Kolejna z analiz wielozmiennowych Jej celem jest eksploracja danych, poszukiwanie pewnych struktur, które mogą utworzyć wskaźniki

Wielkość: px
Rozpocząć pokaz od strony:

Download "Kolejna z analiz wielozmiennowych Jej celem jest eksploracja danych, poszukiwanie pewnych struktur, które mogą utworzyć wskaźniki"

Transkrypt

1 Analiza czynnikowa Kolejna z analiz wielozmiennowych Jej celem jest eksploracja danych, poszukiwanie pewnych struktur, które mogą utworzyć wskaźniki Budowa wskaźnika Indeks był banalny I miał wady: o Czy wszystkie podpytania były ze sobą połączone merytorycznie i statystycznie? o Czy wszystkie podpytania mierzyły tak naprawdę to samo? o Czy wszystkie podpytania były jednakowo ważne dla wskaźnika? Analiza czynnikowa jest bardziej skomplikowana, ale eliminuje ww. problemy Jest kilka metod określania liczby czynników; najpopularniejsze: Metoda Kaisera o przyjmuje istnienie tylu czynników, ile czynników ma wartość własną większą niż 1 o wartość własna określa procent wyjaśnianych przez dany czynnik wariancji o jeśli czynnik nie wyjaśnia więcej wariancji niż pojedyncza zmienna to nie ma sensu metoda Catella o z wykresem osypiska o wyszukuje się punkt reprezentujący czynnik, za którym kończy się stromizna o zlicza się czynniki powyżej tego punktu tyle ich właśnie trzeba wyodrębnić!!! korzystamy tu także z metody głównych składowych o Tylko ona pozwala uzyskać takie czynniki, które będą wyjaśniały maksymalny procent wariancji wyjściowych zmiennych Jest kilka metod obliczania ładunków czynnikowych metoda osi głównych o rekomendowana o stara się zmaksymalizować powiązania pomiędzy czynnikami a stwierdzeniami skali o nie wymaga rozkładu normalnego metoda największej wiarygodności o wymaga rozkładu normalnego o podaje poziom istotności różnicy między strukturą idealną (modelową) w strukturą uzyskaną w badaniu Rotacja by zwiększyć dopasowanie rotacje ortogonalne o najpopularniejsza: Varimax o zakładamy brak korelacji między czynnikami o przydaje się, gdy przygotowujemy predyktory dla regresji rotacje nieortogonalne (ukośne) o najpopularniejsza: Oblimin o zakładamy pewien stopień skorelowania czynników o pokaże nam też, jeśli tej korelacji nie będzie Analizę możemy prowadzić na danych surowych -> macierz korelacji danych zestandaryzowanych -> macierz kowariancji [standaryzacja: Analiza -> opis statystyczny -> statystyki opisowe -> zapisz standaryzowane wartości jako zmienne ]

2 Przy wyborze zmiennych trzeba uważać na: związki merytoryczne kierunek pytania braki odpowiedzi R11b Zbyt ufamy nauce, za mało R11c Religia-więcej konfliktów niż 1 zdec. zgoda, 5 zdec. niezgoda -> rośnie zaufanie R11d Osoby religijne często zbyt 1 zdec. zgoda, 5 zdec. niezgoda -> rośnie zaufanie R19a zajmuje się osobiście R19c R34a Religia sprzyja odnalezieniu wewnętrznego R34b Religia sprzyja zawieraniu przyjaźni R34c Religia sprzyja R34d Religia sprzyja spotykaniu właściwych ludzi Kontrola braków danych Odwrócenie R11c i R11d Analiza -> redukcja wymiarów -> analiza czynnikowa Zmienne -> wszystkie brane pod uwagę zmienne Statystyki o Statystyki opisowe o Rozwiązania wstępne o K-M-O Wyodrębnianie o Domyślne głównych składowych o Macierz korelacji, bo mamy dane surowe o Pokaż nierotowane rozwiązania czynnikowe o Wyodrębnianie na podstawie wartości własnej większe niż 1 Rotacja o Wersja pierwsza: Varimax o Wersja druga: Oblimin Opcje o Sortuj wg wartości ładunków czynnikowych o Ukryj małe współczynniki (wartość bezwzględna poniżej 0,4)

3 Interpretacja tabel: a) Całkowita wyjaśniona wariancja Skład Początkowe wartości własne Sumy kwadratów ładunków po Sumy kwadratów ładunków po rotacji owa wyodrębnieniu Ogółem % % Ogółem % wariancji % Ogółem % wariancji % wariancji skumulowa skumulowa skumulowany ny ny 1 3,736 41,514 41,514 3,736 41,514 41,514 2,788 30,983 30, ,353 15,033 56,547 1,353 15,033 56,547 1,802 20,020 51, ,083 12,028 68,576 1,083 12,028 68,576 1,582 17,573 68,576 4,778 8,639 77,215 5,685 7,609 84,824 6,485 5,386 90,210 7,402 4,462 94,671 8,286 3,183 97,854 9,193 2, ,000 Metoda wyodrębniania czynników głównych składowych. b) Wartość własna powyżej 1 to 3 czynniki Wyjaśniają w sumie (po rotacji) 68,6% wariancji (czyli 2/3 przypadków) to sporo Macierz składowych a Składowa spotykaniu właściwych ludzi,811 zawieraniu przyjaźni,774 odnalezieniu wewnętrznego,749,719 zajmuje się osobiście,680,653,482 Osoby religijne często zbyt,744 Religia-więcej konfliktów niż,412,696 Zbyt ufamy nauce, za mało,435,653 Metoda wyodrębniania czynników - Głównych składowych. a. 3 liczba wyodrębnionych składowych.

4 Nie rotowana macierz składowych Pomijamy c) Macierz rotowanych składowych a Składowa 1 2 3,846 odnalezieniu wewnętrznego,831 spotykaniu właściwych ludzi,766 zawieraniu przyjaźni,763 Zbyt ufamy nauce, za mało zajmuje się osobiście Religia-więcej konfliktów niż Osoby religijne często zbyt,779,763,610,862,834 Metoda wyodrębniania czynników - Głównych składowych. Metoda rotacji - Varimax z normalizacją Kaisera. a. Rotacja osiągnęła zbieżność w 4 iteracjach. d) Rotowana macierz Pokazuje, co ładuje każdy czynnik Czy można te czynniki nazwać? Testy Kaisera-Mayera-Olkina i Bartletta Miara KMO adekwatności doboru próby,768 Przybliżone chi-kwadrat 3352,786 Test sferyczności Bartletta df 36 Istotność,000 Test istotny (p<0,05) pokazuje, że między zmiennymi są istotne współczynniki korelacji Miara większa nić 0,5 wskazuje na dobre własności danych, a im bliżej 1 tym lepiej

5 e) Zasoby zmienności wspólnej Początkowe Po wyodrębnieniu Zbyt ufamy nauce, za mało 1,000,615 Religia-więcej konfliktów niż 1,000,768 Osoby religijne często zbyt 1,000,727 zajmuje się osobiście 1,000,567 1,000,678 odnalezieniu wewnętrznego 1,000,714 zawieraniu przyjaźni 1,000,671 1,000,724 spotykaniu właściwych ludzi 1,000,708 Metoda wyodrębniania czynników głównych składowych. Określa ile procent wariancji zmiennej wyjściowej udało się odtworzyć w nowo powstałych czynnikach Im wyższa -> tym lepiej zmienna wpisuje się w czynnik To samo dla rotacji Oblimin a) Całkowita wyjaśniona wariancja b) Macierz składowa bez rotacji c) Macierz modelowa po rotacji, pokazuje czynniki Macierz modelowa a Składowa 1 2 3,894 odnalezieniu wewnętrznego,862 zawieraniu przyjaźni,759 spotykaniu właściwych ludzi,750 Religia-więcej konfliktów niż,876

6 Osoby religijne często zbyt Zbyt ufamy nauce, za mało zajmuje się osobiście,850,823,745,553 Metoda wyodrębniania czynników - Głównych składowych. Metoda rotacji - Oblimin z normalizacją Kaisera. a. Rotacja osiągnęła zbieżność w 5 iteracjach. d) Macierz korelacji składowych Składowa ,000,261,380 2,261 1,000,210 3,380,210 1,000 Metoda wyodrębniania czynników - Głównych składowych. Metoda rotacji - Oblimin z normalizacją Kaisera. Korelacje pomiędzy czynnikami Pokazuje, że to lepsza rotacja, bo korelacje są całkiem całkiem e) Test K-M-O f) Zasób zmienności wspólnej Aby utworzyć wskaźnik a) Można postępować jak w przypadku indeksu, ale dodając teraz do siebie tylko składowe danego czynnika b) Albo wykorzystać opcję automatycznego tworzenia wskaźnika o Która uwzględnia, że poszczególne zmienne nie ładują czynnika w takim samym stopniu Oceny -> zapisz jako zmienne -> metoda Anderson-Rubin Na końcu bazy nowe zmienne Są wystandaryzowane do rozkładu normalnego Wartości należy interpretować w kategoriach odległości od średniej (o ile części odchylenia standardowego w obie strony) Ujemne niski wynik na skali Okolice zera przeciętny Dodatni wysoki wynik na skali Zapisany w ten sposób wskaźnik można wykorzystać przy innych analizach jako zmienną

7 Analiza rzetelności Wiemy, że pyt re34 w całości utworzyło jeden czynnik, jest więc dobrym materiałem na wskaźnik (skalę) O tym, jak bardzo dobra jest to skala mówi nam analiza rzetelności Analiza -> skalowanie -> analiza rzetelności Statystyki o Pozycja testowa o Skala przy wykluczeniu Statystyki rzetelności Alfa Cronbacha Liczba pozycji,851 4 Min 0,5 0,7 i wyżej skala jest rzetelna Statystyki pozycji Ogółem Średnia skali po Wariancja skali Korelacja Alfa Cronbacha usunięciu po usunięciu pozycji Ogółem po usunięciu pozycji pozycji pozycji odnalezieniu wewnętrznego 6,99 5,748,662,824 zawieraniu przyjaźni 6,46 4,818,721,798 7,01 5,705,663,823 spotykaniu właściwych ludzi 6,43 4,712,737,791 Czy dałoby się jeszcze poprawić rzetelność skali? Analiza czynnikowa a analiza rzetelności Można je wykonywać w dowolnej kolejności Jeśli najpierw czynnikowa, to rzetelności potem nas tylko upewnia Jeśli najpierw rzetelności, to czynnikowa może pokazać, czy nie ma podskal Dla re18 Trudno powiedzieć -> jako środek skali Analiza rzetelności Analiza czynnikowa z rotację oblimin Analiza rzetelności dla podskal

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008

Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008 Redaktor: Alicja Zagrodzka Korekta: Krystyna Chludzińska Projekt okładki: Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008 ISBN 978-83-7383-296-1 Wydawnictwo Naukowe Scholar

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

WALIDACJA SKALI OCENY NADMIERNEGO KORZYSTANIA Z SIECI SPOŁECZNOŚCIOWYCH (SONKSS)

WALIDACJA SKALI OCENY NADMIERNEGO KORZYSTANIA Z SIECI SPOŁECZNOŚCIOWYCH (SONKSS) WALIDACJA SKALI OCENY NADMIERNEGO KORZYSTANIA Z SIECI SPOŁECZNOŚCIOWYCH (SONKSS) dr hab. Paweł Izdebski prof. nadzw. mgr Martyna Kotyśko Instytut Psychologii Uniwersytet Kazimierza Wielkiego Grant: Osobowościowe

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

Regresja prosta. Sylwia Bedyńska Szkoła Wyższa Psychologii Społecznej w Warszawie Monika Książek Szkoła Główna Handlowa w Warszawie

Regresja prosta. Sylwia Bedyńska Szkoła Wyższa Psychologii Społecznej w Warszawie Monika Książek Szkoła Główna Handlowa w Warszawie ROZDZIAŁ 1 Regresja prosta 15 Sylwia Bedyńska Szkoła Wyższa Psychologii Społecznej w Warszawie Monika Książek Szkoła Główna Handlowa w Warszawie Regresja prosta część i modele regresji rozdział 1 W tym

Bardziej szczegółowo

Analiza Współzależności

Analiza Współzależności Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Współzależności Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

Analiza Statystyczna

Analiza Statystyczna Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza

Bardziej szczegółowo

Statystyczną ideę szacowania wskaźników EWD dobrze ilustrują dwa poniższe wykresy:

Statystyczną ideę szacowania wskaźników EWD dobrze ilustrują dwa poniższe wykresy: 1 Metoda EWD (edukacyjna wartość dodana) to zestaw technik statystycznych pozwalających zmierzyć wkład szkoły w wyniki nauczania. By można ją zastosować, potrzebujemy wyników przynajmniej dwóch pomiarów

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Podstawowe definicje statystyczne

Podstawowe definicje statystyczne Podstawowe definicje statystyczne 1. Definicje podstawowych wskaźników statystycznych Do opisu wyników surowych (w punktach, w skali procentowej) stosuje się następujące wskaźniki statystyczne: wynik minimalny

Bardziej szczegółowo

XXII Konferencja Psychologii Rozwojowej Uniwersytet Gdański, 27-29 V 2013. Polska adaptacja

XXII Konferencja Psychologii Rozwojowej Uniwersytet Gdański, 27-29 V 2013. Polska adaptacja XXII Konferencja Psychologii Rozwojowej Uniwersytet Gdański, 27-29 V 2013 Polska adaptacja Reasons Kwestionariusza behind motivation Motywów Rodzicielskich to have a child: Is a second child wanted Warrena

Bardziej szczegółowo

MODEL STRUKTURALNY RELACJI MIĘDZY SATYSFAKCJĄ

MODEL STRUKTURALNY RELACJI MIĘDZY SATYSFAKCJĄ MODEL STRUKTURALNY RELACJI MIĘDZY SATYSFAKCJĄ I LOJALNOŚCIĄ WOBEC MARKI Adam Sagan Akademia Ekonomiczna w Krakowie, Katedra Analizy Rynku i Badań Marketingowych Wstęp Modelowanie strukturalne ma wielorakie

Bardziej szczegółowo

S t a t y s t y k a, część 3. Michał Żmihorski

S t a t y s t y k a, część 3. Michał Żmihorski S t a t y s t y k a, część 3 Michał Żmihorski Porównanie średnich -test T Założenia: Zmienne ciągłe (masa, temperatura) Dwie grupy (populacje) Rozkład normalny* Równe wariancje (homoscedasticity) w grupach

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

Statystyka opisowa SYLABUS A. Informacje ogólne

Statystyka opisowa SYLABUS A. Informacje ogólne Statystyka opisowa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie

Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie Zadanie Zbadano satysfakcję z życia w skali 1 do 10 w dwóch grupach rodziców: a) Rodzice dzieci zdrowych oraz b) Rodzice dzieci z niepełnosprawnością

Bardziej szczegółowo

MYSTERY SHOPPING - JAK ANALIZOWAĆ UZYSKANE DANE? Badania Mystery shopping

MYSTERY SHOPPING - JAK ANALIZOWAĆ UZYSKANE DANE? Badania Mystery shopping MYSTERY SHOPPING - JAK ANALIZOWAĆ UZYSKANE DANE? Małgorzata Michalak, Cegedim Customer Information Badania Mystery Shopping (Tajemniczego Klienta) polegają na zbieraniu danych dotyczących oceny funkcjonowania

Bardziej szczegółowo

TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr 341[02]/MEN/2008.05.20. klasa 3 TE

TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr 341[02]/MEN/2008.05.20. klasa 3 TE TREŚCI NAUCZANIA z przedmiotu pracowania ekonomiczno - informatyczna na podstawie programu nr [0]/MEN/008.05.0 klasa TE LP TREŚCI NAUCZANIA NAZWA JEDNOSTKI DYDAKTYCZNEJ Lekcja organizacyjna Zapoznanie

Bardziej szczegółowo

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Badanie współzależności zmiennych Uwzględniając ilość zmiennych otrzymamy 4 odmiany zależności: Zmienna zależna jednowymiarowa oraz jedna

Bardziej szczegółowo

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k: Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,

Bardziej szczegółowo

Elżbieta Jasińska Katedra Informacji o Terenie, Akademia Górniczo-Hutnicza w Krakowie

Elżbieta Jasińska Katedra Informacji o Terenie, Akademia Górniczo-Hutnicza w Krakowie ZASTOSOWANIE ANALIZY CZYNNIKOWEJ W SZACOWANIU NIERUCHOMOŚCI Elżbieta Jasińska Katedra Informacji o Terenie, Akademia Górniczo-Hutnicza w Krakowie 1 WPROWADZENIE Niezależnie od przyjętego sposobu wyceny,

Bardziej szczegółowo

Statystyczne metody analizy danych

Statystyczne metody analizy danych Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezińska Definicje Statystyka (ang.statistics) - to nauka zajmująca się zbieraniem, prezentowaniem i analizowaniem

Bardziej szczegółowo

Szukając rzetelności skali decydujące starcie

Szukając rzetelności skali decydujące starcie analiza rzetelności Szukając rzetelności skali decydujące starcie Anna Huculak Predictive Solutions Witam wszystkich Państwa, którzy nadal chcą zgłębiać tajniki analizy rzetelności. W poprzednim artykule

Bardziej szczegółowo

Ocena systemu egzaminów zewnętrznych przez nauczycieli szkół gimnazjalnych i podstawowych

Ocena systemu egzaminów zewnętrznych przez nauczycieli szkół gimnazjalnych i podstawowych Filip Kulon Instytut Badań Edukacyjnych Zespół badawczy EWD Teraźniejszość i przyszłość oceniania szkolnego Ocena systemu egzaminów zewnętrznych przez nauczycieli szkół gimnazjalnych i podstawowych Na

Bardziej szczegółowo

METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA

METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA AMFETAMINY Waldemar S. Krawczyk Centralne Laboratorium Kryminalistyczne Komendy Głównej Policji, Warszawa (praca obroniona na Wydziale Chemii Uniwersytetu

Bardziej szczegółowo

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2

Bardziej szczegółowo

DETERMINANTY WYBORU FUNDUSZY INWESTYCYJNYCH

DETERMINANTY WYBORU FUNDUSZY INWESTYCYJNYCH Sylwester Białowąs Katedra Badań Marketingowych Akademia Ekonomiczna w Poznaniu DETERMINANTY WYBORU FUNDUSZY INWESTYCYJNYCH Najważniejszym elementem zachowań człowieka jest podejmowanie decyzji, odnosi

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

Co trzeba wiedzieć korzystając z modelu ARIMA i które parametry są kluczowe?

Co trzeba wiedzieć korzystając z modelu ARIMA i które parametry są kluczowe? Prognozowanie Co trzeba wiedzieć korzystając z modelu ARIMA Marta Płonka Predictive Solutions W trzecim już artykule dotyczącym szeregów czasowych przyjrzymy się modelom ARIMA. Dzisiaj skupimy się na metodzie

Bardziej szczegółowo

Rozkłady dwóch zmiennych losowych

Rozkłady dwóch zmiennych losowych Rozkłady dwóch zmiennych losowych Uogólnienie pojęć na rozkład dwóch zmiennych Dystrybuanta i gęstość prawdopodobieństwa Rozkład brzegowy Prawdopodobieństwo warunkowe Wartości średnie i odchylenia standardowe

Bardziej szczegółowo

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40 Statystyka dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl wersja 20.01.2013/13:40 Tematyka wykładów 1. Definicja statystyki 2. Populacja, próba 3. Skale pomiarowe 4. Miary położenia (klasyczne i pozycyjne)

Bardziej szczegółowo

Gimnastyka artystyczna

Gimnastyka artystyczna Gimnastyka artystyczna Zbadano losową próbę N=40 dziewcząt i chłopców z klas o profilu ogólnym i sportowym pod kątem ich ogólnej sprawności fizycznej ocenianej na skali Hirscha (od 0 do 20 pkt.), gdzie

Bardziej szczegółowo

ANALIZA KORELACJI Korelacja między zmiennymi X i Y jest miarą siły liniowego związku między tymi zmiennymi.

ANALIZA KORELACJI Korelacja między zmiennymi X i Y jest miarą siły liniowego związku między tymi zmiennymi. ANALIZA KORELACJI Większość zjawisk w otaczającym nas świecie występuje nie samotnie a w różnorodnych związkach. Odnosi się to również do zjawisk biologiczno-medycznych. O powiązaniach między nimi mówią

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania analizy wariancji w opracowywaniu wyników badań empirycznych Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki -

Bardziej szczegółowo

Technikum Ekonomiczne Klasa II Wymiar godzin: 2 godziny tygodniowo Nr programu nauczania: 2302/T-5/SP/MEN/1998.02.24 (technik ekonomista)

Technikum Ekonomiczne Klasa II Wymiar godzin: 2 godziny tygodniowo Nr programu nauczania: 2302/T-5/SP/MEN/1998.02.24 (technik ekonomista) Plan pracy dydaktycznej (jest to wstępna wersja planu, który będzie doskonalony) STATYSTYKA Technikum Ekonomiczne Klasa II Wymiar godzin: 2 godziny tygodniowo Nr programu nauczania: 2302/T-5/SP/MEN/1998.02.24

Bardziej szczegółowo

Analiza zależności liniowych

Analiza zależności liniowych Narzędzie do ustalenia, które zmienne są ważne dla Inwestora Analiza zależności liniowych Identyfikuje siłę i kierunek powiązania pomiędzy zmiennymi Umożliwia wybór zmiennych wpływających na giełdę Ustala

Bardziej szczegółowo

Streszczenie. 3. Mechanizmy Zniszczenia Plastycznego

Streszczenie. 3. Mechanizmy Zniszczenia Plastycznego Streszczenie Dobór elementów struktury konstrukcyjnej z warunku ustalonej niezawodności, mierzonej wskaźnikiem niezawodności β. Przykład liczbowy dla ramy statycznie niewyznaczalnej. Leszek Chodor, Joanna

Bardziej szczegółowo

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III ZALICZENIA W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III 1 Wariant I. PROBLEM WŁASNY Sformułować własne zadanie statystyczne związane z własną pracą badawczą

Bardziej szczegółowo

kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2

kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2 kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2 Kierunek Turystyka i Rekreacja Poziom kształcenia II stopień Rok/Semestr 1/2 Typ przedmiotu (obowiązkowy/fakultatywny) obowiązkowy y/ ćwiczenia

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących

Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących Cezary Dendek Wydział Matematyki i Nauk Informacyjnych PW Plan prezentacji Plan prezentacji Wprowadzenie

Bardziej szczegółowo

Plan wynikowy i przedmiotowy system oceniania

Plan wynikowy i przedmiotowy system oceniania Plan wynikowy i przedmiotowy system oceniania Przedmiot: Pracownia ekonomiczna Klasa II Technikum Ekonomiczne Nr programu nauczania: 341[02]/MEN/2008.05.20 (technik ekonomista) Podręcznik: R. Seidel, S.

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński Zarządzanie ryzykiem Opracował: Dr inŝ. Tomasz Zieliński I. OGÓLNE INFORMACJE O PRZEDMIOCIE Cel przedmiotu: Celem przedmiotu jest zaprezentowanie studentom podstawowych pojęć z zakresu ryzyka w działalności

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

Krystyna Skarżyńska Instytut Psychologii PAN i Szkoła Wyższa Psychologii Społecznej

Krystyna Skarżyńska Instytut Psychologii PAN i Szkoła Wyższa Psychologii Społecznej Krystyna Skarżyńska Instytut Psychologii PAN i Szkoła Wyższa Psychologii Społecznej Zaufanie interpersonalne i poczucie skuteczności mieszkańców Warszawy Zaufanie do ludzi oraz poczucie własnej skuteczności

Bardziej szczegółowo

Analiza statystyczna trudności tekstu

Analiza statystyczna trudności tekstu Analiza statystyczna trudności tekstu Łukasz Dębowski ldebowsk@ipipan.waw.pl Problem badawczy Chcielibyśmy mieć wzór matematyczny,...... który dla dowolnego tekstu...... na podstawie pewnych statystyk......

Bardziej szczegółowo

PROPOZYCJA WYKORZYSTANIA METOD ANALIZY WIELOWYMIAROWEJ DO DOBORU ZMIENNYCH W BADANIU STOPNIA INTEGRACJI RYNKÓW UBEZPIECZENIOWYCH

PROPOZYCJA WYKORZYSTANIA METOD ANALIZY WIELOWYMIAROWEJ DO DOBORU ZMIENNYCH W BADANIU STOPNIA INTEGRACJI RYNKÓW UBEZPIECZENIOWYCH Tomasz Jurkiewicz Ewa Wycinka Katedra Statystyki Uniwersytet Gdański PROPOZYCJA WYKORZYSTANIA METOD ANALIZY WIELOWYMIAROWEJ DO DOBORU ZMIENNYCH W BADANIU STOPNIA INTEGRACJI RYNKÓW UBEZPIECZENIOWYCH 1.

Bardziej szczegółowo

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych 1 Laboratorium III: Testy statystyczne Spis treści Laboratorium III: Testy statystyczne... 1 Wiadomości ogólne... 2 1. Krótkie przypomnienie wiadomości na temat testów statystycznych... 2 1.1. Weryfikacja

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012 Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Karta Instytut Pedagogiczny obowiązuje studentów rozpoczynających studia w roku akademickim 011/01 Kierunek studiów: Matematyka Profil: Ogólnoakademicki Forma

Bardziej szczegółowo

Analiza wielowymiarowa sytuacji ekonomicznej Polski oraz krajów Azji i Europy Wschodniej

Analiza wielowymiarowa sytuacji ekonomicznej Polski oraz krajów Azji i Europy Wschodniej Analiza wielowymiarowa sytuacji ekonomicznej Polski oraz krajów Azji i Europy Wschodniej Wstęp Anna Żemojtel Leszek Boguszewski Koło Naukowe Metod Ilościowych przy Katedrze Statystyki Wydziału Zarządzania

Bardziej szczegółowo

Podstawy działań na wektorach - dodawanie

Podstawy działań na wektorach - dodawanie Podstawy działań na wektorach - dodawanie Metody dodawania wektorów można podzielić na graficzne i analityczne (rachunkowe). 1. Graficzne (rysunkowe) dodawanie dwóch wektorów. Założenia: dane są dwa wektory

Bardziej szczegółowo

Statystyczny drogowskaz 1

Statystyczny drogowskaz 1 Statystyczny drogowskaz 1 Praktyczne wprowadzenie do wnioskowania statystycznego Pod redakcją Sylwii Bedyńskiej i Moniki Książek Warszawa, 2012 Wydawca: Bożena Kućmierowska Recenzenci: prof. dr hab. Magdalena

Bardziej szczegółowo

Wycena nieruchomości za pomocą wyboru wielokryterialnego w warunkach niepewności rozmytej oraz klasycznie: metodą pp i kcś

Wycena nieruchomości za pomocą wyboru wielokryterialnego w warunkach niepewności rozmytej oraz klasycznie: metodą pp i kcś Wycena nieruchomości za pomocą wyboru wielokryterialnego w warunkach niepewności rozmytej oraz klasycznie: metodą pp i kcś Materiały reklamowe ZAWAM-Marek Zawadzki Wybór wielokryterialny jako jadna z metod

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

Gabriela Karin Konkol

Gabriela Karin Konkol RODZINNE UWARUNKOWANIA OSIĄGNIĘĆ MUZYCZNYCH DZIECI I MŁODZIEŻY (NA PRZYKŁADZIE UCZNIÓW SZKÓŁ MUZYCZNYCH I i II STOPNIA) Gabriela Karin Konkol Sopocka Szkoła Muzyczna, Sopot WSTĘP Badania nad wyznacznikami

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Modelowanie Ekonometryczne i Prognozowanie

Modelowanie Ekonometryczne i Prognozowanie Modelowanie Ekonometryczne i Prognozowanie David Ramsey e-mail: david.ramsey@pwr.edu.pl strona domowa: www.ioz.pwr.edu.pl/pracownicy/ramsey 27 lutego 2015 1 / 77 Opis Kursu 1. Podstawy oraz Cele Modelowania

Bardziej szczegółowo

EFEKTY RELACYJNE W ZARZĄDZANIU RELACJAMI Z PARTNERAMI. OCENA DZIAŁAŃ NA RYNKU INSTYTUCJONALNYM

EFEKTY RELACYJNE W ZARZĄDZANIU RELACJAMI Z PARTNERAMI. OCENA DZIAŁAŃ NA RYNKU INSTYTUCJONALNYM Piotr Kwiatek Katedra Strategii Marketingowych Uniwersytet Ekonomiczny w Poznaniu EFEKTY RELACYJNE W ZARZĄDZANIU RELACJAMI Z PARTNERAMI. OCENA DZIAŁAŃ NA RYNKU INSTYTUCJONALNYM Wstęp 1 W procesie kształtowania

Bardziej szczegółowo

MS Excel 2007 Kurs zaawansowany Obsługa baz danych. prowadzi: Dr inż. Tomasz Bartuś. Kraków: 2008 04 25

MS Excel 2007 Kurs zaawansowany Obsługa baz danych. prowadzi: Dr inż. Tomasz Bartuś. Kraków: 2008 04 25 MS Excel 2007 Kurs zaawansowany Obsługa baz danych prowadzi: Dr inż. Tomasz Bartuś Kraków: 2008 04 25 Bazy danych Microsoft Excel 2007 udostępnia szereg funkcji i mechanizmów obsługi baz danych (zwanych

Bardziej szczegółowo

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy)

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) 1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku:

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Opracowała: Joanna Kisielińska 1 PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Rozkład normalny Zmienna losowa X ma rozkład normalny z parametrami µ i σ (średnia i odchylenie standardowe), jeśli jej

Bardziej szczegółowo

Matlab, zajęcia 3. Jeszcze jeden przykład metoda eliminacji Gaussa dla macierzy 3 na 3

Matlab, zajęcia 3. Jeszcze jeden przykład metoda eliminacji Gaussa dla macierzy 3 na 3 Matlab, zajęcia 3. Pętle c.d. Przypomnijmy sobie jak działa pętla for Możemy podać normalnie w Matlabie t=cputime; for i=1:20 v(i)=i; e=cputime-t UWAGA: Taka operacja jest bardzo czasochłonna i nieoptymalna

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi od łacińskiego słowa status, które oznacza

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Analysis of pension funds ranks in 2007-2011

Analysis of pension funds ranks in 2007-2011 MPRA Munich Personal RePEc Archive Analysis of pension funds ranks in 2007-2011 Rafa l Bu la University of Economics in Katowice 2014 Online at http://mpra.ub.uni-muenchen.de/59706/ MPRA Paper No. 59706,

Bardziej szczegółowo

PRZYKŁAD AUTOMATYZACJI STATYSTYCZNEJ OBRÓBKI WYNIKÓW

PRZYKŁAD AUTOMATYZACJI STATYSTYCZNEJ OBRÓBKI WYNIKÓW PRZYKŁAD AUTOMATYZACJI STATYSTYCZNEJ OBRÓBKI WYNIKÓW Grzegorz Migut, StatSoft Polska Sp. z o.o. Teresa Topolnicka, Instytut Chemicznej Przeróbki Węgla Wstęp Zasady przeprowadzania eksperymentów zmierzających

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYCZNA ANALIZA DANYCH Nazwa w języku angielskim STATISTICAL DATA ANALYSIS Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

Plan wynikowy klasa 3

Plan wynikowy klasa 3 Plan wynikowy klasa 3 Przedmiot: matematyka Klasa 3 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 28 tyg. 3 h = 84 h (78 h + 6 h do dyspozycji

Bardziej szczegółowo

ANALIZA SPRZEDAŻY: - rozproszenia

ANALIZA SPRZEDAŻY: - rozproszenia KOŁO NAUKOWE CONTROLLINGU UNIWERSYTET ZIELONOGÓRSKI ANALIZA SPRZEDAŻY: - rozproszenia - koncentracji - sezonowości Spis treści Wstęp... 3 Analiza rozproszenia sprzedaży... 4 Analiza koncentracji sprzedaży...

Bardziej szczegółowo

Publiczne Gimnazjum im. Jana Pawła II w Wilczej Woli ANALIZA EGZAMINU GIMNAZJALNEGO 2013 Z UWZGLĘDNIENIEM EWD

Publiczne Gimnazjum im. Jana Pawła II w Wilczej Woli ANALIZA EGZAMINU GIMNAZJALNEGO 2013 Z UWZGLĘDNIENIEM EWD Publiczne Gimnazjum im. Jana Pawła II w Wilczej Woli ANALIZA EGZAMINU GIMNAZJALNEGO 2013 Z UWZGLĘDNIENIEM EWD EDUKACYJNA WARTOŚĆ DODANA JAKO JEDNA Z MIAR JAKOŚCI NAUCZANIA Zasoby na wejściu Szkoła Jakość

Bardziej szczegółowo

Interpretacja trzyletnich wskaźników Edukacyjnej Wartości Dodanej

Interpretacja trzyletnich wskaźników Edukacyjnej Wartości Dodanej Filip Kulon 1 Przemysław Majkut Okręgowa Komisja Egzaminacyjna w Krakowie Interpretacja trzyletnich wskaźników Edukacyjnej Wartości Dodanej Wstęp Edukacyjna wartość dodana to sposób na mierzenie wkładu

Bardziej szczegółowo

dr Dominik M. Marciniak Analizy statystyczne w pracach naukowych czego unikać, na co zwracać uwagę.

dr Dominik M. Marciniak Analizy statystyczne w pracach naukowych czego unikać, na co zwracać uwagę. dr Dominik M. Marciniak Analizy statystyczne w pracach naukowych czego unikać, na co zwracać uwagę. Statistics in academic papers, what to avoid and what to focus on. Uniwersytet Medyczny im. Piastów Śląskich

Bardziej szczegółowo

Dr Adam Wasilewski Dr Marcin Gospodarowicz Instytut Ekonomiki Rolnictwa i Gospodarki Żywnościowej Państwowy Instytut Badawczy.

Dr Adam Wasilewski Dr Marcin Gospodarowicz Instytut Ekonomiki Rolnictwa i Gospodarki Żywnościowej Państwowy Instytut Badawczy. Dr Adam Wasilewski Dr Marcin Gospodarowicz Instytut Ekonomiki Rolnictwa i Gospodarki Żywnościowej Państwowy Instytut Badawczy Józefów, 2014 Cel Podstawy teoretyczne i metodyka badań Wyniki badań Podsumowanie

Bardziej szczegółowo

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności I. FIGURY I PRZEKSZTAŁCENIA - zna i rozumie pojęcia, zna własności figur: ogólne równanie prostej, kierunkowe równanie prostej okrąg, równanie okręgu - oblicza odległość dwóch punktów na płaszczyźnie -

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów Eksploracja danych Piotr Lipiński Informacje ogólne Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów UWAGA: prezentacja to nie

Bardziej szczegółowo

SCENARIUSZ LEKCJI MATEMATYKI, FIZYKI LUB BIOLOGII Z WYKORZYSTANIEM FILMU ROZKŁAD NORMALNY.

SCENARIUSZ LEKCJI MATEMATYKI, FIZYKI LUB BIOLOGII Z WYKORZYSTANIEM FILMU ROZKŁAD NORMALNY. SCENARIUSZ LEKCJI MATEMATYKI, FIZYKI LUB BIOLOGII Z WYKORZYSTANIEM FILMU ROZKŁAD NORMALNY. SPIS TREŚCI: I. Wprowadzenie. II. Części lekcji. 1. Część wstępna. 2. Część realizacji. 3. Część podsumowująca.

Bardziej szczegółowo

ŚREDNI BŁĄD PROGNOZOWANIA DLA METODY EKSTRAPOLACJI PRZYROSTU EMPIRYCZNEGO

ŚREDNI BŁĄD PROGNOZOWANIA DLA METODY EKSTRAPOLACJI PRZYROSTU EMPIRYCZNEGO B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 3 4 006 Bogusław GUZIK ŚREDNI BŁĄD PROGNOZOWANIA DLA METODY EKSTRAPOLACJI PRZYROSTU EMPIRYCZNEGO W artykule sformułowano standardowy układ założeń stochastycznych

Bardziej szczegółowo

KWESTIONARIUSZ POTRZEB PODRĘCZNIK

KWESTIONARIUSZ POTRZEB PODRĘCZNIK KWESTIONARIUSZ POTRZEB PODRĘCZNIK Katarzyna Ludka Wydział Psychologii Uniwersytetu Warszawskiego Pod kierunkiem naukowym dr. Michała Chruszczewskiego, Warszawa, 2007 SPIS TREŚCI Wstęp... 5 Wstęp... 5 1.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K.

Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K. Motto Cz to nie zabawne, że ci sami ludzie, którz śmieją się z science fiction, słuchają prognoz pogod oraz ekonomistów? (K. Throop III) 1 Specfika szeregów czasowch Modele szeregów czasowch są alternatwą

Bardziej szczegółowo