniczak,Marek Teuerle*) (* Składnia: nazwy funkcji z wielkiej litery a argumenty w kwadratowych nawiasach. Wywołujemy wartość SHIFT+ENTER

Bardziej szczegółowo

Ćwiczenie 1. Matlab podstawy (1) Matlab firmy MathWorks to uniwersalny pakiet do obliczeń naukowych i inżynierskich, analiz układów statycznych

Ćwiczenie 1. Matlab podstawy (1) Matlab firmy MathWorks to uniwersalny pakiet do obliczeń naukowych i inżynierskich, analiz układów statycznych 1. Matlab podstawy (1) Matlab firmy MathWorks to uniwersalny pakiet do obliczeń naukowych i inżynierskich, analiz układów statycznych i dynamicznych, symulacji procesów, przekształceń i obliczeń symbolicznych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura 2010

Standardy wymagań maturalnych z matematyki - matura 2010 Standardy wymagań maturalnych z matematyki - matura 2010 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Standardy można pobrać (plik pdf) wybierając ten link: STANDARDY 2010 lub

Bardziej szczegółowo

Programowanie w języku Matlab

Programowanie w języku Matlab Programowanie w języku Matlab D. Caban, P. Skurowski Wykład. Składnia języka, podstawowe struktury i operacje Matlab Nazwa pochodzi od MATrix LAboratory Środowisko obliczeń numerycznych i symbolicznych

Bardziej szczegółowo

Podstawy nauk przyrodniczych Matematyka Wstęp

Podstawy nauk przyrodniczych Matematyka Wstęp Podstawy nauk przyrodniczych Matematyka Wstęp Katarzyna Kluzek i Adrian Silesian Zakład Genetyki Molekularnej Człowieka tel. 61 829 58 33 adrian.silesian@amu.edu.pl katarzyna.kluzek@amu.edu.pl Pokój 1.117

Bardziej szczegółowo

Podstawy obsługi pakietu GNU octave.

Podstawy obsługi pakietu GNU octave. Podstawy obsługi pakietu GNU octave. (wspomaganie obliczeń inżynierskich) Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z obsługą pakietu GNU octave. W ćwiczeniu wprowadzono opis podstawowych komend

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

Wykresy. Lekcja 10. Strona 1 z 11

Wykresy. Lekcja 10. Strona 1 z 11 Lekcja Strona z Wykresy Wykresy tworzymy:. Z menu Insert Graph i następnie wybieramy rodzaj wykresu jaki chcemy utworzyć;. Z menu paska narzędziowego "Graph Toolbar" wybierając przycisk z odpowiednim wykresem;

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI (zakres podstawowy) Rok szkolny 2017/2018 - klasa 2a, 2b, 2c 1. Funkcja

Bardziej szczegółowo

Programowanie w LOGO KOMENIUSZ grafika żółwia

Programowanie w LOGO KOMENIUSZ grafika żółwia PODSTAWOWE PROCEDURY TEKSTOWE Programowanie w LOGO KOMENIUSZ grafika żółwia Postać polecenia Skrót Znaczenie 1. TEKSTY TS cały ekran w trybie tekstowym. ZMAŻTEKST ZT czyści ekran tekstowy 3. PISZ coś PS

Bardziej szczegółowo

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B 1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =

Bardziej szczegółowo

JAVAScript w dokumentach HTML (1)

JAVAScript w dokumentach HTML (1) JAVAScript w dokumentach HTML (1) JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania. Skrypty JavaScript mogą być zagnieżdżane w dokumentach HTML. Instrukcje JavaScript

Bardziej szczegółowo

Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych

Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl tel. 022

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016

PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016 PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016 Wymagania wykraczające zawierają w sobie wymagania dopełniające, te zaś zawierają wymagania podstawowe. Ocenę dopuszczającą powinien otrzymać

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Podstawowe wyrażenia matematyczne

Podstawowe wyrażenia matematyczne Lech Sławik Podstawy Maximy 3 Wyrażenia matematyczne.wxmx 1 / 7 Podstawowe wyrażenia matematyczne 1 Nazwy Nazwy (zmiennych, stałych, funkcji itp.) w Maximie mogą zawierać małe i duże litery alfabetu łacińskiego,

Bardziej szczegółowo

MATLAB wprowadzenie śycie jest zbyt krótkie, aby tracić czas na pisanie pętli!

MATLAB wprowadzenie śycie jest zbyt krótkie, aby tracić czas na pisanie pętli! Modele układów dynamicznych - laboratorium MATLAB wprowadzenie śycie jest zbyt krótkie, aby tracić czas na pisanie pętli! 1 2 MATLAB MATLAB (ang. matrix laboratory) to pakiet przeznaczony do wykonywania

Bardziej szczegółowo

6. FUNKCJE. f: X Y, y = f(x).

6. FUNKCJE. f: X Y, y = f(x). 6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco

Bardziej szczegółowo

ŚRODOWISKO MATLAB WPROWADZENIE. dr inż. Dariusz Borkowski. Podstawy informatyki. (drobne) modyfikacje: dr inż. Andrzej Wetula

ŚRODOWISKO MATLAB WPROWADZENIE. dr inż. Dariusz Borkowski. Podstawy informatyki. (drobne) modyfikacje: dr inż. Andrzej Wetula ŚRODOWISKO MATLAB WPROWADZENIE dr inż. Dariusz Borkowski (drobne) modyfikacje: dr inż. Andrzej Wetula Przebieg III części przedmiotu - 10 zajęć = 6 laboratoriów Matlab + 2 laboratoria Simulink + 2 kolokwia.

Bardziej szczegółowo

JAVAScript w dokumentach HTML - przypomnienie

JAVAScript w dokumentach HTML - przypomnienie Programowanie obiektowe ćw.1 JAVAScript w dokumentach HTML - przypomnienie JavaScript jest to interpretowany, zorientowany obiektowo, skryptowy język programowania. Skrypty JavaScript są zagnieżdżane w

Bardziej szczegółowo

Wprowadzenie do Pakietu R dla kierunku Zootechnika. Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu

Wprowadzenie do Pakietu R dla kierunku Zootechnika. Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Wprowadzenie do Pakietu R dla kierunku Zootechnika Dr Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Instalacja Pakietu R www.r-project.org wybór źródła wybór systemu operacyjnego:

Bardziej szczegółowo

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę

Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania

Bardziej szczegółowo

Blok zawierający opis danego quizu, np. Pierwsze kolokwium z podstaw chemii. Blok definiujący czas trwania kolokwium.

Blok zawierający opis danego quizu, np. Pierwsze kolokwium z podstaw chemii. Blok definiujący czas trwania kolokwium. Instrukcja jak stworzyć quiz w Moodle (wersja 1.8.4+) Piotr Wojciechowski Quiz w Moodle tworzymy wybierać składową quiz z rozwijanej listy dodaj składową zgodnie z rysunkiem przedstawionym poniżej. Pamiętajmy,

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25.

1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25. 1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25. A Najłatwiejszym sposobem jest rozpatrzenie wszystkich odpowiedzi

Bardziej szczegółowo

Przykładowo, jeśli współrzędna x zmienia się od 0 do 8 co 1, a współrzędna y od 12 co 2 do 25, to punkty powinny wyglądać następująco:

Przykładowo, jeśli współrzędna x zmienia się od 0 do 8 co 1, a współrzędna y od 12 co 2 do 25, to punkty powinny wyglądać następująco: Informatyka I Przypomnienie wiadomości z poprzednich zajęć: Kolokwium!!! II Nowe wiadomości: 1 Funkcje trójwymiarowe Wykresy trójwymiarowe tworzone są na podstawie funkcji dwóch zmiennych Wejściem takich

Bardziej szczegółowo

Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1. Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus - matematyka

Bardziej szczegółowo

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2015/2016 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody.

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2015/2016 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody. Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 05/06 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody Przedmiot: MATEMATYKA Klasa I (60 godz) Rozdział. Liczby rzeczywiste Numer

Bardziej szczegółowo

Laboratorium Algorytmy Obliczeniowe. Lab. 9 Prezentacja wyników w Matlabie

Laboratorium Algorytmy Obliczeniowe. Lab. 9 Prezentacja wyników w Matlabie Laboratorium Algorytmy Obliczeniowe Lab. 9 Prezentacja wyników w Matlabie 1. Wyświetlanie wyników na ekranie: W Matlabie możliwe są następujące sposoby wyświetlania wartości zmiennych: a. wpisując w programie

Bardziej szczegółowo

MATEMATYKA 8. Funkcje trygonometryczne kąta ostrego (α < 90 ). Stosunki długości boków trójkąta prostokątnego nazywamy funkcjami trygonometrycznymi.

MATEMATYKA 8. Funkcje trygonometryczne kąta ostrego (α < 90 ). Stosunki długości boków trójkąta prostokątnego nazywamy funkcjami trygonometrycznymi. INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 017/018 www.medicus.edu.pl tel. 501 38 39 55 MATEMATYKA 8 FUNKCJE TRYGONOMETRYCZNE. Funkcje trygonometryczne kąta ostrego

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres rozszerzony) klasa 2. 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.

Bardziej szczegółowo

Podstawy MATLABA, cd.

Podstawy MATLABA, cd. Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA, cd. 1. Wielomiany 1.1. Definiowanie

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem

Bardziej szczegółowo