Radon oraz wybrane czynniki biotyczne jako elementy zespołu chorego budynku.
|
|
- Zdzisław Rosiński
- 8 lat temu
- Przeglądów:
Transkrypt
1 Jan Antoni RUBIN *) Radon oraz wybrane czynniki biotyczne jako elementy zespołu chorego budynku. Powietrze kubaturowe w budynkach mieszkalnych bywa często zanieczyszczone bakteriami i ich przetrwalnikami, jak również grzybami oraz produktami ich metabolizmu. Obecne w tymże powietrzu czynniki biotyczne mogą być przyczyną wielu nieprzyjemnych dolegliwości. Występujący w naszych domach radon również wywiera pewien wpływ na zdrowie ludzi. Między innymi radon może tworzyć tzw. klastery z zarodnikami np. grzybów pleśniowych, co prowadzi do synergistycznego oddziaływania tychże czynników na organizmy wyższe. Radon and selected biotic factors as elements of the infected building. Air space in the residential buildings is often polluted with bacteria and their spores together with fungi and products of their metabolism. The present biotic factors can be the cause of unpleasant ailments. Radon, which is present in our houses, also has a strong influence over human health. Among others, radon can cause clusters with spores e.g. mould fungi, what leads to synergetic impact of those factors over higher organisms. 1. Syndrom chorych budynków. We współczesnym świecie wielu ludzi cierpi z powodu choroby, która teoretycznie nie ma określonej przyczyny. Cierpiący doświadczają szeregu symptomów wynikających z uwrażliwienia na pewne warunki niezadowalającego środowiska mieszkalnego lub też biurowego. Tego rodzaju złe samopoczucie, jak również czynniki wywołujące je określa się jako SBS syndrom chorych budynków (sick building syndrome) [1]. Wystąpienie przykrych dolegliwości związane jest głównie z zbyt małą ilością świeżego powietrza w pomieszczeniu oraz z jego złą jakością. Źródłami zanieczyszczeń powietrza w pomieszczeniu mogą być organizmy żywe (np. produkty uboczne oddychania, pocenia się, grzyby domowe i pleśniowe, roztocza, itp.), materiały budowlane i elementy wyposażenia wnętrz (np. rozpuszczalniki, impregnaty drewna, związki emitowane przez farby i lakiery malarskie, azbest, itd.), systemy wentylacji i klimatyzacji (np. mikroorganizmy żyjące w nieczyszczonych przewodach wentylacyjnych), powietrze zewnętrzne (np. zanieczyszczenia chemiczne powietrza w dużych aglomeracjach miejskich) albo samo użytkowanie pomieszczeń (np. palenie tytoniu) [2]. Do tego typu czynników w funkcji czasu, można także zaliczyć bezwonny i bezbarwny promieniotwórczy gaz szlachetny radon [3]. Objawy SBS, to: bóle i zawroty głowy, omdlenia i mdłości, objawy przemęczenia, podrażnienie błon śluzowych, utrudnione oddychanie i inne tego typu dolegliwości [2]. Problem chorych budynków i jego rozwiązywanie stanowi wielce istotny element w postępie cywilizacyjnym współczesnego świata ludzki [4]. *) dr inż.; Politechnika Śląska, Wydział Budownictwa, Gliwice; jan.rubin@polsl.pl Polskie Stowarzyszenie Mykologów Budownictwa, Koło Śląskie.
2 2. Radon w mikrośrodowisku mieszkalnym człowieka. 156 Promieniowanie jonizujące oddziaływuje ciągle w mniejszym lub większym zakresie na organizmy żywe. Promieniowanie to pochodzi z licznych źródeł tak pozaziemskich, jak i ziemskich naturalnych oraz sztucznych. Największą dawkę promieniowania organizmy żywe otrzymują jednak w wyniku wchłaniania powietrza, w którym występuje radon (Rn-222) radioaktywny gaz szlachetny. Na rys. 1. przedstawiono w sposób poglądowy procentowe udziały poszczególnych rodzajów promieniowania jonizującego, na które wystawiony jest organizm człowieka. Rys.1. Procentowe udziały ekspozycyjne mieszkańców Ziemi na promieniowanie jonizujące [5]. Gdzie: 1 promieniowanie wewnętrzne (od pożywienia) 0,3 msv (11%); 2 promieniowanie kosmiczne 0,4 msv (15%); 3 ziemskie promieniowanie gamma (od skał i gleb) 0,6 msv (22%); 4 radon 1,4 msv (52%). Z porównania poszczególnych udziałów promieniowania jonizującego działającego na organizm człowieka wynika, iż radon zawarty w powietrzu stanowi największe zagrożenie w porównaniu z innymi emiterami tegoż promieniowania. Radon znajduje się w różnych ilościach w mineralnych materiałach budowlanych, w wodach powierzchniowych i głębinowych, w paliwach stałych i gazowych, a przede wszystkim w gruntach budowlanych. Ok. 52% dawki równoważnej promieniowania (rys. 1) pochodzi od radonu; przy czym przyjmuje się, iż z tego ok % to tzw. radon materiałowy, a ok % to tzw. radon gruntowy [6]. Przejście gazowego radonu do przestrzeni porowej czy to w gruncie (rys. 2), czy w materiałach budowlanych jest pierwszym etapem jego migracji w środowisku [7]. Dotyczy to w mniejszym lub większym zakresie wszystkich porowatych ciał mineralnych (np. skały, ceramika, betony), w których występuje rad (Ra 226) macierzysty pierwiastek radonu. Wnikanie radonu do powietrza wentylowanego mieszkań odbywa się zarówno na drodze swobodnej molekularnej dyfuzji atomów tegoż radonu z gruntu, jak i efektu ssania. Efekt ten wynika z niewielkiej różnicy ciśnień pomiędzy wnętrzem i zewnętrzem domu, spowodowanej z kolei przez różnicę temperatur (tzw. efekt kominowy ) oraz wiatr, opady i ciśnienie powietrza atmosferycznego. Radon przedostaje się do wnętrza budynku przez spoiny, pęknięcia, otwory instalacyjne, a także różnego rodzaju nieszczelności w ławach i płytach fundamentowych [7][8][9][10]. Na rys. 3 przedstawiono najbardziej prawdopodobne drogi wnikania radonu przez poszczególne elementy budowlane do wnętrza budynku [9] [10]. Rys.2. Schematyczne przedstawienie dróg migracji radonu w podłożu gruntowym [7]. Rys.3. Schemat dróg, którymi wnika radon zewnętrzny do wnętrza budynku [9], [10].
3 157 Oddziaływanie naturalnych źródeł promieniowania jest problemem, z którym długo jeszcze borykać się będą zarówno naukowcy, projektanci, wykonawcy jak również zwykli ludzie. Pomimo ciągłych debat nad wpływem promieniowania na ludzki organizm, oraz często sprzecznych na ten temat opinii, projektując oraz wykonując budynki, należy dbać o to, aby stężenie pierwiastków promieniotwórczych głównie radonu było jak najmniejsze i nie przekraczało naturalnego tła promieniowania. Rys.4. Schemat migracji radonu do wnętrza pomieszczeń [9]. Radon wnika do naszych mieszkań różnymi drogami (rys. 4). Jeśli nie zastosowano odpowiednich zabezpieczeń, to gromadzi się on w pomieszczeniach, osiągając bardzo wysokie stężenia, nawet do kilkaset razy większe niż na zewnątrz. Nawet jeżeli podłoże gruntowe nie wykazuje wysokiego stężenia radonu w wyniku kumulacji we wnętrzu budynku, stężenie to może przekroczyć dopuszczalne normy, dlatego np. warto przed zakupem działki pod zabudowę zbadać podłoże gruntowe w celu dostosowania projektu do klasy ryzyka. Stosowanie technik prewencyjnych na etapie projektowania i budowania pozwala na unikanie kosztów związanych ze stosowaniem systemów ograniczania koncentracji radonu w istniejących budynkach. Oczywiście dotyczy to obszarów, o podwyższonym ryzyku radonowym. Jak już wspomniano, izotop radonu Rn-222 (wraz ze swymi pochodnymi) zawarty w powietrzu pomieszczeń mieszkalnych, jest źródłem narażenia wewnętrznego mieszkańców obiektów przeznaczonych na stały pobyt ludzi [11]. Radionuklidy te są emiterami trzech rodzajów promieniowania: γ (gamma), α (alfa) i β (beta). Najmniej przenikliwe jest promieniowanie α. Są to cząstki o dużej masie, dzięki czemu zatrzymywane są już przez kilkucentymetrową warstwę powietrza (wystarczy ok. 6 7 cm). Nieco bardziej przenikliwe jest promieniowanie β elektrony o bardzo dużych energiach. Zarówno promieniowanie α jak i β, występujące w przyrodzie, nie odgrywają istotnej roli w zewnętrznym oddziaływaniu na człowieka. Mają one jednak znaczący wpływ w oddziaływaniu wewnętrznym np. przy wdychaniu aerozoli zawierających produkty rozpadu radonu Rn-222. Produkty te, to promieniotwórczy: polon (Po-214 i Po-218), bizmut (Bi-214) oraz ołów (Pb-214) rys. 5.
4 γ Ra lat Rn-222 3,82 dni Po-218 3,05 min. 158 γ krótkotrwałe produkty rozpadu Pb ,8 min. β Bi ,7 min. β Po-214 0,1 ms długotrwałe produkty rozpadu Rys.5. Szereg promieniotwórczy radonu Rn-222 z jego krótkotrwałymi produktami rozpadu (podane czasy są fizycznymi okresami półrozpadu radionuklidów) [3]. Rys.6. Schematyczne przedstawienie przemieszczania się tzw. radonu materiałowego wewnątrz budynku [9]. Na rys. 6 przedstawiono w sposób poglądowy schemat przemieszczania się tzw. radonu materiałowego wewnątrz obiektu kubaturowego [9]. Podobnie zresztą, zachowuje się tzw. radon gruntowy. Produkty rozpadu radonu Rn-222 jak wiadomo, są izotopami ciał stałych. Jądro atomu w chwili powstania izotopu macierzystego ma ładunek elektryczny, dlatego też szybko (w ciągu ok. 1 s) reaguje z cząstkami gazu oraz parą wodną znajdującą się w powietrzu pomieszczeń. Tworzą się wówczas małe cząstki zwane klasterami (- grona). Ich średnica wynosi od 0,5 do ok. 5,0 nm. W ciągu następnych kilku (kilkudziesięciu) sekund wolne izotopy przyczepiają się do tzw. aerozoli atmosferycznych (gazu, pyłu, zarodników grzybów, itp.), tworząc aerozole promieniotwórcze z pochodnymi radonu rys. 7, [12]. Prawdopodobieństwo łączenia się produktów rozpadu radonu z aerozolem, zależy w dużej mierze od jego średnicy [12]. Rys.7. Podstawowe procesy zachodzące w atmosferze z produktami rozpadu radonu [12].
5 Toksyczność promieniotwórcza. Omawiane aerozole promieniotwórcze, wdychane do organizmów w tym i ludzi, mogą być przyczyną chorób nowotworowych płuc [12]. Na rys. 8 zaprezentowano uogólniony model odpowiedzi biologicznej na czynniki fizyczne i chemiczne [13]. Linią przerywaną przedstawiono zależność liniową bezprogową; linią ciągłą przedstawiono tzw. hormetyczną zależność dawka skutek. Rys.8. Uogólniony model odpowiedzi biologicznej na czynniki fizyczne i chemiczne [13]. Gdzie: deficyt czynnika dawka mniejsza od D powoduje wyraźne objawy niedoboru. Dawki małe pomiędzy D i T poprawiają stan zdrowia. Dawki wyższe od T wywodują skutki szkodliwe. Z kolei N oznacza średnią dawkę naturalnego promieniowania jonizującego. Wpływ oddziaływań długotrwałych, małych dawek promieniowania jonizującego na organizm ludzki nie został jeszcze rozpoznany w sposób jednoznaczny i wiarygodny. Zależy on jednak w dużej mierze od własności subiektywnych organizmu człowieka oraz od długości czasu ekspozycji promieniowania. Do rozpowszechnienia irracjonalnego lęku przed promieniowaniem jonizującym, najbardziej przyczyniła się tzw. hipoteza liniowa, w której przyjmuje się wysoką korelację liniową między dawką otrzymaną a ubocznymi efektami biologicznymi [13]. Hipoteza ta ekstrapoluje wyniki badań epidemiologicznych ludności Hiroszimy i Nagasaki napromieniowanej dużymi dawkami do dawki zerowej. Zgodnie z tą hipotezą zależność między dawką otrzymaną a skutkiem ma postać liniową i nawet najmniejsza dawka (bliska zerowej), zawsze przynosi szkodę organizmom żywym. Hipoteza ta zakłada, iż nie istnieje żaden próg, poniżej którego przestają występować skutki, jakie obserwuje się po otrzymaniu wielkich dawek [13]. Przyjmuje się przy tym, że efekty popromienne są tylko i wyłącznie szkodliwe (np. uszkodzenia genetyczne), a otrzymane małe dawki promieniowania powodują także tylko skutki negatywne. Hipoteza liniowa jest całkowicie sprzeczna ze zjawiskiem tzw. hormezy, tzn. z występowaniem skutków stymulujących i w pewnym zakresie pożytecznych dla organizmu przy małych dawkach czynnika, w przeciwieństwie do dużych dawek, które są szkodliwe [13]. Na zjawisko hormezy wskazują wyniki wielu badań in vitro, w których wykazano, iż ekspozycja na działanie czynnika genotoksycznego występującego w niewielkim stężeniu, bądź też napromienianie komórki małą dawką pobudza procesy naprawcze w komórce. Jeśli na tak pobudzoną komórkę zadziałać innym silnym czynnikiem genotoksycznym, to na ogół wywołuje on skutek znacznie słabszy od zakładanego [14]. Wynika to jednak dość często jak się wydaje z cech czysto osobniczych. Z zaprezentowanych tutaj pozycji literaturowych wynika również, iż inne czynniki wpływające na powstanie syndromu chorego budynku mogą w pewnym zakresie potęgować oddziaływanie radonu na organizmy żywe. Współdziałanie to może polegać na addytywnym lub też synergistycznym oddziaływaniu na wspomniane już organizmy żywe, w tym i człowieka. Dotyczy to także grzybów domowych i pleśniowych, oraz bakterii.
6 Podsumowanie. Człowiek od początku swego istnienia był narażony na przyjmowanie pewnych dawek promieniowania pochodzącego zarówno z ziemskiego promieniowania tła, jak również z promieniowania kosmicznego, ale do tych dawek organizm ludzki zdążył się przystosować i w pewnym sensie są one dla niego konieczne (rola bakteriobójcza i stymulująca promieniowania). Zaobserwowana w minionym stuleciu zmiana sposobu bycia, spędzania 80% czasu w pomieszczeniach zamkniętych, a także zwiększenie ilości źródeł promieniowania (tak naturalnych jak i sztucznych) może wpłynąć na takie zmiany ekspozycyjne człowieka, że przekroczą one jego zdolności adaptacyjne. Wskutek tego promieniowanie może spowodować poważne szkody w organizmie, a naświetlony organizm nie zdaje sobie z tego sprawy. Rodzaj i rozmiar objawów wywołanych przez promieniowanie zależą od rodzaju promieniowania i od głębokości wnikania, a także od wielkości powierzchni ciała, na które działa promieniowanie oraz czasu jego trwania. Ważna jest także tzw. odporność osobnicza. Bibliografia. 1. Mikoś J.: Budownictwo ekologiczne. Wydawnictwo Politechniki Śląskiej. Gliwice, 2000r Rubin J.A.: Zagrożenie radonem. Kalejdoskop Budowlany 6, czerwiec 2004r. 4. Praca zbiorowa pod redakcją J. Ważnego & J. Karysia: Ochrona budynków przed korozją biologiczna. Arkady. Warszawa, 2001r. 5. Promieniotwórczy radon. Seria: Ochrona przed promieniowaniem ; zeszyt 5. Wydano na zlecenie Departamentu Szkolenia i Informacji Społecznej Państwowej Agencji Atomistyki. Warszawa, 1993r. 6. Brunarski L., Krawczyk M.: Promieniotwórczość naturalna w budynkach. XL Konferencja Naukowa Komitetu Inżynierii Lądowej i Wodnej PAN i Komitetu Nauki PZITB. Krynica, 1994r. 7. Wysocka M.: Radon w domach na terenie Górnośląskiego Okręgu Węglowego. Konferencja Naukowo Szkoleniowa na temat: Naturalna promieniotwórczość w środowisku. GIG. Katowice, luty 1996r. 8. Brunarski L.: Promieniotwórczość naturalna wyrobów budowlanych. SBPB. Warszawa, 1997r. 9. Handbook of RADON in buildings: Detection, Safety, and Control. Mueller Associates, Inc. SYSCON Corporation. Brookhaven National Laboratory. New York 1988 London. 10. Mamont Cieśla K.: Radon w mieszkaniach. Przegląd Budowlany, 7/ Brunarski L., Krawczyk M.: Metody zabezpieczeń mieszkańców przed zagrożeniem radonowym. Konferencja Naukowo Szkoleniowa na temat: Naturalna promieniotwórczość w środowisku. GIG. Katowice, luty 1996r. 12. Plewa M., Plewa St.: Radon w środowisku naturalnym i jego migracja do budynków mieszkalnych. Wydawnictwo Naukowe DWN; Wydawnictwo Oddziału PAN. Kraków, 1999r. 13. Jaworowski Zb.: Dobroczynne promieniowanie. Wiedza i Życie, 3/ Cebulska Wasilewska A.: Skutki biologiczne ekspozycji na radon i produkty jego rozpadu. XVII Szkoła Jesienna Polskiego Towarzystwa Badań Radiacyjnych im. Marii Skłodowskiej Curie. Zakopane, 1997r.
Promieniowanie w naszych domach. I. Skwira-Chalot
Promieniowanie w naszych domach I. Skwira-Chalot Co to jest promieniowanie jonizujące? + jądro elektron Rodzaje promieniowania jonizującego Przenikalność promieniowania L. Dobrzyński, E. Droste, W. Trojanowski,
Zagrożenia naturalnymi źródłami promieniowania jonizującego w przemyśle wydobywczym. Praca zbiorowa pod redakcją Jana Skowronka
Zagrożenia naturalnymi źródłami promieniowania jonizującego w przemyśle wydobywczym Praca zbiorowa pod redakcją Jana Skowronka GŁÓWNY INSTYTUT GÓRNICTWA Katowice 2007 SPIS TREŚCI WPROWADZENIE (J. SKOWRONEK)...
PROMIENIOWANIE NATURALNE W ŚRODOWISKU MIESZKALNYM CZŁOWIEKA
ARCHITEKTURA I TECHNIKA A ZDROWIE 105 Jan Antoni RUBIN *) PROMIENIOWANIE NATURALNE W ŚRODOWISKU MIESZKALNYM CZŁOWIEKA Streszczenie. Promieniowanie naturalne to istotny czynnik kształtujący środowisko mieszkalne
Wyższy Urząd Górniczy. Zagrożenie radiacyjne w podziemnych wyrobiskach górniczych
Wyższy Urząd Górniczy Zagrożenie radiacyjne w podziemnych wyrobiskach górniczych Zagrożenie radiacyjne w podziemnych wyrobiskach górniczych Katowice 2011 Copyright by Wyższy Urząd Górniczy, Katowice 2011
Człowiek nie może za pomocą zmysłów wykryć obecności radonu. Wiadomo jednak że gromadzi się on w pomieszczeniach zamkniętych, w których przebywamy.
Człowiek nie może za pomocą zmysłów wykryć obecności radonu. Wiadomo jednak że gromadzi się on w pomieszczeniach zamkniętych, w których przebywamy. Starajmy się więc zmniejszyć koncentrację promieniotwórczego
Promieniowanie w środowisku człowieka
Promieniowanie w środowisku człowieka Jeżeli przyjrzymy się szczegółom mapy nuklidów zauważymy istniejące w przyrodzie w stosunkowo dużych ilościach nuklidy nietrwałe. Ich czasy zaniku są duże, większe
Pierwiastki promieniotwórcze w materiałach budowlanych
Pierwiastki promieniotwórcze w materiałach budowlanych XVII Konferencja Inspektorów Ochrony Radiologicznej Skorzęcin 11-14.06.2014 dr Wiesław Gorączko Politechnika Poznańska Inspektor Ochrony Radiologicznej
Co nowego w dozymetrii? Dozymetria radonu
Co nowego w dozymetrii? Dozymetria radonu mgr inż. Zuzanna Podgórska podgorska@clor.waw.pl Laboratorium Wzorcowania Przyrządów Dozymetrycznych i Radonowych Zakład Kontroli Dawek i Wzorcowania Wstęp 1898
Zadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α
Zadanie: 1 (2 pkt) Określ liczbę atomową pierwiastka powstającego w wyniku rozpadów promieniotwórczych izotopu radu 223 88Ra, w czasie których emitowane są 4 cząstki α i 2 cząstki β. Podaj symbol tego
POMIARY RADONOWE W WYBRANYCH BUDYNKACH MIESZKALNYCH POWIATU RYBNICKIEGO
SBS syndrom chorych budynków Jan Antoni Rubin Politechnika Śląska, Gliwice Polskie Towarzystwo Badań Radiacyjnych Polskie Stowarzyszenie Mykologów Budownictwa, Koło Śląskie Małgorzata Wysocka Główny Instytut
1. Wstęp. Z prasy. Encyklopedia medyczna. Autor: Hayk Hovhannisyan. Tytuł: Badanie transportu radonu w ośrodku porowatym na stanowisku laboratoryjnym
1. Wstęp Radon cichy zabójca, niewidzialny przenikający do naszych domów. Z prasy Radonoterapia sposób leczenia wielu chorób za pomocą ekspozycji radonu lub radonowych wód. Encyklopedia medyczna Temat
Spis treści. Trwałość jądra atomowego. Okres połowicznego rozpadu
Spis treści 1 Trwałość jądra atomowego 2 Okres połowicznego rozpadu 3 Typy przemian jądrowych 4 Reguła przesunięć Fajansa-Soddy ego 5 Szeregi promieniotwórcze 6 Typy reakcji jądrowych 7 Przykłady prostych
przyziemnych warstwach atmosfery.
Źródła a promieniowania jądrowego j w przyziemnych warstwach atmosfery. Pomiar radioaktywności w powietrzu w Lublinie. Jan Wawryszczuk Radosław Zaleski Lokalizacja monitora skażeń promieniotwórczych rczych
METODY DETEKCJI PROMIENIOWANIA JĄDROWEGO 3
METODY DETEKCJI PROMIENIOWANIA JĄDROWEGO 3 ENERGETYKA JĄDROWA KONWENCJONALNA (Rozszczepienie fision) n + Z Z 2 A A A2 Z X Y + Y + m n + Q A ~ 240; A =A 2 =20 2 E w MeV / nukl. Q 200 MeV A ENERGETYKA TERMOJĄDROWA
SUBSTANCJE PROMIENIOTWÓRCZE. SKAŻENIA I ZAKAŻENIA.
SUBSTANCJE PROMIENIOTWÓRCZE. SKAŻENIA I ZAKAŻENIA. EDUKACJA DLA BEZPIECZEŃSTWA Pamiętaj!!! Tekst podkreślony lub wytłuszczony jest do zapamiętania Opracował: mgr Mirosław Chorąży Promieniotwórczość (radioaktywność)
SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego
SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW Szacowanie pochłoniętej energii promieniowania jonizującego W celu analizy narażenia na promieniowanie osoby, której podano radiofarmaceutyk, posłużymy się
I ,11-1, 1, C, , 1, C
Materiał powtórzeniowy - budowa atomu - cząstki elementarne, izotopy, promieniotwórczość naturalna, okres półtrwania, średnia masa atomowa z przykładowymi zadaniami I. Cząstki elementarne atomu 1. Elektrony
Pomiar stężenia radonu i jego pochodnych w powietrzu atmosferycznym
Wydział Fizyki PW - Laboratorium Fizyki i Techniki Jądrowej Pomiar stężenia radonu i jego pochodnych w powietrzu atmosferycznym Kalina Mamont-Cieśla 1, Magdalena Piekarz 1, Jan Pluta 2 -----------------------------------------------------------------
OCHRONA RADIOLOGICZNA PACJENTA. Promieniotwórczość
OCHRONA RADIOLOGICZNA PACJENTA Promieniotwórczość PROMIENIOTWÓRCZOŚĆ (radioaktywność) zjawisko samorzutnego rozpadu jąder atomowych niektórych izotopów, któremu towarzyszy wysyłanie promieniowania α, β,
Promieniowanie jonizujące
Ergonomia przemysłowa Promieniowanie jonizujące Wykonali: Katarzyna Bogdańska Rafał Pećka Maciej Nowak Krzysztof Sankiewicz Promieniowanie jonizujące Promieniowanie jonizujące to promieniowanie korpuskularne
Czynniki chemiczne rakotwórcze
Czynniki chemiczne rakotwórcze Materiał szkoleniowo- dydaktyczny opracowała: Magdalena Kozik - starszy specjalista ds. BHP Czynniki chemiczne to pierwiastki chemiczne i ich związki w takim stanie, w jakim
Dawki promieniowania jądrowego
FOTON 112, Wiosna 2011 9 Dawki promieniowania jądrowego Paweł Moskal Instytut Fizyki UJ I. Przykłady promieniowania jądrowego Promieniowanie jądrowe są to cząstki wylatujące z jąder atomowych na skutek
1. JĄDROWA BUDOWA ATOMU. A1 - POZIOM PODSTAWOWY.
. JĄDROWA BUDOWA ATOMU. A - POIOM PODSTAWOWY. Na początek - przeczytaj uważnie tekst i wykonaj zawarte pod nim polecenia.. Dwie reakcje jądrowe zachodzące w górnych warstwach atmosfery: N + n C + p N +
P R O M I E N I O T W Ó R C Z OŚĆ NATURALNA WYBRANYCH MATERIAŁÓW BUDOWLANYCH
P R O M I E N I O T W Ó R C Z OŚĆ NATURALNA WYBRANYCH MATERIAŁÓW BUDOWLANYCH RUBIN Jan Antoni ŚLUSAREK Jan Mgr inż. Jan Antoni RUBIN Asystent w Katedrze Procesów Budowlanych Politechniki Śląskiej w Gliwicach.
THESSLAGREEN. Wentylacja z odzyskiem ciepła. Kraków, 10 Października 2016
Wentylacja z odzyskiem ciepła Kraków, 10 Października 2016 Czym jest wentylacja? Usuwanie zanieczyszczeń powietrza z budynku Zapewnienie jakości powietrza w budynku Współczesny człowiek 90% życia spędza
http://isieko.jeleniagora.pl/inne.php?pages_id=613. Promieniowanie jonizujące.
http://isieko.jeleniagora.pl/inne.php?pages_id=613. Promieniowanie jonizujące. W rejonie Sudetów zauważa się wyraźne, dodatnie anomalie geochemiczne zawartości w podłożu naturalnych pierwiastków radioaktywnych.
"Zagrożenia biologiczne w budynku" Autor: Bronisław Zyska. Rok wydania: Miejsce wydania: Warszawa
"Zagrożenia biologiczne w budynku" Autor: Bronisław Zyska Rok wydania: 1999 Miejsce wydania: Warszawa Wyczerpujący opis zagrożeń biologicznych w obiektach budowlanych i sposobów zapobiegania im. Książka
Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r.
Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r. 1 Budowa jądra atomowego Liczba atomowa =Z+N Liczba masowa Liczba neutronów Izotopy Jądra o jednakowej liczbie protonów, różniące się liczbą
DAWKA SKUTECZNA I EKWIWALENTNA A RYZYKO RADIACYJNE. EFEKTY STOCHASTYCZNE I DETERMINISTYCZNE. Magdalena Łukowiak
DAWKA SKUTECZNA I EKWIWALENTNA A RYZYKO RADIACYJNE. EFEKTY STOCHASTYCZNE I DETERMINISTYCZNE. Magdalena Łukowiak Równoważnik dawki. Równoważnik dawki pochłoniętej, biologiczny równoważnik dawki, dawka równoważna
Wyznaczanie promieniowania radonu
Wyznaczanie promieniowania radonu Urszula Kaźmierczak 1. Cele ćwiczenia Zapoznanie się z prawem rozpadu promieniotwórczego, Pomiar aktywności radonu i produktów jego rozpadu w powietrzu.. Źródła promieniowania
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład IV Krzysztof Golec-Biernat Promieniotwórczość naturalna Uniwersytet Rzeszowski, 22 listopada 2017 Wykład IV Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 21 Reakcja
Promieniotwórczość NATURALNA
Promieniotwórczość NATURALNA Badając świecenie różnych substancji, zauważyłem, że wszystkie związki uranu wysyłają promieniowanie przenikające przez czarny papier i inne osłony oraz powodują naświetlenie
Ochrona przed promieniowaniem jonizującym. Źródła promieniowania jonizującego. Naturalne promieniowanie tła. dr n. med.
Ochrona przed promieniowaniem jonizującym dr n. med. Jolanta Meller Źródła promieniowania jonizującego Promieniowanie stosowane w celach medycznych Zastosowania w przemyśle Promieniowanie związane z badaniami
Identyfikacja źródeł emisji pyłu przy pomocy radioaktywnego izotopu ołowiu 210 Pb
Identyfikacja źródeł emisji pyłu przy pomocy radioaktywnego izotopu ołowiu 210 Pb Grant KBN nr 3 T09D 025 29 Metoda oceny udziału dużych źródeł energetycznych w poziomie stężeń pyłu z wykorzystaniem naturalnych
*)
148 dr inż. Jan Antoni Rubin *) Katedra Procesów Budowlanych Wydział Budownictwa Politechnika Śląska w Gliwicach mgr inż. Przemysław Smalec Zabrzańskie Centrum Kształcenia Ogólnego i Zawodowego Promieniotwórczość
I N F O R M A C J A O S T A N I E O C H R O N Y R A D I O L O G I C Z N E J K R A J O W E G O W R O K U
I N F O R M A C J A O S T A N I E O C H R O N Y R A D I O L O G I C Z N E J K R A J O W E G O S K Ł A D O W I S K A O D P A D Ó W P R O M I E N I O T W Ó R C Z Y C H W 2 0 1 8 R O K U Zgodnie z artykułem
Laboratorium Fizyki i Techniki Jądrowej
Laboratorium Fizyki i Techniki Jądrowej Radon 2: Pomiary zawartości radonu Rn-222 w próbkach wody Opracowanie: mgr inż. Zuzanna Podgórska, podgorska@clor.waw.pl Miejsce wykonania ćwiczenia: Zakład Kontroli
P O L I T E C H N I K A W R O C Ł A W S K A
P O L I T E C H N I K A W R O C Ł A W S K A Wydział Chemiczny, Zakład Metalurgii Chemicznej Chemia Środowiska Laboratorium RADIOAKTYWNOŚĆ W BUDYNKACH CEL ĆWICZENIA : Wyznaczanie pola promieniowania jonizującego
Smog groźny nie tylko zimą
Smog groźny nie tylko zimą Latem, gdy temperatury oscylują w okolicy 30 C, a prędkość wiatru nie przekracza 2 m/s, szczególnie nad dużymi miastami może pojawić się brunatna mgła. To smog fotochemiczny.
Niebezpieczne substancje. Maj 2015 r.
Maj 2015 r. ? Na jakie obciążenia i zanieczyszczenia narażone są płuca podczas pracy? Jaki wpływ mają na nas różnego rodzaju obciążenia i zanieczyszczenia?? 2 10 Co stanowi potencjalne zagrożenie? Aerozole
Niska emisja SPOTKANIE INFORMACYJNE GMINA RABA WYŻNA
Niska emisja SPOTKANIE INFORMACYJNE GMINA RABA WYŻNA Obniżenie emisji dwutlenku węgla w Gminie Raba Wyżna poprzez wymianę kotłów opalanych biomasą, paliwem gazowym oraz węglem Prowadzący: Tomasz Lis Małopolska
ZMIANA POSZYCIA DACHOWEGO NA BUDYNKU USŁUGOWO - MIESZKALNYM
Biuro Obsługi Inwestycji Projektowanie i Nadzór mgr inż. Piotr Sławiński ul. Adama Asnyka 28 22-200 Włodawa tel. kom.: (+48) 514272679 ZMIANA POSZYCIA DACHOWEGO NA BUDYNKU USŁUGOWO - MIESZKALNYM Inwestor:
Zadanie 2. (1 pkt) Jądro izotopu U zawiera A. 235 neutronów. B. 327 nukleonów. C. 143 neutrony. D. 92 nukleony
Zadanie 1. (1 pkt) W jednym z naturalnych szeregów promieniotwórczych występują m.in. trzy izotopy polonu, których okresy półtrwania podano w nawiasach: Po-218 (T 1/2 = 3,1minuty), Po-214 (T 1/2 = 0,0016
Dane o jakości powietrza w Katowicach. Spotkanie informacyjno-szkoleniowe r.
Dane o jakości powietrza w Katowicach Spotkanie informacyjno-szkoleniowe 14.12.2016 r. Dane o jakości powietrza w Katowicach 1. Powiadomienia o jakości powietrza - WIOŚ 2. Poziomy graniczne 3. Poziomy
Reakcje rozpadu jądra atomowego
Reakcje rozpadu jądra atomowego O P R A C O W A N I E : P A W E Ł Z A B O R O W S K I K O N S U L T A C J A M E R Y T O R Y C Z N A : M A Ł G O R Z A T A L E C H Trwałość izotopów Czynnikiem decydującym
dr Natalia Targosz-Ślęczka Uniwersytet Szczeciński Wydział Matematyczno-Fizyczny Wpływ promieniowania jonizującego na materię ożywioną
Uniwersytet Szczeciński Wydział Matematyczno-Fizyczny na materię ożywioną Promieniowanie Promieniowanie to proces, w wyniku którego emitowana jest energia przy pomocy cząstek lub fal Promieniowanie może
WZÓR INFORMACJA O SUBSTANCJACH CHEMICZNYCH, ICH MIESZANINACH, CZYNNIKACH LUB PROCESACH TECHNOLOGICZNYCH O DZIAŁANIU RAKOTWÓRCZYM LUB MUTAGENNYM
ZAŁĄCZNIK Nr 2 do rozporządzenia Ministra Zdrowia z dnia 24.07.2012r. w sprawie substancji chemicznych, ich mieszanin, czynników lub procesów technologicznych o działaniu rakotwórczym lub mutagennym (Dz.
WZÓR INFORMACJA O SUBSTANCJACH CHEMICZNYCH, ICH MIESZANINACH, CZYNNIKACH LUB PROCESACH TECHNOLOGICZNYCH O DZIAŁANIU RAKOTWÓRCZYM LUB MUTAGENNYM
WZÓR INFORMACJA O SUBSTANCJACH CHEMICZNYCH, ICH MIESZANINACH, CZYNNIKACH LUB PROCESACH TECHNOLOGICZNYCH O DZIAŁANIU RAKOTWÓRCZYM LUB MUTAGENNYM I CZĘŚĆ OGÓLNA A. DANE IDENTYFIKACYJNE 1. Nazwa pracodawcy:.........
doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)
1 doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) Ilość protonów w jądrze określa liczba atomowa Z Ilość
Zagrożenia na stanowisku pracy i dobór środków ochrony indywidualnej ochrona oczu (cz. 1)
Zagrożenia na stanowisku pracy i dobór środków ochrony indywidualnej ochrona oczu (cz. 1) Źródła i rodzaje zagrożeń oczu Najczęstsze źródła i rodzaje zagrożeń oczu, które występują na stanowisku pracy.
INFORMACJA O SUBSTANCJACH, PREPARATACH, CZYNNIKACH LUB PROCESACH TECHNOLOGICZNYCH O DZIAŁANIU RAKOTWÓRCZYM LUB MUTAGENNYM
Załącznik nr 2 do Rozporządzenia Ministra Zdrowia z dnia 01.12.2004r. (Dz. U. Nr 280, poz. 2771 ze zm.) INFORMACJA O SUBSTANCJACH, PREPARATACH, CZYNNIKACH LUB PROCESACH TECHNOLOGICZNYCH O DZIAŁANIU RAKOTWÓRCZYM
1. Co to jest promieniowanie jonizujące 2. Źródła promieniowania jonizującego 3. Najczęściej spotykane rodzaje promieniowania jonizującego 4.
1. Co to jest promieniowanie jonizujące 2. Źródła promieniowania jonizującego 3. Najczęściej spotykane rodzaje promieniowania jonizującego 4. Przenikanie promieniowania α, β, γ, X i neutrony 5. Krótka
Poziom nieco zaawansowany Wykład 2
W2Z Poziom nieco zaawansowany Wykład 2 Witold Bekas SGGW Promieniotwórczość Henri Becquerel - 1896, Paryż, Sorbona badania nad solami uranu, odkrycie promieniotwórczości Maria Skłodowska-Curie, Piotr Curie
INFORMACJA O SUBSTANCJACH CHEMICZNYCH, ICH MIESZANIANACH, CZYNNIKACH LUB PROCESACH TECHNOLOGICZNYCH O DZIAŁANIU RAKOTWÓRCZYM LUB MUTAGENNYM
INFORMACJA O SUBSTANCJACH CHEMICZNYCH, ICH MIESZANIANACH, CZYNNIKACH LUB PROCESACH TECHNOLOGICZNYCH O DZIAŁANIU RAKOTWÓRCZYM LUB MUTAGENNYM I. CZĘŚĆ OGÓLNA A. DANE IDENTYFIKACYJNE 1. Nazwa pracodawcy:
Prawo rozpadu promieniotwórczego. Metoda datowania izotopowego.
Prawo rozpadu promieniotwórczego. Metoda datowania izotopowego. Prawo rozpadu promieniotwórczego. Rodzaje promieniowania PROMIENIOWANIE ŁADUNEK ELEKTRYCZNY MASA CECHY CHARAKTERYSTYCZNE alfa +2e 4u beta
Reakcje jądrowe dr inż. Romuald Kędzierski
Reakcje jądrowe dr inż. Romuald Kędzierski Wybuch bomby Ivy Mike (fot. National Nuclear Security Administration/Nevada Site Office, domena publiczna) Przemiany jądrowe 1. Spontaniczne (niewymuszone) związane
E K S H A L A C J A R A D O N U Z GIPSOBETONÓW LEKKICH DROBNOKRUSZYWOWYCH
Prace Naukowe Instytutu Budownictwa Nr 75 Politechniki Wrocławskiej Nr 75 Konferencje Nr 26 1999 Kruszywa lekkie, gipsobetony, promieniotwórczość naturalna, radon. Jan Antoni RUBIN * Tadeusz ZAKRZEWSKI
INFORMACJA O SUBSTANCJACH CHEMICZNYCH, ICH MIESZANINACH, CZYNNIKACH LUB PROCESACH TECHNOLOGICZNYCH O DZIAŁANIU RAKOTWÓRCZYM LUB MUTAGENNYM
ZAŁĄCZNIK Nr 2 do rozporządzenia Ministra Zdrowia z dnia 24 lipca 2012r. w sprawie substancji chemicznych, ich mieszanin, czynników lub procesów technologicznych o działaniu rakotwórczym lub mutagennym
Instrukcja do ćwiczeń laboratoryjnych
UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedra Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 4 i 5 OCENA EKOTOKSYCZNOŚCI TEORIA Chemia zanieczyszczeń środowiska
Substancje radioaktywne w środowisku lądowym
KRAKÓW 2007 Substancje radioaktywne w środowisku lądowym Andrzej Komosa Zakład Radiochemii i Chemii Koloidów UMCS Lublin Radioizotopy w środowisku Radioizotopy pierwotne, istniejące od chwili powstania
Jakie jest jego znaczenie? Przykładowe zwroty określające środki ostrożności Jakie jest jego znaczenie?
Zawiera gaz pod ciśnieniem; ogrzanie grozi wybuchem. Zawiera schłodzony gaz; może spowodować oparzenia kriogeniczne lub obrażenia. Chronić przed światłem słonecznym Nosić rękawice izolujące od zimna/maski
Rozpady promieniotwórcze
Rozpady promieniotwórcze Przez rozpady promieniotwórcze rozumie się spontaniczne procesy, w których niestabilne jądra atomowe przekształcają się w inne jądra atomowe i emitują specyficzne promieniowanie
INFORMACJA O STANIE OCHRONY RADIOLOGICZNEJ KRAJOWEGO SKŁADOWISKA ODPADÓW PROMIENIOTWÓRCZYCH W 2016 ROKU
INFORMACJA O STANIE OCHRONY RADIOLOGICZNEJ KRAJOWEGO SKŁADOWISKA ODPADÓW PROMIENIOTWÓRCZYCH W 2016 ROKU Zgodnie z artykułem 55c ust. 2 ustawy Prawo atomowe (Dz. U. 2014 poz. 1512) Dyrektor Zakładu Unieszkodliwiania
Program szkolenia dla osób ubiegających się o nadanie uprawnień Inspektora Ochrony Radiologicznej
Program szkolenia dla osób ubiegających się o nadanie uprawnień Inspektora Ochrony Radiologicznej - RMZ z dnia 21 grudnia 2012 r. (DZ. U. z 2012 r. poz. 1534) Lp. Zakres tematyczny 1. Podstawowe pojęcia
Autorzy: Zbigniew Kąkol, Piotr Morawski
Rodzaje rozpadów jądrowych Autorzy: Zbigniew Kąkol, Piotr Morawski Rozpady jądrowe zachodzą zawsze (prędzej czy później) jeśli jądro o pewnej liczbie nukleonów znajdzie się w stanie energetycznym, nie
OCHRONA RADIOLOGICZNA 2. Osłony. Jakub Ośko
OCHRONA RADIOLOGICZNA 2 Osłony Jakub Ośko Osłabianie promieniowania elektromagnetycznego 2 Pochłanianie i rozpraszanie promieniowania elektromagmetycznego droga, jaką przebywają fotony w danym materiale
Zadanie 2. Środowiskowe zagrożenia zdrowia dzieci
. Środowiskowe zagrożenia zdrowia dzieci Instytut Ekologii Terenów Uprzemysłowionych w Katowicach (IETU), Główny Instytut Górnictwa w Katowicach (GIG) Instytut Podstaw Inżynierii Środowiska w Zabrzu (IPIŚ
WYZNACZANIE PROMIENIOWANIA RADONU Instrukcja dla uczniów szkół ponadpodstawowych
WYZNACZANIE PROMIENIOWANIA RADONU Instrukcja dla uczniów szkół ponadpodstawowych WSTĘP I. ROZPAD PROMIENIOTWÓRCZY I RODZAJE PROMIENIOWANIA JĄDROWEGO Rozpadem promieniotwórczym (przemianą promieniotwórczą)
H200 Materiały wybuchowe niestabilne. H201 Materiał wybuchowy; zagrożenie wybuchem masowym. H202
http://www.msds-europe.com H200 Materiały wybuchowe niestabilne. H201 Materiał wybuchowy; zagrożenie wybuchem masowym. H202 Materiał wybuchowy, poważne zagrożenie rozrzutem. H203 Materiał wybuchowy; zagrożenie
PROBLEMY JAKOŚCI ZDROWOTNEJ ŚRODOWISKA POMIESZCZEŃ MIESZKALNYCH I BIUROWYCH *
PROBLEMY JAKOŚCI ZDROWOTNEJ ŚRODOWISKA POMIESZCZEŃ MIESZKALNYCH I BIUROWYCH * Dr Józef S. Pastuszka Instytut Medycyny Pracy i Zdrowia Środowiskowego, Sosnowiec Aktualnie wciąż rośnie liczba ludzi na świecie,
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład IV Oddziaływanie promieniowania jonizującego z materią Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 26 kwietnia 2017 Wykład IV Oddziaływanie promieniowania jonizującego
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład II Promieniotwórczość Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 8 marca 2017 Wykład II Promieniotwórczość Promieniowanie jonizujące 1 / 22 Jądra pomieniotwórcze Nuklidy
Temat: Higiena i choroby układu oddechowego.
Temat: Higiena i choroby układu oddechowego. 1. Sprawność układu oddechowego - ważnym czynnikiem zdrowotnym. a) zanieczyszczenia powietrza Pyły miedzi, aluminium, żelaza, ołowiu, piaskowe, węglowe, azbestowe,
Szczegółowy zakres szkolenia wymagany dla osób ubiegających się o nadanie uprawnień inspektora ochrony radiologicznej
Załącznik nr 1 Szczegółowy zakres szkolenia wymagany dla osób ubiegających się o nadanie uprawnień inspektora ochrony radiologicznej Lp. Zakres tematyczny (forma zajęć: wykład W / ćwiczenia obliczeniowe
INFORMACJA O SUBSTANCJACH, PREPARATACH, CZYNNIKACH LUB PROCESACH TECHNOLOGICZNYCH O DZIAŁANIU RAKOTWÓRCZYM LUB MUTAGENNYM
INFORMACJA O SUBSTANCJACH, PREPARATACH, CZYNNIKACH LUB PROCESACH TECHNOLOGICZNYCH O DZIAŁANIU RAKOTWÓRCZYM LUB MUTAGENNYM A. DANE IDENTYFIKACYJNE 1. Nazwa pracodawcy: 2. NIP: 3. Województwo: Warmińsko-Mazurskie
Promieniotwórczość naturalna. Jądro atomu i jego budowa.
Promieniotwórczość naturalna. Jądro atomu i jego budowa. Doświadczenie Rutherforda (1909). Polegało na bombardowaniu złotej folii strumieniem cząstek alfa (jąder helu) i obserwacji odchyleń ich toru ruchu.
II. Promieniowanie jonizujące
I. Wstęp Zgodnie z obowiązującym prawem osoba przystępująca do pracy w warunkach narażenia na promieniowanie jonizujące powinna być do tego odpowiednio przygotowana, czyli posiadać, miedzy innymi, niezbędną
SCENARIUSZ LEKCJI FIZYKI Z WYKORZYSTANIEM FILMU OSWOIĆ PROMIENIOTWÓRCZOŚĆ.
SCENARIUSZ LEKCJI FIZYKI Z WYKORZYSTANIEM FILMU OSWOIĆ PROMIENIOTWÓRCZOŚĆ. SPIS TREŚCI: I. Wprowadzenie. II. Części lekcji. 1. Część wstępna. 2. Część realizacji. 3. Część podsumowująca. III. Karty pracy.
CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra
CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna Model atomu Bohra SPIS TREŚCI: 1. Modele budowy atomu Thomsona, Rutherforda i Bohra 2. Budowa atomu 3. Liczba atomowa a liczba
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład II Krzysztof Golec-Biernat Promieniotwórczość Uniwersytet Rzeszowski, 18 października 2017 Wykład II Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 23 Jądra pomieniotwórcze
BADANIE ZAWARTOŚCI RADONU W POWIETRZU Instrukcja dla studenta J 5 -J 8
Ćwiczenie BADANIE ZAWARTOŚCI RADONU W POWIETRZU Instrukcja dla studenta J 5 -J 8 I. WSTĘP W skorupie ziemskiej znajduje się promieniotwórczy uran-238 ( 238 U), wytworzony wiele miliardów lat temu. Przetrwał
Radon w powietrzu. Marcin Polkowski 10 marca Wstęp teoretyczny 1. 2 Przyrządy pomiarowe 2. 3 Prędkość pompowania 2
Radon w powietrzu Marcin Polkowski marcin@polkowski.eu 10 marca 2008 Streszczenie Celem ćwiczenia był pomiar stężenia 222 Rn i produktów jego rozpadu w powietrzu. Pośrednim celem ćwiczenia było również
dn dt Promieniotwórczość
Promieniotwórczość Zagadnienie promieniotwórczości związane jest z niestabilnością konstrukcji jąder niektórych atomów: jeśli proporcje nukleonów (tj. protonów (p) i neutronów (n)) są niewłaściwe, wówczas
IV. PROMIENIOTWÓRCZOŚĆ ŚRODOWISKA
IV. PROMIENIOTWÓRCZOŚĆ ŚRODOWISKA 4.1 Uwagi ogólne Rozwojowi naszego Wszechświata, a więc i Ziemi i organizmów na niej towarzyszyło zawsze promieniowanie elektromagnetyczne i korpuskularne; było i jest
Podstawy fizyki wykład 5
Podstawy fizyki wykład 5 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN,
INFORMACJA O SUBSTANCJACH CHEMICZNYCH, ICH MIESZANINACH, CZYNNIKACH LUB PROCESACH TECHNOLOGICZNYCH O DZIAŁANIU RAKOTWÓRCZYM LUB MUTAGENNYM
WZÓR 02 Jako przykład wybrano PRZYCHODNIĘ STOMATOLOGICZNĄ. Firma zatrudnia łącznie 7 ludzi, ale kontakt z czynnikiem rakotwórczym / mutagennym ma tylko 6 pracowników (2 panów i 4 panie). Są oni zatrudnieni
Oddziaływanie cząstek z materią
Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki
W Z Ó R. lub. wpisać tylko tego adresata, do którego kierowane jest pismo, 2. pracodawca sam decyduje, czy pismu nadaje znak, 3
W Z Ó R., dnia.. Miejscowość. Pieczęć nagłówkowa z nr Regon Wojewódzka Stacja Sanitarno-Epidemiologiczna ul. Mickiewicza 1 45-367 Opole lub Państwowa Inspekcja Pracy Okręgowy Inspektorat Pracy w Opolu
Wymagany zakres szkolenia dla osób ubiegających się o nadanie uprawnień
Dziennik Ustaw 5 Poz. 1534 Załącznik do rozporządzenia Ministra Zdrowia z dnia 21 grudnia 2012 r. (poz. 1534) Wymagany zakres szkolenia dla osób ubiegających się o nadanie uprawnień inspektora ochrony
Biologiczne skutki promieniowania
Biologiczne skutki promieniowania Promieniowanie padające na żywe organizmy powoduje podczas naświetlania te same efekty co przy oddziaływaniu z nieożywioną materią Skutki promieniowania mogą być jednak
tel./ kom./fax: 012 66 28 332 / 0 517 904 204 / 012 66 28 458; e-mail: radon@ifj.edu.pl; http:// radon.ifj.edu.pl RAPORT KOŃCOWY
INSTYTUT FIZYKI JĄDROWEJ im. Henryka Niewodniczańskiego POLSKIEJ AKADEMII NAUK LABORATORIUM EKSPERTYZ RADIOMETRYCZNYCH doświadczenie profesjonalizm solidność ul. E. Radzikowskiego 152, 31-342 KRAKÓW tel./
Legionella w instalacjach budynków
Wprowadzenie przepisów związanych z ograniczeniem potencjalnych zagrożeń epidemiologicznych wywoływanych przez bakterie Legionella stało się dla projektantów, służb epidemiologicznych i eksploatacyjnych
Barbara PIOTROWSKA, Krzysztof ISAJENKO, Marian FUJAK, Joanna SZYMCZYK, Maria KRAJEWSKA
17 BUDUJEMY DOM - OCENA PROMIENIOTWÓRCZOŚCI NATURALNEJ WYBRANYCH SUROWCÓW I MATERIAŁÓW BUDOWLANYCH We are building a house... evaluation of natural radioactivity of the selected raw and building materials
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład V Krzysztof Golec-Biernat Oddziaływanie promieniowania jonizującego z materią Uniwersytet Rzeszowski, 6 grudnia 2017 Wykład V Krzysztof Golec-Biernat Promieniowanie jonizujące
Monitoring i ocena środowiska
Monitoring i ocena środowiska Monika Roszkowska Łódź, dn. 12. 03. 2014r. Plan prezentacji: Źródła zanieczyszczeń Poziomy dopuszczalne Ocena jakości powietrza w Gdańsku, Gdyni i Sopocie Parametry normowane
Wstęp syndrom chorego budynku
Wstęp Wentylacja jest to wymiana powietrza, zwykle między pomieszczeniem a przestrzenią na zewnątrz. Prawidłowo działająca wentylacja jest niezbędna w pomieszczeniach, gdzie przebywają ludzie lub zwierzęta.
Witamy URBAN - EXPOSURE
Seminarium Demonstracyjne, Katowice,14 Listopada 2005 r. Witamy URBAN - EXPOSURE Janina Fudała Instytut Ekologii Terenów Uprzemysłowionych (IETU) Agenda Powitanie Wprowadzenie do Urban - Exposure Zadania
Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość
strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość Monika Gałkiewicz Zad. 1 () Przedstaw pełną konfigurację elektronową atomu pierwiastka
Radiobiologia, ochrona radiologiczna i dozymetria
Radiobiologia, ochrona radiologiczna i dozymetria 1. Metryczka Nazwa Wydziału: Program kształcenia (kierunek studiów, poziom i profil kształcenia, forma studiów, np. Zdrowie publiczne I stopnia profil
I N F O R M A C J A O S T A N I E O C H R O N Y R A D I O L O G I C Z N E J K R A J O W E G O W R O K U DSO
I N F O R M A C J A O S T A N I E O C H R O N Y R A D I O L O G I C Z N E J K R A J O W E G O S K Ł A D O W I S K A O D P A D Ó W P R O M I E N I O T W Ó R C Z Y C H W 2 0 1 7 R O K U DSO.613.3.2018 Zgodnie