BIOINFORMATYKA 8. Analiza asocjacyjna - teoria

Wielkość: px
Rozpocząć pokaz od strony:

Download "BIOINFORMATYKA 8. Analiza asocjacyjna - teoria"

Transkrypt

1 IOINFORMTYK 1. Wykład wstępny 2. Struktury danych w adaniach ioinformatycznych 3. azy danych: projektowanie i struktura 4. azy danych: projektowanie i struktura 5. Powiązania pomiędzy genami: równ. Hardyego-Weinerga, wsp. rekominacji 6. naliza sprzężeń - teoria 7. naliza sprzężeń - przykłady programów 8. naliza asocjacyjna - teoria 9. naliza asocjacyjna przykłady programów 10.Symulacje komputerowe, jackknife, ootstrap 11.Monte Carlo Markov Models 12.Metody klasyfikacyjne 13.Wykład podsumowujący 14.Zastosowanie przykładowych programów do analizy danych 15.Zastosowanie przykładowych programów do analizy danych

2 WSTĘP 1. naliza asocjacyjna Zasady stosowania Różnice z analizą sprzężeń 2. Przykłady Metody wykorzystujące modele statystyczne Metody pomijające modele

3 NLIZ SOCJCYJN wstęp

4 ŹRÓDŁ ZURZENI RÓWNOWGI HW pokolenie 1 SPRZĘŻENIE SELEKCJ a a a pokolenie N a a a a a pokolenie 1 pokolenie N

5 POZORNE ZURZENIE RÓWNOWGI HW SUPOPULCJ SUPOPULCJ a a a PRÓ DNYCH a a a

6 NLIZ SOCJCYJN - definicja NLIZ SOCJCYJN 1. Statystyczna procedura poszukiwania genów 2. Poszukiwanie markerów powiązanych z genem głównym 3. Wykorzystująca zaurzenie równowagi HW pomiędzy (widzialnymi) markerami, a (niewidzialnym) genem głównym 4. Oliczone na podstawie korelacji pomiędzy zmiennością cechy, a zmiennością genotypów markerów

7 NLIZ SOCJCYJN - źródła informacji NLIZ SOCJCYJN wartości cechy genotypy markerów spokrewnienie

8 NLIZ SOCJCYJN - poszukiwanie genów POSZUKIWNIE MRKER O NJWYŻSZEJ KORELCJI ZE ZMIENNOŚCIĄ CECHY 1) 2) M1 M2 M3 M4 M5 M6... M7 0 cm 100 cm QTL M1 M2 M3 M4 M5 M6 M7 0 cm 100 cm QTL lokalizacja: 1 Marker lokalizacja: 2 Marker 7) M1 M2 M3 M4 M5 M6 M7 0 cm 100 cm QTL lokalizacja: 7 marker

9 NLIZ SOCJCYJN - NLIZ SPRZĘŻEŃ NLIZ SPRZĘŻEŃ Wykorzystuje informacje o spokrewnieniu NLIZ SOCJCYJN Nie wykorzystuje informacji o spokrewnieniu Detekcja rzeczywistego sprzężenia pomiędzy genem, a markerem Duża moc detekcji QTL nawet w pewnej odległości od markera Mała precyzja lokalizacji QTL Skan genomu Detekcja powiązania =korelacji pomiędzy genem, a markerem Mała moc detekcji QTL zlokalizowanego w pewnej odległości od markera Duża precyzja lokalizacji QTL Mapowanie precyzyjne lu skan genomu np. wykorzystanie mikromacierzy Copyright 2011, SNP Joanna Szyda

10 NLIZ SOCJCYJN cechy ciągłe

11 NLIZ SOCJCYJN - poszukiwanie genów POSZUKIWNIE MRKER O NJWYŻSZEJ KORELCJI ZE ZMIENNOŚCIĄ CECHY 1) y = + m 1 + e prawdopodoieństwo 2) y = + m 2 + e prawdopodoieństwo... 7) y = + m 7 + e prawdopodoieństwo ELEMENTY MODELU: y wartość cechy efekty wspólne dla wszystkich osoników e efekty niemierzalne (łąd) m i efekt markera " i "

12 NLIZ SPRZĘŻEŃ - poszukiwanie genów y = + m i + e Kod genotypu markera (11, 12, 22)

13 KODOWNIE GENOTYPÓW MRKERÓW - przykłady Niezależne od frekwencji alleli 11 1 Kao and Zeng, Zależne od frekwencji alleli 11 2p 2 Cockerham, p 2 - p p 1

14 TESTOWNIE - prawdopodoieństwa dla każdego markera ln ( prawdopod. ) 1) y = + m 1 + e prawdopodoieństwo 2) y = + m 2 + e prawdopodoieństwo... 7) y = + m 7 + e prawdopodoieństwo marker

15 TESTOWNIE - hipotezy i test HIPOTEZY H 0 : marker "i" nieskorelowany z QTL m i = 0 rak asocjacji H 1 : marker "i" skorelowany z QTL m i 0 występuje asocjacja MODELE STTYSTYCZNE MODEL 0 : MODEL 1 : y = + e y = + m i + e TEST LRT (likelihood ratio test) LRT = -2 [ lnpr ( MODEL 0 ) - lnpr ( MODEL 1 ) ] ~ c 2 M1-M0 Copyright 2012, Joanna Szyda

16 TESTOWNIE - wnioskowanie najardziej prawdopodona lokalizacja genu: marker 5 LRT = założone maksymalne prawdopodoieństwo łędu a MX = 0.01 prawdopodoieństwo łędu dla LRT=25.46 wynosi a T = a MX > a T H 1 na dziedziczenie cechy ma wpływ gen główny LRT gen jest w LD z markerem lokalizacja genu

17 NLIZ SOCJCYJN - przykład, skan genomu GWS GenomeWise ssociation Study

18 NLIZ SOCJCYJN - przykład z literatury

19 NLIZ SOCJCYJN cechy 0/1

20 TRNSMISSION DISEQUILIRIUM TEST - sprzężenie + asocjacja allel przekazany allel nieprzekazany x x rodzice + chore dziecko allel przekazany allel nieprzekazany x n 12 2 n 21 x

21 TRNSMISSION DISEQUILIRIUM TEST allel przekazany allel nieprzekazany x n 12 2 n 21 x TDT 2 n n ~ c1 12 n21 n rak założeń nt modelu dziedziczenia cechy

22 TRNSMISSION DISEQUILIRIUM TEST - przykład

23 TRNSMISSION DISEQUILIRIUM TEST - przykład H 0 równowaga miedzy markerem a genem H 1 zaurzenie równowagi miedzy markerem a genem H 0 : n 12 =n 21 H 1 : n 12 n 21 allel przekazany allel nieprzekazany x x TDT = 8.71 dla markera D6S2889 na chromosomie 6 a max = 0.01 a T = H 1 Segregacja genotypów markera D6S2889 jest skorelowana z ojawami łysienia plackowatego Copyright 2013 Joanna Szyda

24 COCHRN-RMITGE TEST Genotyp chory N 11chore N 12chore N 22chore zdrowy N 11zdrowe N 12zdrowe N 22zdrowe rak założeń nt modelu dziedziczenia cechy Copyright 2013, Joanna Szyda

25 zasady stosowania M1 M2 M3 M4 M5 M6 QTL M1 M2 M3 M4 M5 M6 M7 M7 QTL NLIZ SOCJCYJN y = + m i + e

Podstawy genetyki człowieka. Cechy wieloczynnikowe

Podstawy genetyki człowieka. Cechy wieloczynnikowe Podstawy genetyki człowieka Cechy wieloczynnikowe Dziedziczenie Mendlowskie - jeden gen = jedna cecha np. allele jednego genu decydują o barwie kwiatów groszku Bardziej złożone - interakcje kilku genów

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STTYSTYK MTMTYCZN 1. Wykład wstępny 2. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. opulacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test 2 8.

Bardziej szczegółowo

Spokrewnienie prawdopodobieństwo, że dwa losowe geny od dwóch osobników są genami IBD. IBD = identical by descent, geny identycznego pochodzenia

Spokrewnienie prawdopodobieństwo, że dwa losowe geny od dwóch osobników są genami IBD. IBD = identical by descent, geny identycznego pochodzenia prawdopodobieństwo, że dwa losowe geny od dwóch osobników są genami ID. Relationship Relatedness Kinship Fraternity ID = identical by descent, geny identycznego pochodzenia jest miarą względną. Przyjmuje

Bardziej szczegółowo

ZARZĄDZANIE POPULACJAMI ZWIERZĄT 1. RÓWNOWAGA GENETYCZNA POPULACJI. Prowadzący: dr Wioleta Drobik Katedra Genetyki i Ogólnej Hodowli Zwierząt

ZARZĄDZANIE POPULACJAMI ZWIERZĄT 1. RÓWNOWAGA GENETYCZNA POPULACJI. Prowadzący: dr Wioleta Drobik Katedra Genetyki i Ogólnej Hodowli Zwierząt ZARZĄDZANIE POPULACJAMI ZWIERZĄT 1. RÓWNOWAGA GENETYCZNA POPULACJI Fot. W. Wołkow Prowadzący: dr Wioleta Drobik Katedra Genetyki i Ogólnej Hodowli Zwierząt POPULACJA Zbiór organizmów żywych, które łączy

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test

Bardziej szczegółowo

Człowiek mendlowski? Genetyka człowieka w XX i XXI w.

Człowiek mendlowski? Genetyka człowieka w XX i XXI w. Człowiek mendlowski? Genetyka człowieka w XX i XXI w. Informacje Kontakt: Paweł Golik Instytut Genetyki i Biotechnologii, Pawińskiego 5A pgolik@igib.uw.edu.pl Informacje, materiały: http://www.igib.uw.edu.pl/

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test

Bardziej szczegółowo

SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ MAGDALENA FRĄSZCZAK

SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ MAGDALENA FRĄSZCZAK SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ Prowadzący: JOANNA SZYDA MAGDALENA FRĄSZCZAK WSTĘP 1. Systemy informatyczne w hodowli -??? 2. Katedra Genetyki 3. Pracownia biostatystyki - wykorzystanie narzędzi

Bardziej szczegółowo

Statystyka matematyczna Test χ 2. Wrocław, 18.03.2016r

Statystyka matematyczna Test χ 2. Wrocław, 18.03.2016r Statystyka matematyczna Test χ 2 Wrocław, 18.03.2016r Zakres stosowalności Testowanie zgodności Testowanie niezależności Test McNemara Test ilorazu szans Copyright 2014, Joanna Szyda ZAKRES STOSOWALNOŚCI

Bardziej szczegółowo

Genetyka Populacji http://ggoralski.com

Genetyka Populacji http://ggoralski.com Genetyka Populacji http://ggoralski.com Frekwencje genotypów i alleli Frekwencja genotypów Frekwencje genotypów i alleli Zadania P AA = 250/500 = 0,5 P Aa = 100/500 = 0,2 P aa = 150/500 = 0,3 = 1 Frekwencje

Bardziej szczegółowo

Wykład 14 Test chi-kwadrat zgodności

Wykład 14 Test chi-kwadrat zgodności Wykład 14 Test chi-kwadrat zgodności Obserwacje klasyfikujemy do jakościowych klas Zliczamy liczbę obserwacji w każdej klasie Jeżeli są tylko dwie klasy, to liczba obserwacji w pierszej klasie ma rozkład

Bardziej szczegółowo

Badanie predyspozycji do łysienia androgenowego u kobiet (AGA)

Badanie predyspozycji do łysienia androgenowego u kobiet (AGA) Badanie predyspozycji do łysienia androgenowego u kobiet (AGA) RAPORT GENETYCZNY Wyniki testu dla Pacjent Testowy Pacjent Pacjent Testowy ID pacjenta 0999900004112 Imię i nazwisko pacjenta Pacjent Testowy

Bardziej szczegółowo

PRZYGODY DGV. historia programu selekcji genomowej w Polsce. Joanna Szyda, Andrzej Żarnecki

PRZYGODY DGV. historia programu selekcji genomowej w Polsce. Joanna Szyda, Andrzej Żarnecki PRZYGODY DGV historia programu selekcji genomowej w Polsce Joanna Szyda, Andrzej Żarnecki Co to DGV? DGV Direct Genomic Value bezpośrednia genomowa wartość hodowlana suma addytywnych efektów markerów SNP

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Zmienność populacji człowieka. Polimorfizmy i asocjacje

Zmienność populacji człowieka. Polimorfizmy i asocjacje Zmienność populacji człowieka Polimorfizmy i asocjacje Prezentacja } http://wiki.biol.uw.edu.pl/ 2 MONOGENOWE CZYNNIKI GENETYCZNE DZIEDZICZENIE MENDLOWSKIE NIEPEŁNA PENETRACJA GENU DZIEDZICZENIE WIELOCZYNNIKOWE

Bardziej szczegółowo

Genetyka człowieka II. Cechy wieloczynnikowe, polimorfizmy i asocjacje

Genetyka człowieka II. Cechy wieloczynnikowe, polimorfizmy i asocjacje Genetyka człowieka II Cechy wieloczynnikowe, polimorfizmy i asocjacje MONOGENOWE CZYNNIKI GENETYCZNE DZIEDZICZENIE MENDLOWSKIE NIEPEŁNA PENETRACJA GENU DZIEDZICZENIE WIELOCZYNNIKOWE Z DOMINACJĄ POJEDYNCZEGO

Bardziej szczegółowo

Zasady organizacji projektów informatycznych

Zasady organizacji projektów informatycznych Zasady organizacji projektów informatycznych Systemy informatyczne w zarządzaniu dr hab. inż. Joanna Józefowska, prof. PP Plan Definicja projektu informatycznego Fazy realizacji projektów informatycznych

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

BioTe21, Pracownia Kryminalistyki i Badań Ojcostwa.

BioTe21, Pracownia Kryminalistyki i Badań Ojcostwa. Bio Kraków, dnia... EKSPERTYZA Z BADAŃ GENETYCZNYCH POKREWIEŃSTWA Nr ekspertyzy:... Badania wykonano w: Bio, Ojcostwa. Na zlecenie:... Typ wybranego testu: TIG3-16 Zlecenie z dnia:... Data otrzymania mat.

Bardziej szczegółowo

Podstawy genetyki. ESPZiWP 2010

Podstawy genetyki. ESPZiWP 2010 Podstawy genetyki ESPZiWP 2010 Genetyka - nauka o dziedziczności i zmienności organizmów, wyjaśniająca prawa rządzące podobieństwami i różnicami pomiędzy osobnikami spokrewnionymi przez wspólnego przodka

Bardziej szczegółowo

Zmienność populacji człowieka. Zróżnicowane genetyczne człowieka współczesnego. Polimorfizmy i asocjacje

Zmienność populacji człowieka. Zróżnicowane genetyczne człowieka współczesnego. Polimorfizmy i asocjacje Zmienność populacji człowieka Zróżnicowane genetyczne człowieka współczesnego. Polimorfizmy i asocjacje 1 Zmienność genetyczna człowieka } Różnice w sekwencjach (geny, obszary niekodujące) } Różnice liczby

Bardziej szczegółowo

Genetyka człowieka II. Zaburzenia chromosomowe, cechy wieloczynnikowe, polimorfizmy i asocjacje

Genetyka człowieka II. Zaburzenia chromosomowe, cechy wieloczynnikowe, polimorfizmy i asocjacje Genetyka człowieka II Zaburzenia chromosomowe, cechy wieloczynnikowe, polimorfizmy i asocjacje Zaburzenia chromosomowe W przypadku autosomów ciężki i plejotropowy fenotyp przeważnie letalny tylko 3 wyjątki

Bardziej szczegółowo

Bliskie Spotkanie z Biologią. Genetyka populacji

Bliskie Spotkanie z Biologią. Genetyka populacji Bliskie Spotkanie z Biologią Genetyka populacji Plan wykładu 1) Częstości alleli i genotypów w populacji 2) Prawo Hardy ego-weinberga 3) Dryf genetyczny 4) Efekt założyciela i efekt wąskiego gardła 5)

Bardziej szczegółowo

Podstawy genetyki. Genetyka klasyczna, narzędzia badawcze genetyki

Podstawy genetyki. Genetyka klasyczna, narzędzia badawcze genetyki Podstawy genetyki Genetyka klasyczna, narzędzia badawcze genetyki Podręczniki } Podstawy biologii molekularnej L.A. Allison } Genomy TA Brown, wyd. 3 } Genetyka molekularna P Węgleński (red.), wyd. 2 2

Bardziej szczegółowo

Program ćwiczeń z przedmiotu BIOLOGIA MOLEKULARNA I GENETYKA, część I dla kierunku Lekarskiego, rok I 2015/2016. Ćwiczenie nr 1 (06-07.10.

Program ćwiczeń z przedmiotu BIOLOGIA MOLEKULARNA I GENETYKA, część I dla kierunku Lekarskiego, rok I 2015/2016. Ćwiczenie nr 1 (06-07.10. Program ćwiczeń z przedmiotu BIOLOGIA MOLEKULARNA I GENETYKA, część I dla kierunku Lekarskiego, rok I 2015/2016 Ćwiczenie nr 1 (06-07.10.2015) Temat: Wprowadzenie 1. Omówienie regulaminu zajęć Temat: Wprowadzenie

Bardziej szczegółowo

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Genetyka ogólna wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Uniwersytet Warszawski Wydział Biologii andw@ibb.waw.pl http://arete.ibb.waw.pl/private/genetyka/ Choroby genetyczne o złożonym

Bardziej szczegółowo

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Genetyka ogólna wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Uniwersytet Warszawski Wydział Biologii andw@ibb.waw.pl http://arete.ibb.waw.pl/private/genetyka/ Program wykładu 1. Jakie

Bardziej szczegółowo

Zmodyfikowane wg Kadowaki T in.: J Clin Invest. 2006;116(7):1784-92

Zmodyfikowane wg Kadowaki T in.: J Clin Invest. 2006;116(7):1784-92 Magdalena Szopa Związek pomiędzy polimorfizmami w genie adiponektyny a wybranymi wyznacznikami zespołu metabolicznego ROZPRAWA DOKTORSKA Promotor: Prof. zw. dr hab. med. Aldona Dembińska-Kieć Kierownik

Bardziej szczegółowo

Czego nie wiedzą genetycy. wyzwania biologii w XXI wieku

Czego nie wiedzą genetycy. wyzwania biologii w XXI wieku Czego nie wiedzą genetycy wyzwania biologii w XXI wieku Plik z prezentacją http://www.igib.uw.edu.pl (zakładka dydaktyka, popularne ) Podstawowe pojęcia Informacja genetyczna Przekazywana z podziałem komórki

Bardziej szczegółowo

Materiał i metody. Wyniki

Materiał i metody. Wyniki Abstract in Polish Wprowadzenie Selen jest pierwiastkiem śladowym niezbędnym do prawidłowego funkcjonowania organizmu. Selen jest wbudowywany do białek w postaci selenocysteiny tworząc selenobiałka (selenoproteiny).

Bardziej szczegółowo

Z1/2 ANALIZA BELEK ZADANIE 2

Z1/2 ANALIZA BELEK ZADANIE 2 05/06 Z1/. NLIZ LK ZNI 1 Z1/ NLIZ LK ZNI Z1/.1 Zadanie Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej i momentu

Bardziej szczegółowo

Operatory logiczne. Podstawowe operatory logiczne, składanie wyrażeń z użyciem operatorów logicznych

Operatory logiczne. Podstawowe operatory logiczne, składanie wyrażeń z użyciem operatorów logicznych Materiał pomocniczy do kursu Podstawy programowania Autor: Grzegorz Góralski ggoralski.com Operatory logiczne Podstawowe operatory logiczne, składanie wyrażeń z użyciem operatorów logicznych Podstawowe

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI 8 DOPASOWYWANIE SEKWENCJI AMINOKWASÓW

PODSTAWY BIOINFORMATYKI 8 DOPASOWYWANIE SEKWENCJI AMINOKWASÓW PODSTAWY BIOINFORMATYKI 8 DOPASOWYWANIE SEKWENCJI AMINOKWASÓW DOPASOWYWANIE SEKWENCJI 1. Miary podobieństwa sekwencji aminokwasów 2. Zastosowanie programów: CLUSTAL OMEGA BLAST Copyright 2013, Joanna Szyda

Bardziej szczegółowo

Genetyka człowieka II. Cechy wieloczynnikowe, polimorfizmy i asocjacje

Genetyka człowieka II. Cechy wieloczynnikowe, polimorfizmy i asocjacje Genetyka człowieka II Cechy wieloczynnikowe, polimorfizmy i asocjacje Zaburzenia liczby chromosomów W przypadku autosomów ciężki i plejotropowy fenotyp przeważnie letalny tylko 3 wyjątki Główna przyczyna

Bardziej szczegółowo

Mapa niewyczerpane źródło informacji

Mapa niewyczerpane źródło informacji Mapa niewyczerpane źródło informacji Opis: Program powstał, ponieważ uczniowie mają problem w posługiwaniu się mapą i skalą. Mają kłopoty z orientacją na mapie oraz odczytywaniem informacji z różnych typów

Bardziej szczegółowo

forma studiów Studia pierwszego stopnia - stacjonarne sposób ustalania Na ocenę końcową modułu składa się średnia ważona z 2 elementów:

forma studiów Studia pierwszego stopnia - stacjonarne sposób ustalania Na ocenę końcową modułu składa się średnia ważona z 2 elementów: Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Biotechnologia, poziom I Sylabus modułu: Podstawy genetyki (1BT_22) 1. Informacje ogólne koordynator modułu dr Damian Gruszka rok akademicki

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Podstawy genetyki SYLABUS A. Informacje ogólne

Podstawy genetyki SYLABUS A. Informacje ogólne Podstawy genetyki A. Informacje ogólne Elementy sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Język Rodzaj Rok studiów /semestr Wymagania

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

Prawdopodobeństwo, test χ 2

Prawdopodobeństwo, test χ 2 Prawdopodobeństwo, test χ 2 Autor: Grzegorz Góralski ggoralski.com Co to jest prawdopodobieństwo? Prawdopodobieństwo = Liczba interesujących nas zdarzeń Liczba wszystkich zdarzeń Jakie jest prawdopodobieństwo

Bardziej szczegółowo

Raport Testy Trenerskie. Kadr Makroregionalnych Polskiego Związku Podnoszenia Ciężarów

Raport Testy Trenerskie. Kadr Makroregionalnych Polskiego Związku Podnoszenia Ciężarów Raport Testy Trenerskie Kadr Makroregionalnych Polskiego Związku Podnoszenia Ciężarów W trakcie zgrupowań Kadr Makroregionalnych Polskiego Związku Podnoszenia Ciężarów, poddano zawodników Testom Trenerskim.

Bardziej szczegółowo

GENETYCZNE PODSTAWY ZMIENNOŚCI ORGANIZMÓW ZASADY DZIEDZICZENIA CECH PODSTAWY GENETYKI POPULACYJNEJ

GENETYCZNE PODSTAWY ZMIENNOŚCI ORGANIZMÓW ZASADY DZIEDZICZENIA CECH PODSTAWY GENETYKI POPULACYJNEJ GENETYCZNE PODSTAWY ZMIENNOŚCI ORGANIZMÓW ZASADY DZIEDZICZENIA CECH PODSTAWY GENETYKI POPULACYJNEJ ZMIENNOŚĆ - występowanie dziedzicznych i niedziedzicznych różnic między osobnikami należącymi do tej samej

Bardziej szczegółowo

Searching for SNPs with cloud computing

Searching for SNPs with cloud computing Ben Langmead, Michael C Schatz, Jimmy Lin, Mihai Pop and Steven L Salzberg Genome Biology November 20, 2009 April 7, 2010 Problem Cel Problem Bardzo dużo krótkich odczytów mapujemy na genom referencyjny

Bardziej szczegółowo

Imię i nazwisko...kl...

Imię i nazwisko...kl... Gimnazjum nr 4 im. Ojca Świętego Jana Pawła II we Wrocławiu SPRAWDZIAN GENETYKA GR. A Imię i nazwisko...kl.... 1. Nauka o regułach i mechanizmach dziedziczenia to: (0-1pkt) a) cytologia b) biochemia c)

Bardziej szczegółowo

METODOLOGICZNE ASPEKTY BADAŃ W BIOLOGII CZŁOWIEKA. WYJAŚNIANIE STRATEGII ADAPTACYJNEJ CZŁOWIEKA METODAMI GENETYKI ILOŚCIOWEJ.

METODOLOGICZNE ASPEKTY BADAŃ W BIOLOGII CZŁOWIEKA. WYJAŚNIANIE STRATEGII ADAPTACYJNEJ CZŁOWIEKA METODAMI GENETYKI ILOŚCIOWEJ. METODOLOGICZNE ASPEKTY BADAŃ W BIOLOGII CZŁOWIEKA. WYJAŚNIANIE STRATEGII ADAPTACYJNEJ CZŁOWIEKA METODAMI GENETYKI ILOŚCIOWEJ Joachim Cieślik, Uniwersytet im. A. Mickiewicza w Poznaniu, Instytut Antropologii

Bardziej szczegółowo

Dryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne. Adam Bobrowski, IM PAN Katowice

Dryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne. Adam Bobrowski, IM PAN Katowice Dryf genetyczny i jego wpływ na rozkłady próbek z populacji - modele matematyczne Adam Bobrowski, IM PAN Katowice 1 Tematyka cyklu referatów Dryf genetyczny Matematyczne modele równowagi między mutacja

Bardziej szczegółowo

Graficzna prezentacja danych statystycznych

Graficzna prezentacja danych statystycznych Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych Katowice, 12 i 26 czerwca 2014 r. Dopasowanie narzędzia do typu zmiennej Dobór narzędzia do

Bardziej szczegółowo

Zarządzanie populacjami zwierząt. Efektywna wielkość populacji Wykład 3

Zarządzanie populacjami zwierząt. Efektywna wielkość populacji Wykład 3 Zarządzanie populacjami zwierząt Efektywna wielkość populacji Wykład 3 DRYF GENETYCZNY Przypadkowe zmiany częstości alleli szczególnie ważne w małych populacjach DRYF GENETYCZNY Wybieramy z dużej populacji

Bardziej szczegółowo

Algorytmy ewolucyjne (2)

Algorytmy ewolucyjne (2) Algorytmy ewolucyjne (2) zajecia.jakubw.pl/nai/ ALGORYTM GEETYCZY Cel: znaleźć makimum unkcji. Założenie: unkcja ta jet dodatnia. 1. Tworzymy oobników loowych. 2. Stoujemy operacje mutacji i krzyżowania

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

KARTA PRZEDMIOTU / SYLABUS

KARTA PRZEDMIOTU / SYLABUS Załącznik nr 5b do Uchwały nr 21/2013 Senatu KARTA PRZEDMIOTU / SYLABUS Wydział Nauk o Zdrowiu Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna

Bardziej szczegółowo

OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Makroekonomia II na kierunku Zarządzanie

OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Makroekonomia II na kierunku Zarządzanie OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Makroekonomia II na kierunku Zarządzanie I. Informacje ogólne 1. Nazwa modułu : Makroekonomia II 2. Kod modułu : MEKOII (10-MEKOII-z2-s; 10-MEKOII-z2-ns)

Bardziej szczegółowo

Warunki udzielania świadczeń w rodzaju: świadczenia zdrowotne kontraktowane odrębnie 8. BADANIA GENETYCZNE

Warunki udzielania świadczeń w rodzaju: świadczenia zdrowotne kontraktowane odrębnie 8. BADANIA GENETYCZNE Załącznik nr do Zarządzenia.. Warunki udzielania świadczeń w rodzaju: zdrowotne kontraktowane odrębnie 8. BADANIA GENETYCZNE 8.1 WARUNKI WYMAGANE Załącznik nr 2 do rozporządzenia cz. I lit. M Lp 913-916

Bardziej szczegółowo

2014-03-26. Analiza sekwencji promotorów

2014-03-26. Analiza sekwencji promotorów 2014-03-26 Analiza sekwencji promotorów 1 2014-03-26 TFy tworzą zawiły układ regulacyjny, na który składają się różne oddziaływania białko białko poprzez wytworzenie PĘTLI Specyficzne TFy Ogólne TFy Benfey,

Bardziej szczegółowo

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40 Statystyka dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl wersja 20.01.2013/13:40 Tematyka wykładów 1. Definicja statystyki 2. Populacja, próba 3. Skale pomiarowe 4. Miary położenia (klasyczne i pozycyjne)

Bardziej szczegółowo

Analiza wpływu zmian poziomu wody gruntowej na stabilność anteny stacji permanentnej Wrocław

Analiza wpływu zmian poziomu wody gruntowej na stabilność anteny stacji permanentnej Wrocław XX JUBILEUSZOWA JESIENNA SZKOŁA GEODEZJI im. Jacka Rejmana WSPÓŁCZESNE METODY POZYSKIWANIA I MODELOWANIA GEODANYCH Analiza wpływu zmian poziomu wody gruntowej na stabilność anteny stacji permanentnej Wrocław

Bardziej szczegółowo

SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ

SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ Struktura efektywnej bazy danych Zastosowanie pakietu MS Excel do tworzenia baz danych WSTĘP 1. Dane Przykłady Edycja Zarządzanie 2. Bazy danych Definicje Przykłady

Bardziej szczegółowo

INFORMATYKA GEODEZYJNO- KARTOGRAFICZNA. Modelowanie danych. Model związków-encji

INFORMATYKA GEODEZYJNO- KARTOGRAFICZNA. Modelowanie danych. Model związków-encji Modelowanie danych. Model związków-encji Plan wykładu Wprowadzenie do modelowania i projektowania kartograficznych systemów informatycznych Model związków-encji encje atrybuty encji związki pomiędzy encjami

Bardziej szczegółowo

Ćwiczenie 3. Amplifikacja genu ccr5 Homo sapiens wykrywanie delecji Δ32pz warunkującej oporność na wirusa HIV

Ćwiczenie 3. Amplifikacja genu ccr5 Homo sapiens wykrywanie delecji Δ32pz warunkującej oporność na wirusa HIV Ćwiczenie 3. Amplifikacja genu ccr5 Homo sapiens wykrywanie delecji Δ32pz warunkującej oporność na wirusa HIV Cel ćwiczenia Określenie podatności na zakażenie wirusem HIV poprzez detekcję homo lub heterozygotyczności

Bardziej szczegółowo

Streszczenie. 3. Mechanizmy Zniszczenia Plastycznego

Streszczenie. 3. Mechanizmy Zniszczenia Plastycznego Streszczenie Dobór elementów struktury konstrukcyjnej z warunku ustalonej niezawodności, mierzonej wskaźnikiem niezawodności β. Przykład liczbowy dla ramy statycznie niewyznaczalnej. Leszek Chodor, Joanna

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

Tematyka zajęć z biologii

Tematyka zajęć z biologii Tematyka zajęć z biologii klasy: I Lp. Temat zajęć Zakres treści 1 Zapoznanie z przedmiotowym systemem oceniania, wymaganiami edukacyjnymi i podstawą programową Podstawowe zagadnienia materiału nauczania

Bardziej szczegółowo

OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Koncepcje zarządzania na kierunku Administracja

OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Koncepcje zarządzania na kierunku Administracja OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Koncepcje zarządzania na kierunku Administracja I. Informacje ogólne 1. Nazwa modułu : Koncepcje zarządzania 2. Kod modułu : 10-KZw-a2-n, 10-KZw-a2-s 3.

Bardziej szczegółowo

Badania genetyczne nad populacją jelenia w północno-wschodniej Polsce

Badania genetyczne nad populacją jelenia w północno-wschodniej Polsce Badania genetyczne nad populacją jelenia w północno-wschodniej Polsce Magdalena Niedziałkowska, Bogumiła Jędrzejewska, Jan Marek Wójcik Instytut Biologii Ssaków PAN w Białowieży Cele badań 1) Poznanie

Bardziej szczegółowo

Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny?

Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny? Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny? Gdy: badana cecha jest mierzalna (tzn. posiada rozkład ciągły); badana cecha posiada rozkład normalny; dysponujemy pojedynczym wynikiem;

Bardziej szczegółowo

2. CZYNNIKI ZABURZAJĄCE RÓWNOWAGĘ GENETYCZNĄ

2. CZYNNIKI ZABURZAJĄCE RÓWNOWAGĘ GENETYCZNĄ ZARZĄDZANIE POPULACJAMI ZWIERZĄT 2. CZYNNIKI ZABURZAJĄCE RÓWNOWAGĘ GENETYCZNĄ POPULACJI Fot. W. Wołkow Prowadzący: dr Wioleta Drobik Katedra Genetyki i Ogólnej Hodowli Zwierząt MIGRACJE Zmiana frekwencji

Bardziej szczegółowo

Warsztaty diagnostyczne Zastosowanie psychologii w zarządzaniu dr B.Bajcar

Warsztaty diagnostyczne Zastosowanie psychologii w zarządzaniu dr B.Bajcar Warsztaty diagnostyczne Zastosowanie psychologii w zarządzaniu dr B.Bajcar Nr zajęć Termin 1 16.02 2 23.02 Organizacja zajęć 3 1.03. 4 8.03 5 15.03 6 22.03 7 29.03 8 5.04 9 12.04 10 19.04 11 26.04 12 10.05

Bardziej szczegółowo

Polimorfizm genu mitochondrialnej polimerazy gamma (pol γ) w populacjach ludzkich Europy

Polimorfizm genu mitochondrialnej polimerazy gamma (pol γ) w populacjach ludzkich Europy Polimorfizm genu mitochondrialnej polimerazy gamma (pol γ) w populacjach ludzkich Europy Praca wykonana pod kierunkiem dr hab. Tomasza Grzybowskiego w Katedrze Medycyny Sądowej w Zakładzie Genetyki Molekularnej

Bardziej szczegółowo

Katedra Genetyki i Podstaw Hodowli Zwierząt Wydział Hodowli i Biologii Zwierząt, UTP w Bydgoszczy

Katedra Genetyki i Podstaw Hodowli Zwierząt Wydział Hodowli i Biologii Zwierząt, UTP w Bydgoszczy Ćwiczenie: Analiza zmienności prosta Przykład w MS EXCEL Sprawdź czy genotyp jagniąt wpływa statystycznie na cechy użytkowości rzeźnej? Obliczenia wykonaj za pomocą modułu Analizy danych (jaganova.xls).

Bardziej szczegółowo

Zasilacze: - stabilizatory o pracy ciągłej. Stabilizator prądu, napięcia. Parametry stabilizatorów liniowych napięcia (prądu)

Zasilacze: - stabilizatory o pracy ciągłej. Stabilizator prądu, napięcia. Parametry stabilizatorów liniowych napięcia (prądu) asilacze: - stabilizatry pracy ciągłej. Stabilizatr prądu, napięcia Napięcie niestabilizwane (t) SABLAO Napięcie / prąd stabilizwany Parametry stabilizatrów liniwych napięcia (prądu) Napięcie wyjściwe

Bardziej szczegółowo

Jeden zestaw 14 pasków reprezentuje chromosomy od mamy smoka (samica). Drugi zestaw, o innym kolorze, reprezentuje chromosomy taty smoka (samiec).

Jeden zestaw 14 pasków reprezentuje chromosomy od mamy smoka (samica). Drugi zestaw, o innym kolorze, reprezentuje chromosomy taty smoka (samiec). Karta pracy ucznia Tłumaczenie Karolina Ciosek Jeden zestaw 14 pasków reprezentuje chromosomy od mamy smoka (samica). Drugi zestaw, o innym kolorze, reprezentuje chromosomy taty smoka (samiec). Na każdym

Bardziej szczegółowo

Ćwiczenia nr 4. Programy komputerowe stosowane do analizy danych molekularnych

Ćwiczenia nr 4. Programy komputerowe stosowane do analizy danych molekularnych Techniki molekularne ćw. 4 1 z 6 Ćwiczenia nr 4. Programy komputerowe stosowane do analizy danych molekularnych Istnieje ogromna liczba programów służących do analizy danych molekularnych. Wiele z nich

Bardziej szczegółowo

Generowanie i optymalizacja harmonogramu za pomoca

Generowanie i optymalizacja harmonogramu za pomoca Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska

Bardziej szczegółowo

PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA. CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe

PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA. CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe 1. Cele i przydatność ujęcia modelowego w ekonomii 2.

Bardziej szczegółowo

2016-01-14. Sekwencje mikrosatelitarne. SNP Single Nucleotide Polymorphism (mutacje punktowe, polimorfizm jednonukleotydowy)

2016-01-14. Sekwencje mikrosatelitarne. SNP Single Nucleotide Polymorphism (mutacje punktowe, polimorfizm jednonukleotydowy) Sekwencje mikrosatelitarne Próba nr 1 GGGGGGGGGGGG 4x GG Próba nr 2 GGGGGGGGGGGGGGGG 6x GG Próba nr 1 GGGGGGGGG Próba nr 2 GGG GGGG SNP Single Nucleotide Polymorphism (mutacje punktowe, polimorfizm jednonukleotydowy)

Bardziej szczegółowo

OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Wstęp do ekonomii i przedsiębiorczości na kierunku Prawo

OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Wstęp do ekonomii i przedsiębiorczości na kierunku Prawo Dr hab. Maria Majewska Katedra Nauk Ekonomicznych Poznań, 1.10.2015 r. OPISU MODUŁU KSZTAŁCENIA (SYLABUS) dla przedmiotu Wstęp do ekonomii i przedsiębiorczości na kierunku Prawo I. Informacje ogólne 1.

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Dwuczynnikowa analiza wariancji (2-way

Bardziej szczegółowo

1. Nazwa jednostki. Kod przedmiotu. 3. Imię i nazwisko osoby /osób prowadzącej moduł 4. Nazwa modułu: pierwszy stopień. 5. Poziom kształcenia

1. Nazwa jednostki. Kod przedmiotu. 3. Imię i nazwisko osoby /osób prowadzącej moduł 4. Nazwa modułu: pierwszy stopień. 5. Poziom kształcenia 1. Nazwa jednostki Wydział Zdrowia i Nauk Medycznych 2. Kierunek Pielęgniarstwo POMOSTOWE Kod przedmiotu 3. Imię i nazwisko osoby /osób prowadzącej moduł 4. Nazwa modułu: 5. Poziom kształcenia 6. Forma

Bardziej szczegółowo

Kurs Certyfikowany Inżynier Sieci PROFIBUS DP. Spis treści. Dzień 1

Kurs Certyfikowany Inżynier Sieci PROFIBUS DP. Spis treści. Dzień 1 Spis treści Dzień 1 I Sieć PROFIBUS wprowadzenie (wersja 1405) I-3 FMS, DP, PA - 3 wersje protokołu PROFIBUS I-4 Zastosowanie sieci PROFIBUS w automatyzacji zakładu I-5 Architektura protokołu PROFIBUS

Bardziej szczegółowo

Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008

Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008 Redaktor: Alicja Zagrodzka Korekta: Krystyna Chludzińska Projekt okładki: Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008 ISBN 978-83-7383-296-1 Wydawnictwo Naukowe Scholar

Bardziej szczegółowo

Rok akademicki: 2014/2015 Kod: EIB-2-206-BN-s Punkty ECTS: 3. Kierunek: Inżynieria Biomedyczna Specjalność: Bionanotechnologie

Rok akademicki: 2014/2015 Kod: EIB-2-206-BN-s Punkty ECTS: 3. Kierunek: Inżynieria Biomedyczna Specjalność: Bionanotechnologie Nazwa modułu: Genetyka molekularna Rok akademicki: 2014/2015 Kod: EIB-2-206-BN-s Punkty ECTS: 3 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Inżynieria Biomedyczna

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1) Nazwa przedmiotu: INŻYNIERIA SYSTEMÓW I ANALIZA SYSTEMOWA. 2) Kod przedmiotu: ROZ-L3-20

KARTA PRZEDMIOTU. 1) Nazwa przedmiotu: INŻYNIERIA SYSTEMÓW I ANALIZA SYSTEMOWA. 2) Kod przedmiotu: ROZ-L3-20 Z1-PU7 WYDANIE N2 Strona: 1 z 5 (pieczęć wydziału) KARTA PRZEDMIOTU 1) Nazwa przedmiotu: INŻYNIERIA SYSTEMÓW I ANALIZA SYSTEMOWA 3) Karta przedmiotu ważna od roku akademickiego: 2014/2015 2) Kod przedmiotu:

Bardziej szczegółowo

Biologia Klasa 3. - określa zakres ekologii, - wymienia biotyczne i abiotyczne

Biologia Klasa 3. - określa zakres ekologii, - wymienia biotyczne i abiotyczne Biologia Klasa 3 Dział :Wzajemne zależności między organizmami a środowiskiem Numer lekcji Temat lekcji Osiągnięcia ucznia podstawowe Osiągnięcia ucznia ponadpodstawowe 1 2 3 4 1. Charakterystyka środowiska

Bardziej szczegółowo

Metrologia wymiarowa dużych odległości oraz dla potrzeb mikro- i nanotechnologii

Metrologia wymiarowa dużych odległości oraz dla potrzeb mikro- i nanotechnologii Metrologia wymiarowa dużych odległości oraz dla potrzeb mikro- i nanotechnologii Grażyna Rudnicka Mariusz Wiśniewski, Dariusz Czułek, Robert Szumski, Piotr Sosinowski Główny Urząd Miar Mapy drogowe EURAMET

Bardziej szczegółowo

ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra Dział VII. EKOLOGIA NAUKA O ŚRODOWISKU

ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra Dział VII. EKOLOGIA NAUKA O ŚRODOWISKU Dział VII. EKOLOGIA NAUKA O ŚRODOWISKU wyróżnia elementy żywe i nieożywione w obserwowanym ekosystemie oblicza zagęszczenie wybranej rośliny na badanym terenie określa znaczenie wiedzy ekologicznej w życiu

Bardziej szczegółowo

TABELE WIELODZIELCZE

TABELE WIELODZIELCZE TABELE WIELODZIELCZE W wielu badaniach gromadzimy dane będące liczebnościami. Przykładowo możemy klasyfikować chore zwierzęta w badanej próbie do różnych kategorii pod względem wieku, płci czy skali natężenia

Bardziej szczegółowo

Badania zachowań pieszych. z wykorzystaniem analizy obrazu. Piotr Szagała Politechnika Warszawska

Badania zachowań pieszych. z wykorzystaniem analizy obrazu. Piotr Szagała Politechnika Warszawska Badania zachowań pieszych w obszarze przejść dla pieszych z wykorzystaniem analizy obrazu Projekt Opracowanie metody oceny bezpieczeństwa ń pieszych przy pomocy analizy obrazu wideo Konsorcjum: Instytut

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Statystyka komputerowa Computer statistics Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: Fakultatywny - oferta Poziom studiów:

Bardziej szczegółowo

Modelowanie danych, projektowanie systemu informatycznego

Modelowanie danych, projektowanie systemu informatycznego Modelowanie danych, projektowanie systemu informatycznego Modelowanie odwzorowanie rzeczywistych obiektów świata rzeczywistego w systemie informatycznym Modele - konceptualne reprezentacja obiektów w uniwersalnym

Bardziej szczegółowo

Spis treúci. 1. Wprowadzenie... 13

Spis treúci. 1. Wprowadzenie... 13 Księgarnia PWN: W. Dąbrowski, A. Stasiak, M. Wolski - Modelowanie systemów informatycznych w języku UML 2.1 Spis treúci 1. Wprowadzenie... 13 2. Modelowanie cele i metody... 15 2.1. Przegląd rozdziału...

Bardziej szczegółowo

Komputerowe Systemy Przemysłowe: Modelowanie - UML. Arkadiusz Banasik arkadiusz.banasik@polsl.pl

Komputerowe Systemy Przemysłowe: Modelowanie - UML. Arkadiusz Banasik arkadiusz.banasik@polsl.pl Komputerowe Systemy Przemysłowe: Modelowanie - UML Arkadiusz Banasik arkadiusz.banasik@polsl.pl Plan prezentacji Wprowadzenie UML Diagram przypadków użycia Diagram klas Podsumowanie Wprowadzenie Języki

Bardziej szczegółowo

Laboratorium 6 DIAGRAM KLAS (Class Diagram)

Laboratorium 6 DIAGRAM KLAS (Class Diagram) Laboratorium 6 DIAGRAM KLAS (Class Diagram) Opisuje strukturę programu (a także zależności między nimi), co znajduje odzwierciedlenie w kodzie. Charakteryzuje zależności pomiędzy składnikami systemu: klasami,

Bardziej szczegółowo

KARTA PRZEDMIOTU / SYLABUS. Zakład Statystyki i Informatyki Medycznej. tel./fax (85) 748 55 82 email: statinfmed@uwb.edu.pl dr Robert Milewski

KARTA PRZEDMIOTU / SYLABUS. Zakład Statystyki i Informatyki Medycznej. tel./fax (85) 748 55 82 email: statinfmed@uwb.edu.pl dr Robert Milewski Załącznik nr 5b do Uchwały nr 21/2013 Senatu KARTA PRZEDMIOTU / SYLABUS Wydział Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna za przedmiot:

Bardziej szczegółowo

1.INFORMACJE O PRZEDMIOCIE A. Podstawowe dane

1.INFORMACJE O PRZEDMIOCIE A. Podstawowe dane Kod przedmiotu:. Pozycja planu: B.1., B.1a 1.INFORMACJE O PRZEDMIOCIE A. Podstawowe dane Nazwa przedmiotu Metody badań na zwierzętach Kierunek studiów Poziom studiów Profil studiów Forma studiów Specjalność

Bardziej szczegółowo

Załącznik nr 1. Przykładowe makiety (ang. mockup) projektowanego interfejsu opracowane na etapie projektowania funkcjonalności.

Załącznik nr 1. Przykładowe makiety (ang. mockup) projektowanego interfejsu opracowane na etapie projektowania funkcjonalności. Załącznik nr 1. Przykładowe makiety (ang. mockup) projektowanego interfejsu opracowane na etapie projektowania funkcjonalności. Rys. 1. Makieta strony powitalnej Rys. 2. Makieta okna niezalogowanego użytkownika

Bardziej szczegółowo

KARTA PRZEDMIOTU. Genetyka, hodowla roślin i nasiennictwo R.C4

KARTA PRZEDMIOTU. Genetyka, hodowla roślin i nasiennictwo R.C4 KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Kierunek studiów: Poziom kształcenia: Profil kształcenia: Forma studiów: Obszar kształcenia: Koordynator przedmiotu: Prowadzący

Bardziej szczegółowo