dr Natalia Targosz-Ślęczka Uniwersytet Szczeciński Wydział Matematyczno-Fizyczny Wpływ promieniowania jonizującego na materię ożywioną

Wielkość: px
Rozpocząć pokaz od strony:

Download "dr Natalia Targosz-Ślęczka Uniwersytet Szczeciński Wydział Matematyczno-Fizyczny Wpływ promieniowania jonizującego na materię ożywioną"

Transkrypt

1 Uniwersytet Szczeciński Wydział Matematyczno-Fizyczny na materię ożywioną

2 Promieniowanie Promieniowanie to proces, w wyniku którego emitowana jest energia przy pomocy cząstek lub fal Promieniowanie może przyjąć formę np. dźwięku, ciepła czy światła Najczęściej nazwy promieniowanie używa się w przypadku promieniowania fal elektromagnetycznych, od fal radiowych, przez światło widzialne, aż do promieniowania gamma

3 Budowa atomu i jądra atomowego Atomy to małe składniki materii składające się z dodatnio naładowanego jądra (protony i neutrony) i otaczającej go chmury negatywnie naładowanych elektronów

4 Promieniowanie jonizujące i niejonizujące Promieniowanie dzielimy na jonizujące i niejonizujące w zależności od tego czy niesie wystarczająco dużą energię by wybić elektrony z atomów, z którymi oddziałuje lub by spowodować zerwanie wiązań chemicznych w molekułach

5 Promieniowanie niejonizujące Z a g r o ż e n i e w y n i k a j ą c e z p r o m i e n i o w a n i a niejonizującego w oddziaływaniu z materią ożywioną jest związane jedynie z energią w postaci ciepła, które jest przekazywane materii Jest to proces dzięki któremu przyrządzamy posiłki za pomocą mikrofalówek Światło ultrafioletowe (UV) jest wyjątkowe, gdyż mimo, że nie ma właściwości jonizujących, to może powodować efekty podobne do tych, które powoduje promieniowanie jonizujące, np. wzrost ryzyka nowotworu ze względu na uszkodzenie molekuł DNA

6 Promieniowanie niejonizujące

7 Promieniowanie jonizujące Promieniowanie jonizujące jest głównie spowodowane niestabilnymi atomami oddającymi energię by osiągnąć bardziej stabilny stan S t a n o w i o n o w i ę k s z e z a g r o ż e n i e d l a organizmów żywych ze względu na powodowane z m i a n y s k ł a d u a t o m ó w w k o m ó r k a c h, a zwłaszcza zmiany w molekułach DNA Potrzeba bardzo dużej dawki promieniowania jonizującego, by znacząco zmienić strukturę komórki, gdyż w jednej komórce mogą znajdować się tryliony (10 18 ) atomów

8 Promieniowanie jonizujące Promieniowanie jonizujące (jądrowe) to strumień cząstek powstających w wyniku przemian jądrowych, a także promieniowanie rentgenowskie (X) oraz każdy strumień cząstek pochodzących z akceleratora, czy promieniowanie kosmiczne

9 Promieniowanie jonizujące Promieniowanie jądrowe, które możemy wytworzyć dzielimy na cztery grupy: promieniowanie alfa (jądra 4 He) promieniowanie beta (elektrony e lub pozytony e + ) promieniowanie gamma (fotony, np. rentgenowskie) strumień neutronów

10 Zastosowania Źródła promieniotwórcze, strumienie neutronów, wiązki cząstek naładowanych, wiązki promieniowania r e n t g e n o w s k i e g o i g a m m a s ą s p e c y f i c z n y m i narzędziami, którymi można sięgać w miejsca n i e d o s t ę p n e, s t ą d m a j ą w i e l e z a s t o s o w a ń w działalności człowieka

11 Zastosowania Radiodiagnostyka, radioterapia, sterylizacja radiacyjna (medycyna) Dekontaminacja - odkażanie środków spożywczych (rolnictwo) pomiar zapylenia powietrza, czujniki przeciwpożarowe, badanie rozchodzenia się zanieczyszczeń (ochrona środowiska) Pomiary gęstości, stężenia, składu chemicznego, masy, grubości, szczelności; defektoskopia; poszukiwanie ropy naftowej (przemysł) Datowanie oraz badanie składu obiektów, skamielin (geologia, archeologia)

12 Jonizacja materii Każdy rodzaj promieniowania inaczej oddziałuje z materią, a zależy to dodatkowo od własności materii i energii niesionej przez cząstki Jonizacja atomów i cząsteczek lub ich wzbudzanie mogą prowadzić do rozpadu związków chemicznych, także do powstawania cząsteczek, rodników lub jonów silnie reaktywnych chemicznie Pojedyncza cząstka promieniowania może wywołać te procesy wielokrotnie, gdyż niesie duże zasoby energii

13 Jonizacja materii Takie oddziaływanie może prowadzić do śmierci komórek, a w przypadku masowego zaniku komórek może dojść do śmierci całej tkanki, narządu a w skutek tego nawet całego organizmu Może także nastąpić zmiana w funkcjonowaniu komórek - tzw. mutacja

14 Wtórne reakcje w materii Neutrony wnikają do jąder wywołując reakcje jądrowe, a produkty tych reakcji (fotony, protony) rozchodzą się w materii, powodując jonizację Pozytony oddziałują z elektronami materii, i w procesie anihilacji produkowane są fotony Foton może w zderzeniu z jądrem atomowym wyprodukować parę elektron-pozyton We wszystkich tych procesach powstają znane nam cząstki promieniowania jądrowego - nie powstają żadne inne, nowe obiekty

15 Przenikliwość

16 Przenikliwość Każdy rodzaj materii osłabia w i ą z k ę p r o m i e n i o w a n i a stopniowo Osłabienie jest tym większe im grubsza warstwa, przez którą promieniowanie przenika Zależność natężenia wiązki od grubości warstwy może mieć różny charakter i zależy g ł ó w n i e o d r o d z a j u promieniowania

17 Detekcja promieniowania Człowiek nie jest wyposażony w zmysł, który rejestrowałby promieniowanie jonizujące Jest to efekt ewolucji w środowisku, w którym promieniowanie to było zawsze obecne i nie stanowiło zagrożenia dla organizmów żywych Jednak, w ciągu ostatnich stu lat, promieniowanie jądrowe jest częściej obecne wskutek działalności człowieka Równolegle z coraz szerszymi zastosowaniami promieniowania jądrowego pracuje się nad nowszymi metodami jego detekcji i rejestrowania

18 Dozymetria Aktywność promieniotwórcza próbki wynosi jeden bekerel [Bq=s -1 ], kiedy następuje w niej jeden rozpad na sekundę Żyjący organizm pochłania dawkę jednego greja [Gy=J kg -1 ], kiedy absorbuje jeden dżul energii na kg masy swojego ciała U s z k o d z e n i e l u d z k i e j t k a n k i n a s k u t e k napromieniowania zależy nie tylko od dawki, lecz również od rodzaju promieniowania Równoważnik dawki, jest równy iloczynowi dawki pochłoniętej i współczynnika Q. Jednostką równoważnika dawki pochłoniętej jest siwert (Sv) o wymiarze [J kg -1 ]

19 Dozymetria Współczynnik jakości promieniowania Q przyjmuje wartości: Q=1 dla promieni X, promieni y, elektronów i pozytonów, Q=2,3 dla neutronów termicznych, Q=10 dla neutronów prędkich, Q=20 dla cząstek α i ciężkich jonów.

20 Licznik Geigera-Mullera Rura metalowa, która stanowi elektrodę ujemną - katodę, umieszczona jest w szczelnym szklanym cylindrze. Przez środek katody przebiega cienki drut stanowiący elektrodę dodatnią anodę. Cylinder szklany wypełniony jest mieszaniną gazów. Ciśnienie mieszaniny gazów w cylindrze jest znacznie mniejsze od atmosferycznego.

21 Licznik Geigera-Mullera

22 Dawki w środowisku człowieka Proces/Obiekt Roczna dawka graniczna na całe ciało, Polska (norma) Średnia roczna dawka od promieniowania naturalnego, Polska Średnia roczna dawka od procedur medycznych, Polska Średnia roczna od procedur medycznych Personel samolotów transkontynentalnych, rocznie, 1100 h lotów Umowna granica małych i dużych dawek Człowiek - śmierć 50% osób w ciągu 30 dni Węże - śmierć 50% osobników w ciagu 30 dni Przetrwa bakteria Deinococcus radiodurans Dawka skuteczna 1 msv 2.2 msv 0.85 msv/mieszkańca 1.2 msv (0.8 msv od RTG)/1 badanie msv 200 msv 3-5 Sv 800 Sv Sv

23

24 Skutki promieniowania jonizującego Deterministyczne przy dużych dawkach Stochastyczne przy małych dawkach rumień skóry, zaburzenia przewodu pokarmowego, zaćma nowotwory, zaburzenia genetyczne

25 Hipoteza LNT Hipoteza Linear No-treshold (liniowa, bezprogowa) dotyczy skutków stochastyczych małych dawek Zależność dawka-skutek jest liniowa i nie występuje w niej próg skutków Każda dawka jest szkodliwa H i p o t e z a j e s t p o d w a ż a n a, g d y ż m a ł e d a w k i promieniowania mają korzystne skutki dla organizmów żywych, powodując m.in. stymulację procesów b i o l o g i c z n y c h l u b w z m o c n i e n i e w ł a s n o ś c i immunologicznych

26 Hormeza radiacyjna Korzystny wpływ małych dawek promieniowania jonizującego na organizm żywy (zmniejszenie prawdopodobieństwa zachorowania na nowotwory złośliwe i choroby o podłożu genetycznym, stymulacja wzrostu i procesów naprawczych w komórkach) Wiele badań prowadzono na ludności zamieszkałej w rejonach o podwyższonym tle naturalnym, jednak dowody doświadczalne nie są wystarczające do uznania hipotezy za poprawną ze względu na trudności mierzenia biologicznych efektów powodowanych przez m a ł e d a w k i p r o m i e n i o w a n i a w o t w a r t y m, niekontrolowanym środowisku

27 Hormeza radiacyjna

28 Hormeza radiacyjna Mechanizmy hormezy radiacyjnej Pobudzenie podziałów komórkowych - zwiększenie liczby podziałów komórkowych i przywrócenie stanu równowagi Autofagia - złożony proces adaptacji do różnych w a r u n k ó w s t r e s o w y c h - z m n i e j s z a p r a w d o p o d o b i e ń s t w o w y s t ą p i e n i a c h o r o b y nowotworowej (niepożądana jeśli już doszło do zachorowania) O d p o w i e d ź r a d i o a d a p t a c y j n a - z w i ę k s z e n i e o d p o r n o ś c i n a d u ż ą d a w k ę c z y n n i k a p o zaaplikowaniu małej dawki

29 Źródła 90 Sr gromadzi się w tkance kostnej, emituje silne promieniowanie β, a jego czas połowicznego zaniku wynosi blisko 29 lat 60Co - ulega rozpadowi β z emisją dwóch kwantów gamma (używanych m.in. do napromieniania komórek nowotworowych), a jego czas połowicznego rozpadu wynosi 5.3 roku 137Cs - emituje promieniowanie β, a jego czas połowicznego rozpadu przekracza 30 lat. Dobrze wchłania się do organizmu, gdyż wbudowuje się w tkanki nerwowe oraz mięśniowe

30 Literatura Podstawy Biofizyki, A. Pilawski, PZWL, Warszawa 1985 Fizyka Środowiska, E. Boeker, R. von Grondelle, PWN Warszawa 2002 Nowoczesne kompendium Fizyki, H. SToecker, PWN

SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego

SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW Szacowanie pochłoniętej energii promieniowania jonizującego W celu analizy narażenia na promieniowanie osoby, której podano radiofarmaceutyk, posłużymy się

Bardziej szczegółowo

Prawo rozpadu promieniotwórczego. Metoda datowania izotopowego.

Prawo rozpadu promieniotwórczego. Metoda datowania izotopowego. Prawo rozpadu promieniotwórczego. Metoda datowania izotopowego. Prawo rozpadu promieniotwórczego. Rodzaje promieniowania PROMIENIOWANIE ŁADUNEK ELEKTRYCZNY MASA CECHY CHARAKTERYSTYCZNE alfa +2e 4u beta

Bardziej szczegółowo

Promieniowanie w naszych domach. I. Skwira-Chalot

Promieniowanie w naszych domach. I. Skwira-Chalot Promieniowanie w naszych domach I. Skwira-Chalot Co to jest promieniowanie jonizujące? + jądro elektron Rodzaje promieniowania jonizującego Przenikalność promieniowania L. Dobrzyński, E. Droste, W. Trojanowski,

Bardziej szczegółowo

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św.

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św. Foton, kwant światła Wielkość fizyczna jest skwantowana jeśli istnieje w pewnych minimalnych (elementarnych) porcjach lub ich całkowitych wielokrotnościach w klasycznym opisie świata, światło jest falą

Bardziej szczegółowo

Wykład 4 - Dozymetria promieniowania jądrowego

Wykład 4 - Dozymetria promieniowania jądrowego Podstawy prawne Wykład 4 - Dozymetria promieniowania jądrowego http://www.paa.gov.pl/ - -> akty prawne - -> Prawo Atomowe Centralne Laboratorium Ochrony Radiologicznej -- www.clor.waw.pl 1 http://www.sejm.gov.pl/

Bardziej szczegółowo

1. Co to jest promieniowanie jonizujące 2. Źródła promieniowania jonizującego 3. Najczęściej spotykane rodzaje promieniowania jonizującego 4.

1. Co to jest promieniowanie jonizujące 2. Źródła promieniowania jonizującego 3. Najczęściej spotykane rodzaje promieniowania jonizującego 4. 1. Co to jest promieniowanie jonizujące 2. Źródła promieniowania jonizującego 3. Najczęściej spotykane rodzaje promieniowania jonizującego 4. Przenikanie promieniowania α, β, γ, X i neutrony 5. Krótka

Bardziej szczegółowo

W2. Struktura jądra atomowego

W2. Struktura jądra atomowego W2. Struktura jądra atomowego Doświadczenie Rutherforda - badanie odchylania wiązki cząstek alfa w cienkiej folii metalicznej Hans Geiger, Ernest Marsden, Ernest Rutherford ( 1911r.) detektor pierwiastek

Bardziej szczegółowo

Ochrona przed promieniowaniem jonizującym. Źródła promieniowania jonizującego. Naturalne promieniowanie tła. dr n. med.

Ochrona przed promieniowaniem jonizującym. Źródła promieniowania jonizującego. Naturalne promieniowanie tła. dr n. med. Ochrona przed promieniowaniem jonizującym dr n. med. Jolanta Meller Źródła promieniowania jonizującego Promieniowanie stosowane w celach medycznych Zastosowania w przemyśle Promieniowanie związane z badaniami

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Ergonomia przemysłowa Promieniowanie jonizujące Wykonali: Katarzyna Bogdańska Rafał Pećka Maciej Nowak Krzysztof Sankiewicz Promieniowanie jonizujące Promieniowanie jonizujące to promieniowanie korpuskularne

Bardziej szczegółowo

Detekcja promieniowania jonizującego. Waldemar Kot Zachodniopomorskie Centrum Onkologii w Szczecinie

Detekcja promieniowania jonizującego. Waldemar Kot Zachodniopomorskie Centrum Onkologii w Szczecinie Detekcja promieniowania jonizującego Waldemar Kot Zachodniopomorskie Centrum Onkologii w Szczecinie Człowiek oraz wszystkie żyjące na Ziemi organizmy są stale narażone na wpływ promieniowania jonizującego.

Bardziej szczegółowo

Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r.

Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r. Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r. 1 Budowa jądra atomowego Liczba atomowa =Z+N Liczba masowa Liczba neutronów Izotopy Jądra o jednakowej liczbie protonów, różniące się liczbą

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład IV Oddziaływanie promieniowania jonizującego z materią Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 26 kwietnia 2017 Wykład IV Oddziaływanie promieniowania jonizującego

Bardziej szczegółowo

OCHRONA RADIOLOGICZNA PACJENTA. Promieniotwórczość

OCHRONA RADIOLOGICZNA PACJENTA. Promieniotwórczość OCHRONA RADIOLOGICZNA PACJENTA Promieniotwórczość PROMIENIOTWÓRCZOŚĆ (radioaktywność) zjawisko samorzutnego rozpadu jąder atomowych niektórych izotopów, któremu towarzyszy wysyłanie promieniowania α, β,

Bardziej szczegółowo

MATERIAŁ SZKOLENIOWY SZKOLENIE WSTĘPNE PRACOWNIKA ZATRUDNIONEGO W NARAŻENIU NA PROMIENIOWANIE JONIZUJĄCE. Ochrona Radiologiczna - szkolenie wstępne 1

MATERIAŁ SZKOLENIOWY SZKOLENIE WSTĘPNE PRACOWNIKA ZATRUDNIONEGO W NARAŻENIU NA PROMIENIOWANIE JONIZUJĄCE. Ochrona Radiologiczna - szkolenie wstępne 1 MATERIAŁ SZKOLENIOWY SZKOLENIE WSTĘPNE PRACOWNIKA ZATRUDNIONEGO W NARAŻENIU NA PROMIENIOWANIE JONIZUJĄCE Ochrona Radiologiczna - szkolenie wstępne 1 Cel szkolenia wstępnego: Zgodnie z Ustawą Prawo Atomowe

Bardziej szczegółowo

METODY DETEKCJI PROMIENIOWANIA JĄDROWEGO 3

METODY DETEKCJI PROMIENIOWANIA JĄDROWEGO 3 METODY DETEKCJI PROMIENIOWANIA JĄDROWEGO 3 ENERGETYKA JĄDROWA KONWENCJONALNA (Rozszczepienie fision) n + Z Z 2 A A A2 Z X Y + Y + m n + Q A ~ 240; A =A 2 =20 2 E w MeV / nukl. Q 200 MeV A ENERGETYKA TERMOJĄDROWA

Bardziej szczegółowo

Dawki promieniowania jądrowego

Dawki promieniowania jądrowego FOTON 112, Wiosna 2011 9 Dawki promieniowania jądrowego Paweł Moskal Instytut Fizyki UJ I. Przykłady promieniowania jądrowego Promieniowanie jądrowe są to cząstki wylatujące z jąder atomowych na skutek

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład V Krzysztof Golec-Biernat Oddziaływanie promieniowania jonizującego z materią Uniwersytet Rzeszowski, 6 grudnia 2017 Wykład V Krzysztof Golec-Biernat Promieniowanie jonizujące

Bardziej szczegółowo

Spis treści. Trwałość jądra atomowego. Okres połowicznego rozpadu

Spis treści. Trwałość jądra atomowego. Okres połowicznego rozpadu Spis treści 1 Trwałość jądra atomowego 2 Okres połowicznego rozpadu 3 Typy przemian jądrowych 4 Reguła przesunięć Fajansa-Soddy ego 5 Szeregi promieniotwórcze 6 Typy reakcji jądrowych 7 Przykłady prostych

Bardziej szczegółowo

Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan

Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan Promieniowanie jonizujące i metody radioizotopowe dr Marcin Lipowczan Budowa atomu 897 Thomson, 0 0 m, kula dodatnio naładowana ładunki ujemne 9 Rutherford, rozpraszanie cząstek alfa na folię metalową,

Bardziej szczegółowo

Podstawowe własności jąder atomowych

Podstawowe własności jąder atomowych Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii

Bardziej szczegółowo

DAWKA SKUTECZNA I EKWIWALENTNA A RYZYKO RADIACYJNE. EFEKTY STOCHASTYCZNE I DETERMINISTYCZNE. Magdalena Łukowiak

DAWKA SKUTECZNA I EKWIWALENTNA A RYZYKO RADIACYJNE. EFEKTY STOCHASTYCZNE I DETERMINISTYCZNE. Magdalena Łukowiak DAWKA SKUTECZNA I EKWIWALENTNA A RYZYKO RADIACYJNE. EFEKTY STOCHASTYCZNE I DETERMINISTYCZNE. Magdalena Łukowiak Równoważnik dawki. Równoważnik dawki pochłoniętej, biologiczny równoważnik dawki, dawka równoważna

Bardziej szczegółowo

Dozymetria promieniowania jonizującego

Dozymetria promieniowania jonizującego UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO Ćwiczenie laboratoryjne Nr. 15 Dozymetria promieniowania jonizującego SZCZECIN - 2004 WSTĘP Promieniowanie jonizujące występuje w przyrodzie

Bardziej szczegółowo

II. Promieniowanie jonizujące

II. Promieniowanie jonizujące I. Wstęp Zgodnie z obowiązującym prawem osoba przystępująca do pracy w warunkach narażenia na promieniowanie jonizujące powinna być do tego odpowiednio przygotowana, czyli posiadać, miedzy innymi, niezbędną

Bardziej szczegółowo

Radiobiologia, ochrona radiologiczna i dozymetria

Radiobiologia, ochrona radiologiczna i dozymetria Radiobiologia, ochrona radiologiczna i dozymetria 1. Metryczka Nazwa Wydziału: Program kształcenia (kierunek studiów, poziom i profil kształcenia, forma studiów, np. Zdrowie publiczne I stopnia profil

Bardziej szczegółowo

Poziom nieco zaawansowany Wykład 2

Poziom nieco zaawansowany Wykład 2 W2Z Poziom nieco zaawansowany Wykład 2 Witold Bekas SGGW Promieniotwórczość Henri Becquerel - 1896, Paryż, Sorbona badania nad solami uranu, odkrycie promieniotwórczości Maria Skłodowska-Curie, Piotr Curie

Bardziej szczegółowo

Promieniotwórczość NATURALNA

Promieniotwórczość NATURALNA Promieniotwórczość NATURALNA Badając świecenie różnych substancji, zauważyłem, że wszystkie związki uranu wysyłają promieniowanie przenikające przez czarny papier i inne osłony oraz powodują naświetlenie

Bardziej szczegółowo

Autorzy: Zbigniew Kąkol, Piotr Morawski

Autorzy: Zbigniew Kąkol, Piotr Morawski Rodzaje rozpadów jądrowych Autorzy: Zbigniew Kąkol, Piotr Morawski Rozpady jądrowe zachodzą zawsze (prędzej czy później) jeśli jądro o pewnej liczbie nukleonów znajdzie się w stanie energetycznym, nie

Bardziej szczegółowo

Zagrożenia naturalnymi źródłami promieniowania jonizującego w przemyśle wydobywczym. Praca zbiorowa pod redakcją Jana Skowronka

Zagrożenia naturalnymi źródłami promieniowania jonizującego w przemyśle wydobywczym. Praca zbiorowa pod redakcją Jana Skowronka Zagrożenia naturalnymi źródłami promieniowania jonizującego w przemyśle wydobywczym Praca zbiorowa pod redakcją Jana Skowronka GŁÓWNY INSTYTUT GÓRNICTWA Katowice 2007 SPIS TREŚCI WPROWADZENIE (J. SKOWRONEK)...

Bardziej szczegółowo

Zadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α

Zadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α Zadanie: 1 (2 pkt) Określ liczbę atomową pierwiastka powstającego w wyniku rozpadów promieniotwórczych izotopu radu 223 88Ra, w czasie których emitowane są 4 cząstki α i 2 cząstki β. Podaj symbol tego

Bardziej szczegółowo

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów Włodzimierz Wolczyński 40 FIZYKA JĄDROWA A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów O nazwie pierwiastka decyduje liczba porządkowa Z, a więc ilość

Bardziej szczegółowo

Wpływ promieniowania jonizującego na organizmy

Wpływ promieniowania jonizującego na organizmy Wpływ promieniowania jonizującego na organizmy Napromienienie Oznacza pochłonięcie energii promieniowania i co za tym idzieotrzymanie dawki promieniowania Natomiast przy pracy ze źródłami promieniotwórczymi

Bardziej szczegółowo

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)

doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) 1 doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) Ilość protonów w jądrze określa liczba atomowa Z Ilość

Bardziej szczegółowo

Oddziaływanie promieniowania jonizującego z materią

Oddziaływanie promieniowania jonizującego z materią Oddziaływanie promieniowania jonizującego z materią Plan Promieniowanie ( particle radiation ) Źródła (szybkich) elektronów Ciężkie cząstki naładowane Promieniowanie elektromagnetyczne (fotony) Neutrony

Bardziej szczegółowo

Energetyka konwencjonalna odnawialna i jądrowa

Energetyka konwencjonalna odnawialna i jądrowa Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa

Bardziej szczegółowo

P O L I T E C H N I K A W R O C Ł A W S K A

P O L I T E C H N I K A W R O C Ł A W S K A P O L I T E C H N I K A W R O C Ł A W S K A Wydział Chemiczny, Zakład Metalurgii Chemicznej Chemia Środowiska Laboratorium RADIOAKTYWNOŚĆ W BUDYNKACH CEL ĆWICZENIA : Wyznaczanie pola promieniowania jonizującego

Bardziej szczegółowo

Dozymetria promieniowania jonizującego

Dozymetria promieniowania jonizującego Dozymetria dział fizyki technicznej obejmujący metody pomiaru i obliczania dawek (dóz) promieniowania jonizującego, a także metody pomiaru aktywności promieniotwórczej preparatów. Obecnie termin dawka

Bardziej szczegółowo

I ,11-1, 1, C, , 1, C

I ,11-1, 1, C, , 1, C Materiał powtórzeniowy - budowa atomu - cząstki elementarne, izotopy, promieniotwórczość naturalna, okres półtrwania, średnia masa atomowa z przykładowymi zadaniami I. Cząstki elementarne atomu 1. Elektrony

Bardziej szczegółowo

CHARAKTERYSTYKA LICZNIKA GEIGERA-MÜLLERA I BADANIE STATYSTYCZNEGO CHARAKTERU ROZPADU PROMIENIOTWÓRCZEGO

CHARAKTERYSTYKA LICZNIKA GEIGERA-MÜLLERA I BADANIE STATYSTYCZNEGO CHARAKTERU ROZPADU PROMIENIOTWÓRCZEGO Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki II p. Piotr Kurek Do użytku wewnętrznego Ćwiczenie nr 1 CHARAKTERYSTYKA LICZNIKA GEIGERA-MÜLLERA I BADANIE STATYSTYCZNEGO CHARAKTERU ROZPADU PROMIENIOTWÓRCZEGO

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

SPRAWDŹ SWOJĄ WIEDZĘ

SPRAWDŹ SWOJĄ WIEDZĘ SPRAWDŹ SWOJĄ WIEDZĘ Podobne pytania możesz otrzymać na egzaminie certyfikacyjnym Uwaga: Jeśli masz wątpliwości czy wybrałeś poprawną odpowiedź, spytaj przez forum dyskusyjne Pytania zaczerpnięto ze zbiorów

Bardziej szczegółowo

SUBSTANCJE PROMIENIOTWÓRCZE. SKAŻENIA I ZAKAŻENIA.

SUBSTANCJE PROMIENIOTWÓRCZE. SKAŻENIA I ZAKAŻENIA. SUBSTANCJE PROMIENIOTWÓRCZE. SKAŻENIA I ZAKAŻENIA. EDUKACJA DLA BEZPIECZEŃSTWA Pamiętaj!!! Tekst podkreślony lub wytłuszczony jest do zapamiętania Opracował: mgr Mirosław Chorąży Promieniotwórczość (radioaktywność)

Bardziej szczegółowo

Wyższy Urząd Górniczy. Zagrożenie radiacyjne w podziemnych wyrobiskach górniczych

Wyższy Urząd Górniczy. Zagrożenie radiacyjne w podziemnych wyrobiskach górniczych Wyższy Urząd Górniczy Zagrożenie radiacyjne w podziemnych wyrobiskach górniczych Zagrożenie radiacyjne w podziemnych wyrobiskach górniczych Katowice 2011 Copyright by Wyższy Urząd Górniczy, Katowice 2011

Bardziej szczegółowo

Fale elektromagnetyczne to zaburzenia pola elektrycznego i magnetycznego.

Fale elektromagnetyczne to zaburzenia pola elektrycznego i magnetycznego. Fale elektromagnetyczne to zaburzenia pola elektrycznego i magnetycznego. Zmienne pole magnetyczne wytwarza zmienne pole elektryczne i odwrotnie zmienne pole elektryczne jest źródłem zmiennego pola magnetycznego

Bardziej szczegółowo

AKCELERATORY I DETEKTORY WOKÓŁ NAS

AKCELERATORY I DETEKTORY WOKÓŁ NAS AKCELERATORY I DETEKTORY WOKÓŁ NAS AKCELERATOR W CERN Chociaż akceleratory zostały wynalezione dla fizyki cząstek elementarnych, to tysięcy z nich używa się w innych gałęziach nauki, a także w przemyśle

Bardziej szczegółowo

FIZYKA IV etap edukacyjny zakres podstawowy

FIZYKA IV etap edukacyjny zakres podstawowy FIZYKA IV etap edukacyjny zakres podstawowy Cele kształcenia wymagania ogólne I. Wykorzystanie wielkości fizycznych do opisu poznanych zjawisk lub rozwiązania prostych zadań obliczeniowych. II. Przeprowadzanie

Bardziej szczegółowo

ODKRYCIE PROMIENIOTWÓRCZOŚCI PROMIENIOWANIE JĄDROWE I JEGO WŁAŚCIWOŚCI

ODKRYCIE PROMIENIOTWÓRCZOŚCI PROMIENIOWANIE JĄDROWE I JEGO WŁAŚCIWOŚCI ODKRYCIE PROMIENIOTWÓRCZOŚCI PROMIENIOWANIE JĄDROWE I JEGO WŁAŚCIWOŚCI Wilhelm Roentgen 1896 Stan wiedzy na rok 1911 1. Elektron masa i ładunek znikomy ułamek masy atomu 2. Niektóre atomy samorzutnie emitują

Bardziej szczegółowo

Szczegółowy zakres szkolenia wymagany dla osób ubiegających się o nadanie uprawnień inspektora ochrony radiologicznej

Szczegółowy zakres szkolenia wymagany dla osób ubiegających się o nadanie uprawnień inspektora ochrony radiologicznej Załącznik nr 1 Szczegółowy zakres szkolenia wymagany dla osób ubiegających się o nadanie uprawnień inspektora ochrony radiologicznej Lp. Zakres tematyczny (forma zajęć: wykład W / ćwiczenia obliczeniowe

Bardziej szczegółowo

PODSTAWY DOZYMETRII. Fot. M.Budzanowski. Fot. M.Budzanowski

PODSTAWY DOZYMETRII. Fot. M.Budzanowski. Fot. M.Budzanowski PODSTAWY DOZYMETRII Fot. M.Budzanowski Fot. M.Budzanowski NARAŻENIE CZŁOWIEKA Napromieniowanie zewnętrzne /γ,x,β,n,p/ (ważne: rodzaj promieniowania, cząstki i energia,) Wchłonięcie przez oddychanie i/lub

Bardziej szczegółowo

Ochrona radiologiczna

Ochrona radiologiczna Ochrona radiologiczna Budowa jądra Promieniowanie jonizujące Rodzaje rozpadów promieniotwórczych Definicje dawek promieniowania Zasady ochrony radiologicznej Promieniowaniem jonizującym nazywamy klasę

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład II Promieniotwórczość Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 8 marca 2017 Wykład II Promieniotwórczość Promieniowanie jonizujące 1 / 22 Jądra pomieniotwórcze Nuklidy

Bardziej szczegółowo

Osłabienie promieniowania gamma

Osłabienie promieniowania gamma Osłabienie promieniowania gamma Cel ćwiczenia Celem ćwiczenia jest badanie osłabienia wiązki promieniowania gamma przy przechodzeniu przez materię oraz wyznaczenie współczynnika osłabienia dla różnych

Bardziej szczegółowo

Tematyka ćwiczeń laboratoryjnych z Biofizyki dla studentów I roku Kierunku Lekarsko-Dentystycznego w Zabrzu w roku akademickim 2017/18

Tematyka ćwiczeń laboratoryjnych z Biofizyki dla studentów I roku Kierunku Lekarsko-Dentystycznego w Zabrzu w roku akademickim 2017/18 Tematyka ćwiczeń laboratoryjnych z Biofizyki dla studentów I roku Kierunku Lekarsko-Dentystycznego w Zabrzu w roku akademickim 2017/18 1. Podstawy fizyczne biospektroskopii. a) Wyznaczanie krzywych dyspersji

Bardziej szczegółowo

Biologiczne skutki promieniowania

Biologiczne skutki promieniowania Biologiczne skutki promieniowania Promieniowanie padające na żywe organizmy powoduje podczas naświetlania te same efekty co przy oddziaływaniu z nieożywioną materią Skutki promieniowania mogą być jednak

Bardziej szczegółowo

Reakcje jądrowe dr inż. Romuald Kędzierski

Reakcje jądrowe dr inż. Romuald Kędzierski Reakcje jądrowe dr inż. Romuald Kędzierski Wybuch bomby Ivy Mike (fot. National Nuclear Security Administration/Nevada Site Office, domena publiczna) Przemiany jądrowe 1. Spontaniczne (niewymuszone) związane

Bardziej szczegółowo

NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA

NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI WYKŁAD 3 NEUTRONOWA ANALIZA AKTYWACYJNA - PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA REAKCJE JĄDROWE Rozpad promieniotwórczy: A B + y + ΔE

Bardziej szczegółowo

Podstawowe własności jąder atomowych

Podstawowe własności jąder atomowych Fizyka jądrowa Struktura jądra (stan podstawowy) Oznaczenia, terminologia Promienie jądrowe i kształt jąder Jądra stabilne; warunki stabilności; energia wiązania Jądrowe momenty magnetyczne Modele struktury

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład II Krzysztof Golec-Biernat Promieniotwórczość Uniwersytet Rzeszowski, 18 października 2017 Wykład II Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 23 Jądra pomieniotwórcze

Bardziej szczegółowo

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Fizyka promieniowania jonizującego. Zygmunt Szefliński Fizyka promieniowania jonizującego Zygmunt Szefliński 1 Wykład 3 Ogólne własności jąder atomowych (masy ładunki, izotopy, izobary, izotony izomery). 2 Liczba atomowa i masowa Liczba nukleonów (protonów

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma Nazwisko i imię: Zespół: Data: Ćwiczenie nr 96: Dozymetria promieniowania gamma Cel ćwiczenia: Zapoznanie się z podstawami dozymetrii promieniowania jonizującego. Porównanie własności absorpcyjnych promieniowania

Bardziej szczegółowo

Lekcja 81. Temat: Widma fal.

Lekcja 81. Temat: Widma fal. Temat: Widma fal. Lekcja 81 WIDMO FAL ELEKTROMAGNETCZNYCH Fale elektromagnetyczne można podzielić ze względu na częstotliwość lub długość, taki podział nazywa się widmem fal elektromagnetycznych. Obejmuje

Bardziej szczegółowo

r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1

r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1 r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1 Budowa jądra atomowego każde jądro atomowe składa się z dwóch rodzajów nukleonów: protonów

Bardziej szczegółowo

3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona

3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona 3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona I. Przedmiotem zadania zjawisko Comptona. II. Celem zadania jest doświadczalne sprawdzenie zależności energii kwantów γ od kąta rozproszenia

Bardziej szczegółowo

Dozymetria i ochrona radiologiczna

Dozymetria i ochrona radiologiczna Dozymetria i ochrona radiologiczna Promieniowanie jonizujące, wykryte niewiele ponad 100 lat temu (w roku 1896) przez Becquerqlla i badane intensywnie przez naszą rodaczkę Marię Skłodowską-Curie i jej

Bardziej szczegółowo

Zastosowanie promieniowania jądrowego i izotopów promieniotwórczych w medycynie

Zastosowanie promieniowania jądrowego i izotopów promieniotwórczych w medycynie Wykład 6 Zastosowanie promieniowania jądrowego i izotopów promieniotwórczych w medycynie A Zastosowania diagnostyczne - zewnętrzne źródła promieniowania - preparaty promieniotwórcze umieszczone w organizmie

Bardziej szczegółowo

CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra

CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna Model atomu Bohra SPIS TREŚCI: 1. Modele budowy atomu Thomsona, Rutherforda i Bohra 2. Budowa atomu 3. Liczba atomowa a liczba

Bardziej szczegółowo

Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów.

Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów. Ćw. M2 Promieniowanie jonizujące Wyznaczanie liniowego i masowego współczynnika pochłaniania promieniowania dla różnych materiałów. Zagadnienia: Budowa jądra atomowego. Defekt masy, energie wiązania jądra.

Bardziej szczegółowo

Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu

Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Odkrycie jądra atomowego: 9, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Tor ruchu rozproszonych cząstek (fakt, że część cząstek rozprasza się pod bardzo dużym kątem) wskazuje na

Bardziej szczegółowo

Radiobiologia. Dawki promieniowania. Oddziaływanie promieniowania jonizującego z materią. Jonizacja. Wzbudzanie

Radiobiologia. Dawki promieniowania. Oddziaływanie promieniowania jonizującego z materią. Jonizacja. Wzbudzanie Radiobiologia Oddziaływanie promieniowania jonizującego z materią Podczas przechodzenia promieniowania jonizującego przez warstwy ośrodka pochłaniającego jego energia zostaje zaabsorbowana Jonizacja W

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 15 Janusz Andrzejewski Janusz Andrzejewski 2 Egzamin z fizyki I termin 31 stycznia2014 piątek II termin 13 luty2014 czwartek Oba egzaminy odbywać się będą: sala 301 budynek D1 Janusz Andrzejewski

Bardziej szczegółowo

Ćwiczenie nr 50 CHARAKTERYSTYKA LICZNIKA GEIGERA-MÜLLERA I BADANIE STATYSTYCZNEGO CHARAKTERU ROZPADU PROMIENIOTWÓRCZEGO

Ćwiczenie nr 50 CHARAKTERYSTYKA LICZNIKA GEIGERA-MÜLLERA I BADANIE STATYSTYCZNEGO CHARAKTERU ROZPADU PROMIENIOTWÓRCZEGO Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki II p. Piotr Kurek Do użytku wewnętrznego Ćwiczenie nr 50 CHARAKTERYSTYKA LICZNIKA GEIGERA-MÜLLERA I BADANIE STATYSTYCZNEGO CHARAKTERU ROZPADU

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 J

Badanie schematu rozpadu jodu 128 J J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona

Bardziej szczegółowo

PROMIENIOWANIE JONIZUJĄCE OCHRONA RADIOLOGICZNA

PROMIENIOWANIE JONIZUJĄCE OCHRONA RADIOLOGICZNA PROMIENIOWANIE JONIZUJĄCE OCHRONA RADIOLOGICZNA Wstęp Kwestie związane ze stosowaniem źródeł promieniowania jonizującego, substancji radioaktywnych, a także przemysłem jądrowym, wciąż łączą się z tematem

Bardziej szczegółowo

Biologiczne skutki promieniowania jonizującego

Biologiczne skutki promieniowania jonizującego Biologiczne skutki promieniowania jonizującego Mirosław Lewocki Zachodniopomorskie Centrum Onkologii w Szczecinie Instytut Fizyki Uniwersytetu Szczecińskiego Środowisko człowieka zawiera wiele źródeł promieniowania

Bardziej szczegółowo

PROMIENIOWANIE I PROMIENIOTWÓRCZO RCZOŚĆ

PROMIENIOWANIE I PROMIENIOTWÓRCZO RCZOŚĆ PROMIENIOWANIE I PROMIENIOTWÓRCZO RCZOŚĆ Definicja promieniowania: Promieniowanie- jest to strumień cząstek lub fal wysyłanych przez ciało. Wytwarzanie promieniowania nazywane jest emisją. Pierwotnie pojęcie

Bardziej szczegółowo

SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA

SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA Metoda detekcji promieniowania jądrowego (α, β, γ) Konwersja energii promieniowania jądrowego na promieniowanie w zakresie widzialnym. Zalety metody: Geometria 4π Duża

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego -  - zadania z fizyki, wzory fizyczne, fizyka matura 14. Fizyka jądrowa zadania z arkusza I 14.10 14.1 14.2 14.11 14.3 14.12 14.4 14.5 14.6 14.13 14.7 14.8 14.14 14.9 14. Fizyka jądrowa - 1 - 14.15 14.23 14.16 14.17 14.24 14.18 14.25 14.19 14.26 14.27 14.20

Bardziej szczegółowo

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość Monika Gałkiewicz Zad. 1 () Przedstaw pełną konfigurację elektronową atomu pierwiastka

Bardziej szczegółowo

2008/2009. Seweryn Kowalski IVp IF pok.424

2008/2009. Seweryn Kowalski IVp IF pok.424 2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie

Bardziej szczegółowo

Promieniowanie kosmiczne: astrobiologów

Promieniowanie kosmiczne: astrobiologów Promieniowanie kosmiczne: astrobiologów zagadka dla Franco Ferrari Instytut Fizyki oraz CASA* University of Szczecin, Szczecin Wrocław, 10 stycznia 2011 Spis treści Promieniowanie kosmiczne (CR) w skrócie

Bardziej szczegółowo

Promieniotwórczość naturalna. Jądro atomu i jego budowa.

Promieniotwórczość naturalna. Jądro atomu i jego budowa. Promieniotwórczość naturalna. Jądro atomu i jego budowa. Doświadczenie Rutherforda (1909). Polegało na bombardowaniu złotej folii strumieniem cząstek alfa (jąder helu) i obserwacji odchyleń ich toru ruchu.

Bardziej szczegółowo

Budowa atomu. Wiązania chemiczne

Budowa atomu. Wiązania chemiczne strona /6 Budowa atomu. Wiązania chemiczne Dorota Lewandowska, Anna Warchoł, Lidia Wasyłyszyn Treść podstawy programowej: Budowa atomu; jądro i elektrony, składniki jądra, izotopy. Promieniotwórczość i

Bardziej szczegółowo

Radiobiologia. Działanie promieniowania jonizującego na DNA komórkowe. Oddziaływanie promieniowania jonizującego z materią. Jonizacja.

Radiobiologia. Działanie promieniowania jonizującego na DNA komórkowe. Oddziaływanie promieniowania jonizującego z materią. Jonizacja. Radiobiologia Oddziaływanie promieniowania jonizującego z materią Podczas przechodzenia promieniowania jonizującego przez warstwy ośrodka pochłaniającego jego energia zostaje zaabsorbowana Jonizacja W

Bardziej szczegółowo

Program szkolenia dla osób ubiegających się o nadanie uprawnień Inspektora Ochrony Radiologicznej

Program szkolenia dla osób ubiegających się o nadanie uprawnień Inspektora Ochrony Radiologicznej Program szkolenia dla osób ubiegających się o nadanie uprawnień Inspektora Ochrony Radiologicznej - RMZ z dnia 21 grudnia 2012 r. (DZ. U. z 2012 r. poz. 1534) Lp. Zakres tematyczny 1. Podstawowe pojęcia

Bardziej szczegółowo

Podstawy fizyki wykład 5

Podstawy fizyki wykład 5 Podstawy fizyki wykład 5 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN,

Bardziej szczegółowo

FALOWA I KWANTOWA HASŁO :. 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N

FALOWA I KWANTOWA HASŁO :. 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N OPTYKA FALOWA I KWANTOWA 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N 8 D Y F R A K C Y J N A 9 K W A N T O W A 10 M I R A Ż 11 P

Bardziej szczegółowo

LABORATORIUM PROMIENIOWANIE W MEDYCYNIE

LABORATORIUM PROMIENIOWANIE W MEDYCYNIE LABORATORIUM PROMIENIOWANIE W MEDYCYNIE Ćw nr 3 NATEŻENIE PROMIENIOWANIA γ A ODLEGŁOŚĆ OD ŹRÓDŁA PROMIENIOWANIA Nazwisko i Imię: data: ocena (teoria) Grupa Zespół ocena końcowa 1 Cel ćwiczenia Natężenie

Bardziej szczegółowo

OCHRONA RADIOLOGICZNA 2. Osłony. Jakub Ośko

OCHRONA RADIOLOGICZNA 2. Osłony. Jakub Ośko OCHRONA RADIOLOGICZNA 2 Osłony Jakub Ośko Osłabianie promieniowania elektromagnetycznego 2 Pochłanianie i rozpraszanie promieniowania elektromagmetycznego droga, jaką przebywają fotony w danym materiale

Bardziej szczegółowo

Właściwości materii. Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. 18 listopada 2014 Biophysics 1

Właściwości materii. Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. 18 listopada 2014 Biophysics 1 Wykład 8 Właściwości materii Bogdan Walkowiak Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka 18 listopada 2014 Biophysics 1 Właściwości elektryczne Właściwości elektryczne zależą

Bardziej szczegółowo

ć ę ę ć ę Ś ę Ń ę ź ę ę ę Ś ę ę ę Ó Ł Ł Ę Ą ę

ć ę ę ć ę Ś ę Ń ę ź ę ę ę Ś ę ę ę Ó Ł Ł Ę Ą ę ć ę ę Ł Ą Ś Ś ę Ś ę ę ć ć ę ę ę ę ć Ś ć ę ę ć ę Ś ę Ń ę ź ę ę ę Ś ę ę ę Ó Ł Ł Ę Ą ę Ą ę Ą ę ć ę ć Ą ć ę ć ć ę Ę ę Ś Ą Ł Ó ę ć ę ę ę ę Ą ć ęć ę ć ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę Ą ę ę ę ę Ń ę Ó

Bardziej szczegółowo

ń ż ń ń Ą ń ż ż ń ż ż ż Ż ń Ą ń

ń ż ń ń Ą ń ż ż ń ż ż ż Ż ń Ą ń Ł Ą Ę ż ż ż ż Ó ż Ż Ż Ę Ż Ą Ż Ż ż Ś Ż Ś ń ż ń ń Ą ń ż ż ń ż ż ż Ż ń Ą ń Ę Ó Ł Ś ż ż Ę Ę ż Ó ż Ś Ę ń ń ń ż ń ń Ę Ę ń ż Ą ń Ś Ś Ę ń Ż Ę Ę ż ń ń ń ń ż Ę ń ń ń ń Ł Ę ń ń ń ń ż Ę ż ż ż Ź ż Ż ż Ż ż ż Ę ń Ę ż

Bardziej szczegółowo

ź Ż Ż Ś ć ć Ł ż Ż Ż Ż Ż Ł Ż Ł Ż Ż Ż ż ż ż ż ż ż Ż ć Ż Ś Ś Ń Ść

ź Ż Ż Ś ć ć Ł ż Ż Ż Ż Ż Ł Ż Ł Ż Ż Ż ż ż ż ż ż ż Ż ć Ż Ś Ś Ń Ść Ż Ż ć Ę Ę Ę ż ć ż Ś Ż Ż Ś Ż Ó ź Ż Ż Ś ć ć Ł ż Ż Ż Ż Ż Ł Ż Ł Ż Ż Ż ż ż ż ż ż ż Ż ć Ż Ś Ś Ń Ść Ś Ś Ż ż Ż Ż Ł Ż ć ż Ś Ś Ż Ż Ś Ś Ż Ż ż Ż Ż Ść Ż Ż ż Ż Ż Ś Ą ć Ż ż Ł Ą ż Ś ż ż Ę Ż Ż Ś Ż Ę ć ż ż Ę ć ż ż Ż Ś Ż

Bardziej szczegółowo

Ż Ń Ś Ł Ó Ś ń Ż ń ć Ż ć ń ź Ż ć ć ć ń ń ć Ż Ż ć

Ż Ń Ś Ł Ó Ś ń Ż ń ć Ż ć ń ź Ż ć ć ć ń ń ć Ż Ż ć ń Ż Ę Ń ń ń ć Ę ź ń ń ń ć Ż Ś Ż Ż Ń Ś Ł Ó Ś ń Ż ń ć Ż ć ń ź Ż ć ć ć ń ń ć Ż Ż ć Ż ć ń ń ń ć Ż ń ć ń ń Ó Ń ź ń ń Ś Ś Ż ć ć ć ć Ż ć ć ń ć ń Ż ć Ó Ż Ż Ż ć Ą ć Ó Ł Ą Ą Ó Ń ń ń ć ć ć ć ń ń ć Ń Ś ć Ś Ż ć ń Ż

Bardziej szczegółowo