Krzywe stożkowe Lekcja V: Elipsa

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Krzywe stożkowe Lekcja V: Elipsa"

Transkrypt

1 Krzywe stożkowe Lekcja V: Elipsa Wydział Matematyki Politechniki Wrocławskiej

2 Czym jest elipsa? Elipsa jest krzywą stożkową powstałą przez przecięcie stożka płaszczyzną pod kątem α < β < π 2 (gdzie α jest kątem pomiędzy wysokością stożka a jesgo tworzącą) tak, aby linia cięcia nie zawiera wierzchołka.

3 Czym jest elipsa? Elipsę można zdefiniować także jako zbiór punktów takich, że suma odległośći od dwóch ustalonych punktów jest stała.

4 Czym jest elipsa? Elipsę można zdefiniować także jako zbiór punktów takich, że suma odległośći od dwóch ustalonych punktów jest stała. Formalnie: {P R 2 : PF 1 + PF 2 = const}

5 Czym jest elipsa? Elipsę można zdefiniować także jako zbiór punktów takich, że suma odległośći od dwóch ustalonych punktów jest stała. Formalnie: {P R 2 : PF 1 + PF 2 = const} Punkty F 1, F 2 nazywamy ogniskami elipsy.

6 Elementy elpisy 2a - oś wielka elpisy, 2b - oś mała elipsy S - środek elipsy, 2c = F 1 F 2 i stąd c = SF i, i = 1, 2.

7 Elementy elpisy 2a - oś wielka elpisy, 2b - oś mała elipsy S - środek elipsy, 2c = F 1 F 2 i stąd c = SF i, i = 1, 2. Zachodzi zależność: c = a 2 b 2.

8 Elementy elpisy 2a - oś wielka elpisy, 2b - oś mała elipsy S - środek elipsy, 2c = F 1 F 2 i stąd c = SF i, i = 1, 2. Zachodzi zależność: c = a 2 b 2. Mimośród elipsy: m = c a

9 Elementy elpisy 2a - oś wielka elpisy, 2b - oś mała elipsy S - środek elipsy, 2c = F 1 F 2 i stąd c = SF i, i = 1, 2. Zachodzi zależność: c = a 2 b 2. Mimośród elipsy: m = c a Oprócz tego wyznacza się tzw. parametr ogniskowy, czyli połowę cięciwy przechodzącej przez jedno z ognisk prostopadle do osi wielkiej: p = b2 a

10 Równanie kanoniczne elipsy Niech dana będzie elipsa o środku w punkcie S(x 0, y 0 ) oraz osiach 2a, 2b równoległych do osi układu współrzędnych.

11 Równanie kanoniczne elipsy Niech dana będzie elipsa o środku w punkcie S(x 0, y 0 ) oraz osiach 2a, 2b równoległych do osi układu współrzędnych. Wtedy równanie kanoniczne elipsy dane jest wzorem (x x 0 ) 2 a 2 + (y y 0) 2 b 2 = 1 (1)

12 Równanie kanoniczne elipsy Niech dana będzie elipsa o środku w punkcie S(x 0, y 0 ) oraz osiach 2a, 2b równoległych do osi układu współrzędnych. Wtedy równanie kanoniczne elipsy dane jest wzorem (x x 0 ) 2 a 2 + (y y 0) 2 b 2 = 1 (1) Zauważmy, że jeśli a = b to dostajemy równanie okręgu.

13 Równanie kanoniczne elipsy Niech dana będzie elipsa o środku w punkcie S(x 0, y 0 ) oraz osiach 2a, 2b równoległych do osi układu współrzędnych. Wtedy równanie kanoniczne elipsy dane jest wzorem (x x 0 ) 2 a 2 + (y y 0) 2 b 2 = 1 (1) Zauważmy, że jeśli a = b to dostajemy równanie okręgu. Przy takim położeniu ogniska mają współrzędne: F 1 = (x 0 c, y 0 ) F 2 = (x 0 + c, y 0 )

14 Równanie w postaci parametrycznej Przy takich samych założeniach jak poprzednio możemy wyznaczyć równania parametryczne elipsy:

15 Równanie w postaci parametrycznej Przy takich samych założeniach jak poprzednio możemy wyznaczyć równania parametryczne elipsy: x = x 0 + a cos(α), y = y 0 + b sin(α), α [0, 2π] (2)

16 Równanie w postaci biegunowej Niech środek elipsy będzie w biegunie. Wtedy równanie biegunowe elipsy ma postać: p ρ = (3) 1 + m cos(φ) gdzie p jest parametrem ogniskowym, m to mimośród.

17 Równanie w postaci biegunowej Niech środek elipsy będzie w biegunie. Wtedy równanie biegunowe elipsy ma postać: p ρ = (3) 1 + m cos(φ) gdzie p jest parametrem ogniskowym, m to mimośród. Zauważmy, że jeśli a = b, to powyższe równanie sprowadza się do równania biegunowego okręgu: ρ = r.

18 Równanie w postaci biegunowej Niech środek elipsy będzie w biegunie. Wtedy równanie biegunowe elipsy ma postać: p ρ = (3) 1 + m cos(φ) gdzie p jest parametrem ogniskowym, m to mimośród. Zauważmy, że jeśli a = b, to powyższe równanie sprowadza się do równania biegunowego okręgu: ρ = r. Rówanie (3) jest takie samo dla każdej krzywej stożkowej!

19 Kierownice elipsy Kierownice elipsy są to proste prostopadłe do osi wielkiej elipsy, odległe od środka S o odcinek d = a2 c. Ponieważ SF 1 = c = ma to cd = a 2 i d = a m.

20 Kierownice elipsy Kierownice elipsy są to proste prostopadłe do osi wielkiej elipsy, odległe od środka S o odcinek d = a2 c. Ponieważ SF 1 = c = ma to cd = a 2 i d = a m.

21 Kierownice elipsy Kierownice elipsy są to proste prostopadłe do osi wielkiej elipsy, odległe od środka S o odcinek d = a2 c. Ponieważ SF 1 = c = ma to cd = a 2 i d = a m. Zachodzi związek: r1 d 1 = r2 d 2 = m.

22 Równanie stycznej do elipsy Niech punkt P(x 1, y 1 ) należy do elipsy.

23 Równanie stycznej do elipsy Niech punkt P(x 1, y 1 ) należy do elipsy. Wtedy równanie stycznej do elipsy w punkcie P ma postać: (x 1 x 0 )(x x 0 ) a 2 + (y 1 y 0 )(y y 0 ) b 2 = 1

24 Równanie stycznej do elipsy Niech punkt P(x 1, y 1 ) należy do elipsy. Wtedy równanie stycznej do elipsy w punkcie P ma postać: (x 1 x 0 )(x x 0 ) a 2 + (y 1 y 0 )(y y 0 ) b 2 = 1

25 Pole i obwód elipsy Pole elipsy wyraża się wzorem P = πab.

26 Pole i obwód elipsy Pole elipsy wyraża się wzorem P = πab. Niestety długość elipsy nie jest już taka przyjemna. Wyraża się ona wzorem: ( ( ) 2 ( ) L = 2πa 1 m 2 m 4 ( ) ) m

27 Pole i obwód elipsy Pole elipsy wyraża się wzorem P = πab. Niestety długość elipsy nie jest już taka przyjemna. Wyraża się ona wzorem: ( ( ) 2 ( ) L = 2πa 1 m 2 m 4 ( ) ) m W praktyce stosuje się przybliżone wzory: L π(1, 5(a + b) ab) 64 3λ4 L π(a + b) 64 16λ 2, λ = a b a + b

28 Elipsa w astronomii Jednym z ważniejszych odkryć w astronomii było zauważenie, że planety poruszają się po eliptycznych orbitach. Słońce jest jednym z ognisk takiej elipsy. Najmniejsza odległość planety od Słońca nazywane jest peryhelium: pe = a(1 e), zaś największa to aphelium :ap = a(1 + e).

29 Elipsa w astronomii Jednym z ważniejszych odkryć w astronomii było zauważenie, że planety poruszają się po eliptycznych orbitach. Słońce jest jednym z ognisk takiej elipsy. Najmniejsza odległość planety od Słońca nazywane jest peryhelium: pe = a(1 e), zaś największa to aphelium :ap = a(1 + e). Mimośród każdej z planet jest bardzo mały i nieprzekracza 0,1 (z wyjątkiem Merkurego).

30 Elipsa w astronomii Jednym z ważniejszych odkryć w astronomii było zauważenie, że planety poruszają się po eliptycznych orbitach. Słońce jest jednym z ognisk takiej elipsy. Najmniejsza odległość planety od Słońca nazywane jest peryhelium: pe = a(1 e), zaś największa to aphelium :ap = a(1 + e). Mimośród każdej z planet jest bardzo mały i nieprzekracza 0,1 (z wyjątkiem Merkurego). Odleglości pe i ap podane są w kilometrach. Merkury: m = 0, 2056, pe = , ap =

31 Elipsa w astronomii Jednym z ważniejszych odkryć w astronomii było zauważenie, że planety poruszają się po eliptycznych orbitach. Słońce jest jednym z ognisk takiej elipsy. Najmniejsza odległość planety od Słońca nazywane jest peryhelium: pe = a(1 e), zaś największa to aphelium :ap = a(1 + e). Mimośród każdej z planet jest bardzo mały i nieprzekracza 0,1 (z wyjątkiem Merkurego). Odleglości pe i ap podane są w kilometrach. Merkury: m = 0, 2056, pe = , ap = Wenus: m = 0, 0067, pe = , ap =

32 Elipsa w astronomii Jednym z ważniejszych odkryć w astronomii było zauważenie, że planety poruszają się po eliptycznych orbitach. Słońce jest jednym z ognisk takiej elipsy. Najmniejsza odległość planety od Słońca nazywane jest peryhelium: pe = a(1 e), zaś największa to aphelium :ap = a(1 + e). Mimośród każdej z planet jest bardzo mały i nieprzekracza 0,1 (z wyjątkiem Merkurego). Odleglości pe i ap podane są w kilometrach. Merkury: m = 0, 2056, pe = , ap = Wenus: m = 0, 0067, pe = , ap = Ziemia: m = 0, 0167, pe = , ap =

33 Elipsa w astronomii Jednym z ważniejszych odkryć w astronomii było zauważenie, że planety poruszają się po eliptycznych orbitach. Słońce jest jednym z ognisk takiej elipsy. Najmniejsza odległość planety od Słońca nazywane jest peryhelium: pe = a(1 e), zaś największa to aphelium :ap = a(1 + e). Mimośród każdej z planet jest bardzo mały i nieprzekracza 0,1 (z wyjątkiem Merkurego). Odleglości pe i ap podane są w kilometrach. Merkury: m = 0, 2056, pe = , ap = Wenus: m = 0, 0067, pe = , ap = Ziemia: m = 0, 0167, pe = , ap = Mars: m = 0, 0935, pe = , ap =

34 Elipsa w astronomii Jednym z ważniejszych odkryć w astronomii było zauważenie, że planety poruszają się po eliptycznych orbitach. Słońce jest jednym z ognisk takiej elipsy. Najmniejsza odległość planety od Słońca nazywane jest peryhelium: pe = a(1 e), zaś największa to aphelium :ap = a(1 + e). Mimośród każdej z planet jest bardzo mały i nieprzekracza 0,1 (z wyjątkiem Merkurego). Odleglości pe i ap podane są w kilometrach. Merkury: m = 0, 2056, pe = , ap = Wenus: m = 0, 0067, pe = , ap = Ziemia: m = 0, 0167, pe = , ap = Mars: m = 0, 0935, pe = , ap = Jowisz: m = 0, 0484, pe = , ap =

35 Elipsa w astronomii Jednym z ważniejszych odkryć w astronomii było zauważenie, że planety poruszają się po eliptycznych orbitach. Słońce jest jednym z ognisk takiej elipsy. Najmniejsza odległość planety od Słońca nazywane jest peryhelium: pe = a(1 e), zaś największa to aphelium :ap = a(1 + e). Mimośród każdej z planet jest bardzo mały i nieprzekracza 0,1 (z wyjątkiem Merkurego). Odleglości pe i ap podane są w kilometrach. Merkury: m = 0, 2056, pe = , ap = Wenus: m = 0, 0067, pe = , ap = Ziemia: m = 0, 0167, pe = , ap = Mars: m = 0, 0935, pe = , ap = Jowisz: m = 0, 0484, pe = , ap = Saturn: m = 0, 0542, pe = , ap =

36 Elipsa w astronomii Jednym z ważniejszych odkryć w astronomii było zauważenie, że planety poruszają się po eliptycznych orbitach. Słońce jest jednym z ognisk takiej elipsy. Najmniejsza odległość planety od Słońca nazywane jest peryhelium: pe = a(1 e), zaś największa to aphelium :ap = a(1 + e). Mimośród każdej z planet jest bardzo mały i nieprzekracza 0,1 (z wyjątkiem Merkurego). Odleglości pe i ap podane są w kilometrach. Merkury: m = 0, 2056, pe = , ap = Wenus: m = 0, 0067, pe = , ap = Ziemia: m = 0, 0167, pe = , ap = Mars: m = 0, 0935, pe = , ap = Jowisz: m = 0, 0484, pe = , ap = Saturn: m = 0, 0542, pe = , ap = Uran: m = 0, 0472, pe = , ap =

37 Elipsa w astronomii Jednym z ważniejszych odkryć w astronomii było zauważenie, że planety poruszają się po eliptycznych orbitach. Słońce jest jednym z ognisk takiej elipsy. Najmniejsza odległość planety od Słońca nazywane jest peryhelium: pe = a(1 e), zaś największa to aphelium :ap = a(1 + e). Mimośród każdej z planet jest bardzo mały i nieprzekracza 0,1 (z wyjątkiem Merkurego). Odleglości pe i ap podane są w kilometrach. Merkury: m = 0, 2056, pe = , ap = Wenus: m = 0, 0067, pe = , ap = Ziemia: m = 0, 0167, pe = , ap = Mars: m = 0, 0935, pe = , ap = Jowisz: m = 0, 0484, pe = , ap = Saturn: m = 0, 0542, pe = , ap = Uran: m = 0, 0472, pe = , ap = Neptun: m = 0, 0113, pe = , ap =

38 Rysowanie elipsy Zauważmy następujące zależności: KROK I: Wyznaczamy dwa odcinki prostopadłe przecinające się w połowie. Będą one stanowiły osie elipsy.

39 Rysowanie elipsy KROK II: Cyrklem odmierzamy długość półosi wielkiej.

40 Rysowanie elipsy KROK II: Cyrklem odmierzamy długość półosi wielkiej. KROK III: Nie zmieniając rozstawienia cyrkla wbij go w końcowy punkt krótszej osi i narysuj dwa łuki na osi głównej. Zaznacz punkty przecięcia i opisz je jako F1 i F2. Będą to ogniska elipsy. Wbijamy tam dwie pinezki. Trzecią wbijamy w jeden z końców półosi małej.

41 Rysowanie elipsy KROK IV: Kawałek sznurka obwiązujemy wkoło trzech pinezek. Podmieniamy pinezkę osi małej na ołówek.

42 Rysowanie elipsy KROK IV: Kawałek sznurka obwiązujemy wkoło trzech pinezek. Podmieniamy pinezkę osi małej na ołówek. KROK V: Utrzymując sznurek cały czas napięty, przesuwaj ołówek po łuku, który będzie wyznaczał kształt elipsy. Elipsa jest gotowa. Zaznacz osie wielką i małą oraz ogniska. (Fot.:

43 Podziękowania Dziękuję za uwagę

Krzywe stożkowe Lekcja VII: Hiperbola

Krzywe stożkowe Lekcja VII: Hiperbola Krzywe stożkowe Lekcja VII: Hiperbola Wydział Matematyki Politechniki Wrocławskiej Czym jest hiperbola? Hiperbola jest krzywą stożkową powstałą przez przecięcie stożka płaszczyzną pod kątem 0 β < α (gdzie

Bardziej szczegółowo

Krzywe stożkowe Lekcja VI: Parabola

Krzywe stożkowe Lekcja VI: Parabola Krzywe stożkowe Lekcja VI: Parabola Wydział Matematyki Politechniki Wrocławskiej Czym jest parabola? Parabola jest krzywą stożkową powstałą przez przecięcie stożka płaszczyzną pod kątem β = α (gdzie α

Bardziej szczegółowo

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą

Bardziej szczegółowo

Krzywe stożkowe. Algebra. Aleksander Denisiuk

Krzywe stożkowe. Algebra. Aleksander Denisiuk Algebra Krzywe stożkowe Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Krzywe stożkowe

Bardziej szczegółowo

Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach:

Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach: Zestaw 9. Wykazać, że objętość równoległościanu zbudowanego na przekątnych ścian danego równoległościanu jest dwa razy większa od objętości równoległościanu danego.. Obliczyć objętość równoległościanu

Bardziej szczegółowo

Krzywe stożkowe Lekcja I: Wprowadzenie

Krzywe stożkowe Lekcja I: Wprowadzenie Krzywe stożkowe Lekcja I: Wprowadzenie Wydział Matematyki Politechniki Wrocławskiej Powierzchnia stożkowa Zaczniemy od przyjrzenia się powierzchni stożkowej. Jest ona wyznaczona przez linię prostą (tworzącą)

Bardziej szczegółowo

Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie

Rozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie Rozdział Krzywe stożkowe Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie x + By + Cxy + Dx + Ey + F = 0. (.) W zależności od relacji pomiędzy współczynnikami otrzymujemy elipsę,

Bardziej szczegółowo

Geometria analityczna - przykłady

Geometria analityczna - przykłady Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła

Bardziej szczegółowo

Ruchy planet. Wykład 29 listopada 2005 roku

Ruchy planet. Wykład 29 listopada 2005 roku Ruchy planet planety wewnętrzne: Merkury, Wenus planety zewnętrzne: Mars, Jowisz, Saturn, Uran, Neptun, Pluton Ruch planet wewnętrznych zachodzi w cyklu: koniunkcja dolna, elongacja wschodnia, koniunkcja

Bardziej szczegółowo

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych

Bardziej szczegółowo

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe 1 Algebra Liniowa z Geometria - Wydział Fizyki Zestaw nr 2 Krzywe stożkowe 1 Znaleźć współrze dne środka i promień okre gu x 2 8x + y 2 + 6y + 20 = 0 2 Znaleźć zbiór punktów płaszczyzny R 2, których odległość

Bardziej szczegółowo

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)

Bardziej szczegółowo

Prosta i płaszczyzna w przestrzeni

Prosta i płaszczyzna w przestrzeni Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego

Bardziej szczegółowo

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe

- Wydział Fizyki Zestaw nr 2. Krzywe stożkowe 1 Algebra Liniowa z Geometria - Wydział Fizyki Zestaw nr 2 Krzywe stożkowe 1 Znaleźć współrze dne środka i promień okre gu x 2 8x + y 2 + 6y + 20 = 0 2 Znaleźć zbiór punktów płaszczyzny R 2, których odległość

Bardziej szczegółowo

1 Geometria analityczna

1 Geometria analityczna 1 Geometria analityczna 1.1 Wektory na płaszczyźnie Wektor to uporządkowana para punktów, z których pierwszy nazywa się początkiem, a drugi końcem wektora. Jeżeli wprowadzimy prostokątny układ współrzędnych,

Bardziej szczegółowo

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

Zagadnienie dwóch ciał

Zagadnienie dwóch ciał Zagadnienie dwóch ciał Rysunek : Rysunek ilustrujący zagadnienie dwóch ciał. Wektor R określa położenie środka masy, wektor x położenie masy m, a wektor x 2 położenie masy m 2. Położenie masy m 2 względem

Bardziej szczegółowo

Obliczanie pozycji obiektu na podstawie znanych elementów orbity. Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie

Obliczanie pozycji obiektu na podstawie znanych elementów orbity. Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie Obliczanie pozycji obiektu na podstawie znanych elementów orbity Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie a - wielka półoś orbity e - mimośród orbity i - nachylenie orbity

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem

Bardziej szczegółowo

(a) (b) (c) o1" o2" o3" o1'=o2'=o3'

(a) (b) (c) o1 o2 o3 o1'=o2'=o3' Zad.0. Odwzorowanie powierzchni stożka, walca, sfery oraz punktów leżących na tych powierzchniach. Przy odwzorowaniu powierzchni stożka, walca, sfery przyjmiemy reprezentację konturową, co oznacza, że

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA. Poziom podstawowy

GEOMETRIA ANALITYCZNA. Poziom podstawowy GEOMETRIA ANALITYCZNA Poziom podstawowy Zadanie (4 pkt.) Dana jest prosta k opisana równaniem ogólnym x + y 6. a) napisz równanie prostej k w postaci kierunkowej. b) podaj współczynnik kierunkowy prostej

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 14

RÓWNANIA RÓŻNICZKOWE WYKŁAD 14 RÓWNANIA RÓŻNICZKOWE WYKŁAD 14 Wybrane przykłady krzywych płaskich Wybrane przykłady krzywych Cykloida Okrąg o promieniu a toczy sie bez poslizgu po prostej. Ustalony punkt tego okręgu porusza się po krzywej

Bardziej szczegółowo

= [6; 2]. Wyznacz wierzchołki tego równoległoboku.

= [6; 2]. Wyznacz wierzchołki tego równoległoboku. ZADANIE 1 (5 PKT) Wyznacz współrzędne wierzchołków trójkata jeżeli środki jego boków maja współrzędne: P = (1, 3), Q = ( 5, 4), R = ( 6, 7). ZADANIE 2 (5 PKT) Dla jakich wartości parametru α odległość

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI WPISUJE ZDAJĄCY KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY PRZED MATURĄ MAJ 2015 1. Sprawdź, czy arkusz egzaminacyjny zawiera 22 strony ( zadania 1 19). Ewentualny brak zgłoś przewodniczącemu

Bardziej szczegółowo

Analiza Matematyczna. Zastosowania Całek

Analiza Matematyczna. Zastosowania Całek Analiza Matematyczna. Zastosowania Całek Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 8-45 Gdańsk 9 maja 217

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera

Bardziej szczegółowo

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie

Bardziej szczegółowo

Sprawdzian 2. Fizyka Świat fizyki. Astronomia. Sprawdziany podsumowujące. sin = 0,0166 cos = 0,9999 tg = 0,01659 ctg = 60,3058

Sprawdzian 2. Fizyka Świat fizyki. Astronomia. Sprawdziany podsumowujące. sin = 0,0166 cos = 0,9999 tg = 0,01659 ctg = 60,3058 Imię i nazwisko Data Klasa Wersja A Sprawdzian.. Jedna jednostka astronomiczna to odległość jaką przebywa światło (biegnące z szybkością 300 000 km/h) w ciągu jednego roku. jaką przebywa światło (biegnące

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era

Bardziej szczegółowo

Arkusz 6. Elementy geometrii analitycznej w przestrzeni

Arkusz 6. Elementy geometrii analitycznej w przestrzeni Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos

Bardziej szczegółowo

Zadania do testu Wszechświat i Ziemia

Zadania do testu Wszechświat i Ziemia INSTRUKCJA DLA UCZNIA Przeczytaj uważnie czas trwania tekstu 40 min. ). W tekście, który otrzymałeś są zadania. - z luką - rozszerzonej wypowiedzi - zadania na dobieranie ). Nawet na najłatwiejsze pytania

Bardziej szczegółowo

Wskazówki do zadań testowych. Matura 2016

Wskazówki do zadań testowych. Matura 2016 Wskazówki do zadań testowych. Matura 2016 Zadanie 1 la każdej dodatniej liczby a iloraz jest równy.. C.. Korzystamy ze wzoru Zadanie 2 Liczba jest równa.. 2 C.. 3 Zadanie 3 Liczby a i c są dodatnie. Liczba

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

wersja

wersja www.as.up.krakow.pl wersja 2013-01-12 STAŁE: π = 3.14159268... e = 2.718281828... Jednostka astronomiczna 1 AU = 149.6 mln km = 8 m 19 s świetlnych Rok świetlny [l.y.] = c t = 9460730472580800 m = 9.46

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL dyskalkulia miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI

Bardziej szczegółowo

Rachunek całkowy - całka oznaczona

Rachunek całkowy - całka oznaczona SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony Próbny egzamin maturalny z matematyki. Poziom rozszerzony 1 PRÓNY EGZMIN MTURLNY Z MTEMTYKI poziom rozszerzony ZNI ZMKNIĘTE W każdym z zadań 1.. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI GEOMETRIA ANALITYCZNA W PRZESTRZENI Położenie punktu w przestrzeni określamy za pomocą trzech liczb (x, y, z). Liczby te odpowiadają rzutom na osie układu współrzędnych: każdy rzut wzdłuż płaszczyzny równoległej

Bardziej szczegółowo

ROZWINIĘCIA POWIERZCHNI STOPNIA DRUGIEGO W OPARCIU O MIEJSCA GEOMETRYCZNE Z ZA- STOSOWANIEM PROGRAMU CABRI II PLUS.

ROZWINIĘCIA POWIERZCHNI STOPNIA DRUGIEGO W OPARCIU O MIEJSCA GEOMETRYCZNE Z ZA- STOSOWANIEM PROGRAMU CABRI II PLUS. Anna BŁACH, Piotr DUDZIK, Anita PAWLAK Politechnika Śląska Ośrodek Geometrii i Grafiki Inżynierskiej ul. Krzywoustego 7 44-100 Gliwice tel./ fax: 0-32 237 26 58, e-mail: anna.blach@polsl.pl, piotr.dudzik@polsl.pl,

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

Tematy: zadania tematyczne

Tematy: zadania tematyczne Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 01 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI

Bardziej szczegółowo

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 5 maja 017 r.

Bardziej szczegółowo

KWADRYKI PARABOLOIDA HIPERBOLICZNA ELIPSOIDA HIPERBOLOIDA DWUPOWŁOKOWA HIPERBOLOIDA JEDNOPOWŁOKOWA PARABOLOIDA ELIPTYCZNA

KWADRYKI PARABOLOIDA HIPERBOLICZNA ELIPSOIDA HIPERBOLOIDA DWUPOWŁOKOWA HIPERBOLOIDA JEDNOPOWŁOKOWA PARABOLOIDA ELIPTYCZNA POWIERZCHNIE 1. Powierzchnia jedno z podstawowych pojęć geometrii. 1.1. W geometrii elementarnej powierzchnię opisuje się jako pewne zbiory punktów lub prostych o określonych własnościach np.: - sfera

Bardziej szczegółowo

FUNKCJA LINIOWA, OKRĘGI

FUNKCJA LINIOWA, OKRĘGI FUNKCJA LINIOWA, OKRĘGI. Napisz równanie prostej przechodzącej przez początek układu i prostopadłej do prostej 3x-y+=0.. Oblicz pole trójkąta ograniczonego osiami układy i prostą x+y-6=0. 3. Odcinek o

Bardziej szczegółowo

AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI

AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI UTORK: ELŻBIET SZUMIŃSK NUCZYCIELK ZESPOŁU SZKÓŁ OGÓLNOKSZTŁCĄCYCH SCHOLSTICUS W ŁODZI ZNNE RÓWNNI PROSTEJ N PŁSZCZYŹNIE I W PRZESTRZENI SPIS TREŚCI: PROST N PŁSZCZYŻNIE Str 1. Równanie kierunkowe prostej

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 6.

Ekoenergetyka Matematyka 1. Wykład 6. Ekoenergetyka Matematyka. Wykład 6. RÓWNANIA PŁASZCZYZN Fakt (równanie normalne płaszczyzny) Równanie płaszczyzny przechodzącej przez punkt P0 ( x0, y0, z0) o wektorze wodzącym r [ x, y, z ] i prostopadłej

Bardziej szczegółowo

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q

Bardziej szczegółowo

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH VIII. ZIÓR PRZYKŁDOWYCH ZDŃ MTURLNYCH ZDNI ZMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0.. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa.. 9 C. D. 5 Zadanie. ( pkt) Liczba log jest równa.

Bardziej szczegółowo

Mini tablice matematyczne. Figury geometryczne

Mini tablice matematyczne. Figury geometryczne Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku

Bardziej szczegółowo

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x. Blok III: Funkcje elementarne III. Narysuj wykres funkcji: a) y = x y = x y = x y = x III. Narysuj wykres funkcji: a) y = x + y = 4 x III. Znajdź miejsca zerowe funkcji: a) y = 6 x y = x e) y = x f) y

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRZED MATURĄ MAJ 2017 POZIOM PODSTAWOWY Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). 2. Rozwiązania zadań wpisuj

Bardziej szczegółowo

Rozwiązania zadań. Arkusz Maturalny z matematyki nr 1 POZIOM ROZSZERZONY. Aby istniały dwa różne pierwiastki równania kwadratowego wyróżnik

Rozwiązania zadań. Arkusz Maturalny z matematyki nr 1 POZIOM ROZSZERZONY. Aby istniały dwa różne pierwiastki równania kwadratowego wyróżnik Rozwiązania zadań Arkusz Maturalny z matematyki nr 1 POZIOM ROZSZERZONY Zadanie 1 (5pkt) Równanie jest kwadratowe, więc Aby istniały dwa różne pierwiastki równania kwadratowego wyróżnik /:4 nierówności

Bardziej szczegółowo

Co łączy te krzywe? cz.1

Co łączy te krzywe? cz.1 Co łączy te krzywe? cz.1 W matematyce rozróżniamy wiele krzywych, jednak najczęściej spotykamy się z okręgiem, parabolą, hiperbolą, elipsą. Jak określamy te krzywe? Gdzie występują? Co je łączy? Postaram

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. I. Funkcje. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. 1. Pojęcie funkcji i jej dziedzina. 2. Zbiór wartości funkcji. 3. Wykres funkcji liczbowej i odczytywanie jej własności

Bardziej szczegółowo

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n = /9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n

Bardziej szczegółowo

Skrypt 23. Geometria analityczna. Opracowanie L7

Skrypt 23. Geometria analityczna. Opracowanie L7 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Geometria analityczna 1.

Bardziej szczegółowo

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał Ludzki Priorytet 9 Działanie 9.1 Poddziałanie

Bardziej szczegółowo

Fizyka I. Kolokwium

Fizyka I. Kolokwium Fizyka I. Kolokwium 13.01.2014 Wersja A UWAGA: rozwiązania zadań powinny być czytelne, uporządkowane i opatrzone takimi komentarzami, by tok rozumowania był jasny dla sprawdzającego. Wynik należy przedstawić

Bardziej szczegółowo

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2

Bardziej szczegółowo

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego. Astronomia M = masa ciała G = stała grawitacji (6,67 10-11 [N m 2 /kg 2 ]) R, r = odległość dwóch ciał/promień Fg = ciężar ciała g = przyspieszenie grawitacyjne ( 9,8 m/s²) V I = pierwsza prędkość kosmiczna

Bardziej szczegółowo

Lekcja 2. Pojęcie równania kwadratowego. Str Teoria 1. Równaniem wielomianowym nazywamy równanie postaci: n

Lekcja 2. Pojęcie równania kwadratowego. Str Teoria 1. Równaniem wielomianowym nazywamy równanie postaci: n Lekcja 1. Lekcja organizacyjna kontrakt. Podręcznik: A. Ceve, M. Krawczyk, M. Kruk, A. Magryś-Walczak, H. Nahorska Matematyka w zasadniczej szkole zawodowej. Wydawnictwo Podkowa. Zakres materiału: Równania

Bardziej szczegółowo

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH ZADANIA ZAMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0 B. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa B. 9 C. D. 5 Zadanie. ( pkt) Liczba

Bardziej szczegółowo

Funkcja liniowa i prosta podsumowanie

Funkcja liniowa i prosta podsumowanie Funkcja liniowa i prosta podsumowanie Definicja funkcji liniowej Funkcja liniowa określona jest wzorem postaci: y = ax + b, x R, a R, b R a, b współczynniki funkcji dowolne liczby rzeczywiste a- współczynnik

Bardziej szczegółowo

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI DEFINICJA (funkcji elementarnych) Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe wykładnicze logarytmiczne trygonometryczne Funkcje, które można

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

Układy współrzędnych

Układy współrzędnych Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych

Bardziej szczegółowo

Kontrola wiadomości Grawitacja i elementy astronomii

Kontrola wiadomości Grawitacja i elementy astronomii Kontrola wiadomości Grawitacja i elementy astronomii I LO im. Stefana Żeromskiego w Lęborku 15 października Kartkówka w klasie IA - 20 minut Grupa 1 1 Wykonaj rysunek ilustrujący sposób wyznaczania odległości

Bardziej szczegółowo

Elementy geometrii analitycznej w R 3

Elementy geometrii analitycznej w R 3 Rozdział 12 Elementy geometrii analitycznej w R 3 Elementy trójwymiarowej przestrzeni rzeczywistej R 3 = {(x,y,z) : x,y,z R} możemy interpretować co najmniej na trzy sposoby, tzn. jako: zbiór punktów (x,

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM

Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu 23 czerwca 2017r. Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM Strona 1 z 9 1. Geometria płaska trójkąty zna

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości

Bardziej szczegółowo

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 015 POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. I. Funkcje. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM. 1. Pojęcie funkcji i jej dziedzina. 2. Zbiór wartości funkcji. 3. Wykres funkcji liczbowej i odczytywanie jej własności

Bardziej szczegółowo

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy

Bardziej szczegółowo

Geometria. Planimetria. Podstawowe figury geometryczne

Geometria. Planimetria. Podstawowe figury geometryczne Geometria Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Aksjomaty

Bardziej szczegółowo

Ruch pod wpływem sił zachowawczych

Ruch pod wpływem sił zachowawczych Ruch pod wpływem sił zachowawczych Fizyka I (B+C) Wykład XV: Energia potencjalna Siły centralne Ruch w polu grawitacyjnym Pole odpychajace Energia potencjalna Równania ruchu Znajomość energii potencjalnej

Bardziej szczegółowo

1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd 5.

1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd 5. Budowa i ewolucja Wszechświata Autor: Weronika Gawrych Spis treści: 1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd

Bardziej szczegółowo

Zad. 8(3pkt) Na podstawie definicji wykaż, że funkcja y=

Zad. 8(3pkt) Na podstawie definicji wykaż, że funkcja y= Funkcje, funkcja liniowa, funkcja kwadratowa powt. kl. 3d Zad. 1 (5pkt.) Dana jest funkcja f(x)=. Narysuj wykres funkcji g(x)= -f(x). Rozwiąż nierówność g(x). Podaj liczbę rozwiązań równania g(x)=m w zależności

Bardziej szczegółowo

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii. Trójkąty. Trójkąt dowolny. Wielokąty trygonometria 1.

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii. Trójkąty. Trójkąt dowolny. Wielokąty trygonometria 1. Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Wielokąt wypukły miara każdego kąt wewnętrznego jest mniejsza od 180 o. Liczba przekątnych: n*(n-2) Suma kątów wewnętrznych wielokąta

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone

Bardziej szczegółowo

1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)

1) 2) 3)  5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25) 1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

Wektory, układ współrzędnych

Wektory, układ współrzędnych Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.

Bardziej szczegółowo

Matura z matematyki 1920 r.

Matura z matematyki 1920 r. Matura z matematyki 1920 r. (źródło: Sprawozdanie Dyrekcji Państwowego Gimnazjum im. Karola Marcinkowskiego w Poznaniu: za 1-sze dziesięciolecie zakładu w niepodległej i wolnej ojczyźnie: 1919-1929) Żelazna

Bardziej szczegółowo

rozwiązanie zadania us. 25-go. 28. Własność czterech punktów na kole, przez które przechodzą promienie pęku harmonicznego, maj%cogo swój wierzchołek

rozwiązanie zadania us. 25-go. 28. Własność czterech punktów na kole, przez które przechodzą promienie pęku harmonicznego, maj%cogo swój wierzchołek SPIS RZECZY. PRZEDMOWA Errata Str. XIII XVI ROZDZIAŁ I. POJĘCIA WSTĘPNE slr. 1 6 1. Szereg punktów. 2. Zwykłe wyznaczanie położenia punktu na prostej. 3. Wyznaczenie położenia punktu na prostej przy pomocy

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Dwa przykłady z mechaniki

Dwa przykłady z mechaniki Rozdział 6 Dwa przykłady z mechaniki W rozdziale tym przedstawimy proste przykłady rozwiązań równań mechaniki Newtona. Mechanika Newtona zajmuje się badaniem ruchu układu punktów materialnych w przestrzeni

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014 CZĘŚĆ MATEMATYCZNA

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014 CZĘŚĆ MATEMATYCZNA EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2013/2014 CZĘŚĆ MATEMATYCZNA Zadanie 1 (0 1) Jadąc z prędkością 72 km h, samochód pokonuje trasę między miastami A i B w czasie 5 godzin. Oceń prawdziwość podanych zdań.

Bardziej szczegółowo

METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45

METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45 METODY KONSTRUKCJI ZA POMOCĄ CYRKLA WYKŁAD 1 Czas: 45 TWIERDZENIE PONCELETA-STEINERA W roku 1833, Szwajcarski matematyk Jakob Steiner udowodnił, że wszystkie klasyczne konstrukcje (za pomocą cyrkla i linijki)

Bardziej szczegółowo

Dział I FUNKCJE I ICH WŁASNOŚCI

Dział I FUNKCJE I ICH WŁASNOŚCI MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie

Bardziej szczegółowo