ANALIZY WIELOZMIENNOWE

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "ANALIZY WIELOZMIENNOWE"

Transkrypt

1 ANALIZY WIELOZMIENNOWE ANALIZA REGRESJI Charakterystyka: Rozszerzenie analizy korelacji o badanie zależności pomiędzy wieloma zmiennymi jednocześnie; Podstawowe zastosowanie (ale przez nas w tym momencie niewykorzystywane) to przewidywanie wartości zmiennej zależnej, gdy zmieniają się wartości zmiennych niezależnych. Założenia: Budujemy pewien model, w którym będzie jedna zmienna zależna i grupa zmiennych niezależnych; Interesuje nas oddziaływanie zmiennych niezależnych na zależną łącznie a nie każdej z nich osobno (tak jak to było w podstawowych testach statystycznych); Zmienne niezależne nazywamy predyktorami; Zmienna zależna i zmienne niezależne mają mieć rozkład normalny; Wszystkie zmienne w modelu (i zależna, i niezależne) muszą być ilościowe; Jeśli chcemy włączyć do modelu zmienne kategorialne (nominalne, porządkowe) to należy wcześniej przekodować je do postaci zero-jedynkowej; Predyktor musi być określony dla min. 15 jednostek; Predyktory nie powinny ze sobą silnie korelować w zasadzie to nie powinno być między nimi żadnej korelacji, ale wiemy, że jest to niemożliwe: stąd warunek został osłabiony i eliminujemy z modelu tylko silnie skorelowane predyktory. Przykład: Filtr: rok 2010 Model: o Zmienna zależna: re6 Mężczyz. zarabiać, kobieta w domu o Zmienne niezależne: q9age wiek q49a liczba dzieci r31 religijność q8 płeć Aby móc włączyć do modelu zmienną kategorialną płeć należy ją przekodować na dwie zmienne, gdzie: q8_m bycie mężczyzną (kody: 1 mężczyzna, 0 kobieta) q8_k bycie kobietą (kody: 0 mężczyzna, 1 kobieta). 1

2 Ze zrekodowanych zmiennych płci wybieramy jedną i włączamy do modelu. Nie bierzemy obu, bo wiemy, że są ze sobą silnie skorelowane (kto jest kobietą, ten nie jest mężczyzną i na odwrót). Model wygląda teraz tak: o Zmienna zależna: re6 Mężczyz. zarabiać, kobieta w domu o Zmienne niezależne: q9age wiek q49a liczba dzieci r31 religijność q8_m bycie mężczyzną Jednym z podstawowych warunków analizy regresji jest również to, by zmienne niezależne nie były wzajemnie silnie skorelowane. Sprawdzamy to, wykonując serię testów r-pearsona. Do serii korelacji dołączymy również zmienną zależną sprawdzając przy okazji, czy jest korelacja między nią, a zmiennymi niezależnymi brak takiej korelacji osłabiłby model. Syntax CORRELATIONS /VARIABLES=re6 q9age q49a re31 q8_m /PRINT=TWOTAIL NOSIG /MISSING=PAIRWISE Korelacje Mężczyz Wiek Liczba Resp osobą mężczyzna zarabiać, kobieta w domu respondenta wszystkich dzieci respondenta religijną/nierelig ijną Korelacja Pearsona 1 -,228 ** -,138 **,188 ** -,129 ** Mężczyz zarabiać, Istotność (dwustronna),000,000,000,000 kobieta w domu N Korelacja Pearsona -,228 ** 1,427 ** -,187 ** -,091 ** Wiek respondenta Istotność (dwustronna),000,000,000,001 N Korelacja Pearsona -,138 **,427 ** 1 -,166 ** -,127 ** Liczba wszystkich Istotność (dwustronna),000,000,000,000 dzieci respondenta N Korelacja Pearsona,188 ** -,187 ** -,166 ** 1,162 ** Resp osobą Istotność (dwustronna),000,000,000,000 religijną/niereligijną N Korelacja Pearsona -,129 ** -,091 ** -,127 **,162 ** 1 mężczyzna Istotność (dwustronna),000,001,000,000 N **. Korelacja jest istotna na poziomie 0.01 (dwustronnie). 2

3 Po pierwsze sprawdzamy, czy zmienna zależna jest skorelowana z każdą zmienną niezależną z osobna. Okazało się, że jest (szara kolumna): re6 x wiek: p<0,05, r xy = -0,228 re6 x liczba dzieci: p<0,05, r xy = -0,138 re6 x religijność: p<0,05, r xy = 0,188 re6 x bycie mężczyzną: p<0,05, r xy = -0,129 Gdy analizujemy związki zależnej z każdą zmienną niezależną z osobna, to korelacje nie są bardzo wysokie. Regresja powie nam, czy wartość współczynnika korelacji zmieni się (będzie to związek silniejszy lub słabszy), gdy sprawdzimy działanie wszystkich zmiennych niezależnych razem. Po drugie sprawdzamy korelacje między zmiennymi niezależnymi (zaznaczone w tabeli na żółto): wiek x liczba dzieci: p<0,05, r xy = 0,427 wiek x religijność: p<0,05, r xy = -0,187 wiek x bycie mężczyzną: p<0,05, r xy = -0,091 liczba dzieci x religijność: p<0,05, r xy = -0,166 liczba dzieci x bycie mężczyzną: p<0,05, r xy = -0,127 religijność x bycie mężczyzną: p<0,05, r xy = 0,162 Niestety, wszystkie zmienne niezależne w naszym modelu są ze sobą skorelowane. Ale jak już było wspomniane wcześniej, brak korelacji jest utopią. Patrzymy więc na siłę stwierdzonych zależności. Generalnie są słabe, poza jedną: wiek x liczba dzieci. W takim przypadku należy z modelu wykluczyć jedną z silnie korelujących zmiennych. To jest decyzja raczej merytoryczna: która zmienna jest dla nas ważniejsza? która jest mniej istotna? Tutaj możemy zadecydować o wykluczeniu zmiennej liczba dzieci. W efekcie model wygląda teraz tak: o Zmienna zależna: re6 Mężczyz. zarabiać, kobieta w domu o Zmienne niezależne: q9age wiek r31 religijność q8_m bycie mężczyzną Dlaczego tak ważne jest, by predyktory nie były skorelowane? Bo jeśli umieścimy w modelu skorelowane predyktory, to możemy mieć podejrzenia, że mierzą to samo. I co za tym idzie: ich związki z zależną też są podobne. I nie wiemy wówczas, jaki jest rzeczywisty wpływ każdego z nich na zmienna zależną. Może w skrajnych przypadkach dojść do sytuacji, że predykator każdy z osobna włączony do modelu jest istotnie związany z zależną, ale wprowadzone razem znoszą się i ich wspólny wpływ będzie nieistotny. 3

4 ANALIZA -> REGRESJA -> LINIOWA W zakładce Statystyki oprócz domyślnych oszacowania dopasowanie modelu warto jeszcze zaznaczyć statystyki opisowe Resztę ustawień pozostawiamy domyślnie. Syntax REGRESSION /DESCRIPTIVES MEAN STDDEV CORR SIG N /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT re6 /METHOD=ENTER q9age re31 q8_m. W ostatnich dwóch liniach kodu są zmienne: w linii: /DEPENDENT [zmienna zależna] w linii /METHOD=ENTER [zmienne niezależne] Interpretacja tabel wynikowych: a) statystyki opisowe prosta analiza średnich i odchyleń nieużyteczne w przypadku zdekodowanych zmiennych kategorialnych (nie da się interpretować wartości średniej i odchylenia) b) korelacje seria korelacji r-pearsona informacje, które już znamy, bo wykonaliśmy takie obliczenia przed przystąpieniem do analizy regresji możemy tu upewnić się: o czy zmienna zależna jest skorelowana ze zmiennymi niezależnymi; o czy i jak mocno zmienne niezależne skorelowane są między sobą. 4

5 c) Zmienne wprowadzone / usunięte Jeśli SPSS zdecydowałby o usunięciu z modelu jakiś zmiennych, to poinformowałby o tym właśnie tutaj; Program usuwa zmienne niezależna bardzo silnie ze sobą korelujące; U nas nie ma zmiennych wycofanych z modelu, wszystkie zostały poddane dalszym analizom. d) Model podsumowanie Model - Podsumowanie Model R R-kwadrat Skorygowane R-kwadrat Błąd standardowy oszacowania 1,322 a,104,101 1,140 a. Predyktory: (Stała), mężczyzna, Wiek respondenta, Resp osobą religijną/niereligijną Tabela podaje wartości współczynników korelacji wielozmiennowej: R to siła związku pomiędzy zmienną zależną a predyktorami im więcej predyktorów, tym trudniejsza jego interpretacja; R-kwadrat jaki odsetek wariancji wyjaśnia model (u nas: 10% czyli niewiele) Skorygowane R-kwadrat wartość współczynnika z poprawką na liczbę analizowanych jednostek i liczbę predyktorów w modelu. Interpretujemy wartość skorygowanego R-kwadrat: 0,101. Interpretacja jest taka sama jak w przypadku wszystkich współczynników korelacji. U nas: wartość R 2 kor = 0,101, co oznacza korelację słabą pomiędzy wiązką zmiennych niezależnych a zmienną zależną. e) ANOVA Informuje nas, czy stwierdzona korelacja wielozmiennowa jest istotna statystycznie; Jeśli istotność jest mniejsza niż 0,05, to korelacja wielozmiennowa jest istotna statystycznie; W naszym przypadku tak właśnie jest, czyli mamy istotną, ale słabą korelację w modelu regresji: F(3, 1209) = 46,585; p<0,05 Anova a Model Suma kwadratów df Średni kwadrat F Istotność Regresja 181, ,564 46,585,000 b 1 Reszta 1571, ,300 Ogółem 1753, a. Zmienna zależna: Mężczyz zarabiać, kobieta w domu b. Predyktory: (Stała), mężczyzna, Wiek respondenta, Resp osobą religijną/niereligijną 5

6 f) Współczynniki Współczynniki a Model Współczynniki niestandaryzowane Współczynniki standaryzowane t Istotność B Błąd standardowy Beta (Stała) 3,096,152 20,373,000 Wiek respondenta -,015,002 -,209-7,541,000 1 Resp osobą religijną/niereligijną,205,032,179 6,378,000 mężczyzna -,424,067 -,176-6,374,000 a. Zmienna zależna: Mężczyz zarabiać, kobieta w domu Analiza regresji oprócz informacji nt. korelacji całego modelu, udostępnia też informacje, jak ze zmienną zależną korelują w ramach modelu zmienne niezależne. To w ramach modelu oznacza, że patrzymy na korelację dwóch zmiennych, ale przy jednoczesnym oddziaływaniu zmiennych sąsiadujących. Pokazane wcześniej korelacje r-pearsona były liczone w sposób wyizolowany, tutaj mamy korelację + jej otoczenie. Z tabeli odczytujemy: Istotność jeśli mniejsza niż 0,05, to korelacja jest istotna statystycznie; o Jeśli byłaby nieistotna korelacja, to znaczy, że mamy w modelu Albo zmienną niezależną nieskorelowaną ze zmienną zależną Albo ten predyktor jest mocno skorelowany z innymi predyktorami. Beta (współczynnik standaryzowany) o Interpretujemy jak każdy współczynnik korelacji; o Informuje o wielkości wpływu poszczególnych predyktorów na zmienną zależną. Opis i interpretacja całej przeprowadzonej analizy regresji: Analizę regresji przeprowadzono dla następującego modelu: zmienną zależną była opinia nt. podziału ról w rodzinie, a predyktorami zmienne wiek, religijność respondenta i płeć (bycie mężczyzną). Zaproponowany model okazał się istotny statystycznie F(3, 1209) = 46,585; p<0,05. Wartość współczynnika R 2 kor = 0,101 wskazuje, że korelacja stwierdzona w ramach modelu jest słaba (wyjaśnia ok. 10% wariancji). Wartości poszczególnych współczynników predyktorów były istotne statystycznie i wyniosły: dla zmiennej wiek = -0,209, p<0,05 ; dla zmiennej religijność = 0,179, p<0,05 ; dla zmiennej płeć (bycie mężczyzną) = -0,176, p<0,05. Dla zmiennych wiek i płeć wartości współczynników są ujemne, co oznacza, że wyższy wiek respondenta oraz bycie mężczyzną sprzyjają akceptacji twierdzenia o podziale ról. Z kolei dla zmiennej religijność wartość współczynnika była dodatnia, co oznacza, że im mniej religijny był respondent, tym częściej analizowane twierdzenie odrzucał. 6

Kolejna z analiz wielozmiennowych Jej celem jest eksploracja danych, poszukiwanie pewnych struktur, które mogą utworzyć wskaźniki

Kolejna z analiz wielozmiennowych Jej celem jest eksploracja danych, poszukiwanie pewnych struktur, które mogą utworzyć wskaźniki Analiza czynnikowa Kolejna z analiz wielozmiennowych Jej celem jest eksploracja danych, poszukiwanie pewnych struktur, które mogą utworzyć wskaźniki Budowa wskaźnika Indeks był banalny I miał wady: o Czy

Bardziej szczegółowo

(x j x)(y j ȳ) r xy =

(x j x)(y j ȳ) r xy = KORELACJA. WSPÓŁCZYNNIKI KORELACJI Gdy w badaniu mamy kilka cech, często interesujemy się stopniem powiązania tych cech między sobą. Pod słowem korelacja rozumiemy współzależność. Mówimy np. o korelacji

Bardziej szczegółowo

TESTY I KORELACJE cz.2

TESTY I KORELACJE cz.2 TESTY I KORELACJE cz.2 1. JEDNOCZYNNIKOWA ANALIZA WARIANCJI ANOVA W SCHEMACIE MIĘDZYGRUPOWYM Analizę wariancji można podzielić na dwa typy: a) Ze względu na liczbę czynników: Jednoczynnikowa gdy po stronie

Bardziej szczegółowo

P: Czy studiujący i niestudiujący preferują inne sklepy internetowe?

P: Czy studiujący i niestudiujący preferują inne sklepy internetowe? 2 Test niezależności chi-kwadrat stosuje się (między innymi) w celu sprawdzenia czy pomiędzy zmiennymi istnieje związek/zależność. Stosujemy go w sytuacji, kiedy zmienna zależna mierzona jest na skali

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku

Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Przykład 2 Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Sondaż sieciowy analiza wyników badania sondażowego dotyczącego motywacji w drodze do sukcesu Cel badania: uzyskanie

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

ANALIZA REGRESJI SPSS

ANALIZA REGRESJI SPSS NLIZ REGRESJI SPSS Metody badań geografii społeczno-ekonomicznej KORELCJ REGRESJ O ile celem korelacji jest zmierzenie siły związku liniowego między (najczęściej dwoma) zmiennymi, o tyle w regresji związek

Bardziej szczegółowo

Dwuczynnikowa ANOVA dla prób niezależnych w schemacie 2x2

Dwuczynnikowa ANOVA dla prób niezależnych w schemacie 2x2 Dwuczynnikowa ANOVA dla prób niezależnych w schemacie 2x2 Poniżej prezentujemy przykładowe pytania z rozwiązaniami dotyczącymi dwuczynnikowej analizy wariancji w schemacie 2x2. Wszystkie rozwiązania są

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Analiza regresji wielokrotnej - hierarchiczna

Analiza regresji wielokrotnej - hierarchiczna Analiza regresji wielokrotnej - hierarchiczna Poniżej prezentujemy przykładowe pytania z rozwiązaniami dotyczącymi analizy regresji wielokrotnej wykonanej metodą hierarchiczną. Wszystkie rozwiązania są

Bardziej szczegółowo

Badanie zależności skala nominalna

Badanie zależności skala nominalna Badanie zależności skala nominalna I. Jak kształtuje się zależność miedzy płcią a wykształceniem? II. Jak kształtuje się zależność między płcią a otyłością (opis BMI)? III. Jak kształtuje się zależność

Bardziej szczegółowo

Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31

Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31 Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

Ścieżki dostępu do STATISTICA

Ścieżki dostępu do STATISTICA Ścieżki dostępu do STATISTICA Spis treści Sprawdzanie zgodności z rozkładem normalnym test Shapiro-Wilka:... 2 Test t-studenta w modelu zmiennych niezależnych:... 3 Test t-studenta w modelu zmiennych powiązanych...

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Ekonometria. Weryfikacja modelu. Paweł Cibis pcibis@o2.pl. 6 kwietnia 2006

Ekonometria. Weryfikacja modelu. Paweł Cibis pcibis@o2.pl. 6 kwietnia 2006 Weryfikacja modelu Paweł Cibis pcibis@o2.pl 6 kwietnia 2006 1 Badanie istotności parametrów strukturalnych modelu Testy Pakiet Analiza Danych Uwagi 2 Test dla małej próby Test dla dużej próby 3 Test Durbina-Watsona

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Dwuczynnikowa analiza wariancji (2-way

Bardziej szczegółowo

Analiza wariancji jednej zmiennej (UNIANOVA)

Analiza wariancji jednej zmiennej (UNIANOVA) UNIANOVA ocena BY pĺ eä szkoĺ a doĺ wiadczenie /METHOD=SSTYPE(3) /INTERCEPT=INCLUDE /POSTHOC=szkoĹ a(snk) /PLOT=PROFILE(szkoĹ a*doĺ wiadczenie*pĺ eä doĺ wiadczenie*szkoĺ a*pĺ eä szkoĺ a*pĺ eä *doĺ wiadczenie

Bardziej szczegółowo

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie

Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie Zadanie Zbadano satysfakcję z życia w skali 1 do 10 w dwóch grupach rodziców: a) Rodzice dzieci zdrowych oraz b) Rodzice dzieci z niepełnosprawnością

Bardziej szczegółowo

R-PEARSONA Zależność liniowa

R-PEARSONA Zależność liniowa R-PEARSONA Zależność liniowa Interpretacja wyników: wraz ze wzrostem wartości jednej zmiennej (np. zarobków) liniowo rosną wartości drugiej zmiennej (np. kwoty przeznaczanej na wakacje) czyli np. im wyższe

Bardziej szczegółowo

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Hipotezą statystyczną jest dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia

Bardziej szczegółowo

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4

KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4 KARTA KURSU (do zastosowania w roku ak. 2015/16) Nazwa Statystyka 1 Nazwa w j. ang. Statistics 1 Kod Punktacja ECTS* 4 Koordynator Dr hab. Tadeusz Sozański (koordynator, wykłady) Dr Paweł Walawender (ćwiczenia)

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

Analiza korelacji

Analiza korelacji Analiza korelacji Zakres szkolenia Wstęp Podstawowe pojęcia korelacji Współczynnik korelacji liniowej Pearsona Współczynnik korelacji rang Spearmana Test istotności Zadania 2 Wstęp Do czego służy korelacja:

Bardziej szczegółowo

KORELACJE (zmienne ilościowe i porządkowe)

KORELACJE (zmienne ilościowe i porządkowe) OBLICZENIE WSPÓŁCZYNNIKA KORELACJI R-Persona, Rho-Spearmana, tau-b Kendala Aby policzyć korelacje między zmiennymi ilościowymi/porządkowymi (R-Persona, Rho-Spearmana, tau-b Kendala): - wybieramy menu Analiza>Korelacje>Parami

Bardziej szczegółowo

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN

Bardziej szczegółowo

Metodologia badań psychologicznych. Wykład 12. Korelacje

Metodologia badań psychologicznych. Wykład 12. Korelacje Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Wykład 12. Korelacje Korelacja Korelacja występuje wtedy gdy dwie różne miary dotyczące tych samych osób, zdarzeń lub obiektów

Bardziej szczegółowo

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii SPIS TREŚCI Przedmowa... 11 Wykaz symboli... 15 Litery alfabetu greckiego wykorzystywane w podręczniku... 15 Symbole wykorzystywane w zagadnieniach teorii mnogości (rachunku zbiorów)... 16 Symbole stosowane

Bardziej szczegółowo

Gimnastyka artystyczna

Gimnastyka artystyczna Gimnastyka artystyczna Zbadano losową próbę N=40 dziewcząt i chłopców z klas o profilu ogólnym i sportowym pod kątem ich ogólnej sprawności fizycznej ocenianej na skali Hirscha (od 0 do 20 pkt.), gdzie

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Jeżeli A wpływa na B, a B wpływa na C, to A wpływa na C czyli o efektach łącznych

Jeżeli A wpływa na B, a B wpływa na C, to A wpływa na C czyli o efektach łącznych modelowanie strukturalne Jeżeli A wpływa na B, a B wpływa na C, to A wpływa na C czyli o efektach łącznych Monika Książek Szkoła Główna Handlowa W poprzednim artykule wykorzystaliśmy możliwości, jakie

Bardziej szczegółowo

Żródło: https://scepticemia.com/2012/09/21/william-gosset-a-true-student/

Żródło: https://scepticemia.com/2012/09/21/william-gosset-a-true-student/ Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Zmienne muszą być zmiennymi ilościowym (liczymy i porównujemy średnie!) Są to testy parametryczne Test

Bardziej szczegółowo

Analiza współzależności zjawisk

Analiza współzależności zjawisk Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.

Bardziej szczegółowo

Podstawy obsługi SPSS

Podstawy obsługi SPSS Podstawy obsługi SPSS Interfejs programu SPSS Deklarowanie zmiennych Wprowadzanie danych Zapisywanie i wczytywanie zbioru danych Operacje na zmiennych Podstawowe obliczenia statystyczne (rozkład częstości,

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

TESTY I KORELACJE cz.1

TESTY I KORELACJE cz.1 TESTY I KORELACJE cz.1 TESTY I KORELACJE - WPROWADZENIE Podstawowe narzędzia statystyki indukcyjnej to testy statystyczne i współczynniki korelacji. Różnice między nimi prezentuje poniższa tabela: TEST

Bardziej szczegółowo

Zadanie 1. Za pomocą analizy rzetelności skali i wspólczynnika Alfa- Cronbacha ustalić, czy pytania ankiety stanowią jednorodny zbiór.

Zadanie 1. Za pomocą analizy rzetelności skali i wspólczynnika Alfa- Cronbacha ustalić, czy pytania ankiety stanowią jednorodny zbiór. L a b o r a t o r i u m S P S S S t r o n a 1 W zbiorze Pytania zamieszczono odpowiedzi 25 opiekunów dzieci w wieku 8. lat na następujące pytania 1 : P1. Dziecko nie reaguje na bieżące uwagi opiekuna gdy

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania

Bardziej szczegółowo

TABELE WIELODZIELCZE

TABELE WIELODZIELCZE TABELE WIELODZIELCZE W wielu badaniach gromadzimy dane będące liczebnościami. Przykładowo możemy klasyfikować chore zwierzęta w badanej próbie do różnych kategorii pod względem wieku, płci czy skali natężenia

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych

Bardziej szczegółowo

2. Pewien psycholog w przeprowadzonym przez siebie badaniu międzykulturowym chciał sprawdzić czy narodowość badanych osób różnicuje je pod względem

2. Pewien psycholog w przeprowadzonym przez siebie badaniu międzykulturowym chciał sprawdzić czy narodowość badanych osób różnicuje je pod względem 2. Pewien psycholog w przeprowadzonym przez siebie badaniu międzykulturowym chciał sprawdzić czy narodowość badanych osób różnicuje je pod względem średniej skłonności do mówienia nieprawdy. Ile wynosiły

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

ANALIZA WIELOPOZIOMOWA JAKO NARZĘDZIE WSPARCIA POLITYK PUBLICZNYCH

ANALIZA WIELOPOZIOMOWA JAKO NARZĘDZIE WSPARCIA POLITYK PUBLICZNYCH ANALIZA WIELOPOZIOMOWA JAKO NARZĘDZIE WSPARCIA POLITYK PUBLICZNYCH - Adrian Gorgosz - Paulina Tupalska ANALIZA WIELOPOZIOMOWA (AW) Multilevel Analysis Obecna od lat 80. Popularna i coraz częściej stosowana

Bardziej szczegółowo

Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań

Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań 6.11.1 1 Badanie współzależności atrybutów jakościowych w wielowymiarowych tabelach danych. 1.1 Analiza współzależności

Bardziej szczegółowo

Analiza składowych głównych. Wprowadzenie

Analiza składowych głównych. Wprowadzenie Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących

Bardziej szczegółowo

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22 Spis treści Przedmowa do wydania pierwszego.... 11 Przedmowa do wydania drugiego.... 15 Wykaz symboli.... 17 Litery alfabetu greckiego wykorzystywane w podręczniku.... 17 Symbole wykorzystywane w zagadnieniach

Bardziej szczegółowo

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 13 Mikołaj Czajkowski Wiktor Budziński Endogeniczność regresja liniowa W regresji liniowej estymujemy następujące równanie: i i i Metoda Najmniejszych Kwadratów zakłada, że wszystkie zmienne

Bardziej szczegółowo

S t a t y s t y k a, część 3. Michał Żmihorski

S t a t y s t y k a, część 3. Michał Żmihorski S t a t y s t y k a, część 3 Michał Żmihorski Porównanie średnich -test T Założenia: Zmienne ciągłe (masa, temperatura) Dwie grupy (populacje) Rozkład normalny* Równe wariancje (homoscedasticity) w grupach

Bardziej szczegółowo

TABELKA ANOVA (jednoczynnikowa)

TABELKA ANOVA (jednoczynnikowa) TABELKA ANOVA (jednoczynnikowa) Jednoczynnikowa ANOVA nazwa zmiennej zależnej Między grupami Suma kwadratów df Średni kwadrat F Istotność k 1 SSMG / dfmg MSMG / MSWG brane z tablic Wewnątrz grup 2 z 3

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania wybranych technik regresyjnych do modelowania współzależności zjawisk Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki

Bardziej szczegółowo

Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich

Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Zmienne muszą być zmiennymi ilościowym (liczymy i porównujemy średnie!) Są to testy parametryczne Nazwa

Bardziej szczegółowo

Wyniki badań PBQ i MAAS wykonanych w lipcu-październiku 2015

Wyniki badań PBQ i MAAS wykonanych w lipcu-październiku 2015 Wyniki badań PBQ i MAAS wykonanych w lipcupaździerniku 2015 Autor projektu badawczego : Anna Dyduch Maroszek Projekt sfinansowany przez Polskie Towarzystwo Psychoterapii Psychoanalitycznej Projekt finansowany

Bardziej szczegółowo

Test U Manna-Whitneya : Test H Kruskala-Wallisa Test Wilcoxona

Test U Manna-Whitneya : Test H Kruskala-Wallisa Test Wilcoxona Nieparametryczne odpowiedniki testów T-Studenta stosujemy gdy zmienne mierzone są na skalach porządkowych (nie można liczyć średniej) lub kiedy mierzone są na skalach ilościowych, a nie są spełnione wymagania

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Analiza Współzależności

Analiza Współzależności Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Współzależności Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

Przykład 1 ceny mieszkań

Przykład 1 ceny mieszkań Przykład ceny mieszkań Przykład ceny mieszkań Model ekonometryczny zaleŝności ceny mieszkań od metraŝu - naleŝy do klasy modeli nieliniowych. - weryfikację empiryczną modelu przeprowadzono na przykładzie

Bardziej szczegółowo

ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI

ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI Korelacja 1. Współczynnik korelacji 2. Współczynnik korelacji liniowej definicja 3. Estymacja współczynnika korelacji 4. Testy istotności współczynnika korelacji

Bardziej szczegółowo

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe

Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje

Bardziej szczegółowo

Analiza niepewności pomiarów

Analiza niepewności pomiarów Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej

Bardziej szczegółowo

X WYKŁAD STATYSTYKA. 14/05/2014 B8 sala 0.10B Godz. 15:15

X WYKŁAD STATYSTYKA. 14/05/2014 B8 sala 0.10B Godz. 15:15 X WYKŁAD STATYSTYKA 14/05/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 10 ANALIZA KORELACJI Korelacja 1. Współczynnik korelacji 2. Kowariancja 3. Współczynnik korelacji liniowej definicja 4. Estymacja współczynnika

Bardziej szczegółowo

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15 VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady

Bardziej szczegółowo

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28 Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych

Bardziej szczegółowo

Regresja prosta. Sylwia Bedyńska Szkoła Wyższa Psychologii Społecznej w Warszawie Monika Książek Szkoła Główna Handlowa w Warszawie

Regresja prosta. Sylwia Bedyńska Szkoła Wyższa Psychologii Społecznej w Warszawie Monika Książek Szkoła Główna Handlowa w Warszawie ROZDZIAŁ 1 Regresja prosta 15 Sylwia Bedyńska Szkoła Wyższa Psychologii Społecznej w Warszawie Monika Książek Szkoła Główna Handlowa w Warszawie Regresja prosta część i modele regresji rozdział 1 W tym

Bardziej szczegółowo

Może faktycznie ceny na Opolszczyźnie są wyższe niż w Polsce. Ceny na Opolszczyźnie są podobne, a akurat trafiliśmy na próbę droższych piekarni.

Może faktycznie ceny na Opolszczyźnie są wyższe niż w Polsce. Ceny na Opolszczyźnie są podobne, a akurat trafiliśmy na próbę droższych piekarni. Statystyczne testowanie hipotez: procedura, która pozwala ocenić hipotezę na temat parametru populacji w oparciu o statystykę próby. Zauważyliśmy, że ceny pieczywa w Opolu są wyższe niż gdzie indziej w

Bardziej szczegółowo

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Autor prezentuje spójny obraz najczęściej stosowanych metod statystycznych, dodatkowo omawiając takie

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8 Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Jak przekształcać zmienne jakościowe?

Jak przekształcać zmienne jakościowe? Data Preparation Jak przekształcać zmienne jakościowe? Marta Płonka Predictive Solutions W ostatnim artykule zobaczyliśmy, jak sprawdzić, czy między wybranymi przez nas predyktorami a zmienną przewidywaną

Bardziej szczegółowo

Spis treści. LaboratoriumV: Podstawy korelacji i regresji. Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych

Spis treści. LaboratoriumV: Podstawy korelacji i regresji. Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych 1 LaboratoriumV: Podstawy korelacji i regresji Spis treści Laboratorium V: Podstawy korelacji i regresji...1 Wiadomości ogólne...2 1. Wstęp teoretyczny....2 1.1 Korelacja....2 1.2 Funkcja regresji....5

Bardziej szczegółowo

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie

Bardziej szczegółowo

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Regresja wielokrotna Model dla zależności liniowej: Y=a+b 1 X 1 +b 2 X 2 +...+b n X n Cząstkowe współczynniki regresji wielokrotnej: b 1,..., b n Zmienne niezależne (przyczynowe): X 1,..., X n Zmienna

Bardziej szczegółowo

Regresja liniowa wprowadzenie

Regresja liniowa wprowadzenie Regresja liniowa wprowadzenie a) Model regresji liniowej ma postać: gdzie jest zmienną objaśnianą (zależną); są zmiennymi objaśniającymi (niezależnymi); natomiast są parametrami modelu. jest składnikiem

Bardziej szczegółowo

Regresja i Korelacja

Regresja i Korelacja Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane

Bardziej szczegółowo

Katedra Genetyki i Podstaw Hodowli Zwierząt Wydział Hodowli i Biologii Zwierząt, UTP w Bydgoszczy

Katedra Genetyki i Podstaw Hodowli Zwierząt Wydział Hodowli i Biologii Zwierząt, UTP w Bydgoszczy Ćwiczenie: Analiza zmienności prosta Przykład w MS EXCEL Sprawdź czy genotyp jagniąt wpływa statystycznie na cechy użytkowości rzeźnej? Obliczenia wykonaj za pomocą modułu Analizy danych (jaganova.xls).

Bardziej szczegółowo

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera

Bardziej szczegółowo

Weryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej,

Weryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej, Szacownie nieznanych wartości parametrów (średniej arytmetycznej, odchylenia standardowego, itd.) w populacji generalnej na postawie wartości tych miar otrzymanych w próbie (punktowa, przedziałowa) Weryfikacja

Bardziej szczegółowo

Analizy wariancji ANOVA (analysis of variance)

Analizy wariancji ANOVA (analysis of variance) ANOVA Analizy wariancji ANOVA (analysis of variance) jest to metoda równoczesnego badania istotności różnic między wieloma średnimi z prób pochodzących z wielu populacji (grup). Model jednoczynnikowy analiza

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

Jak sprawdzić normalność rozkładu w teście dla prób zależnych?

Jak sprawdzić normalność rozkładu w teście dla prób zależnych? Jak sprawdzić normalność rozkładu w teście dla prób zależnych? W pliku zalezne_10.sta znajdują się dwie zmienne: czasu biegu przed rozpoczęciem cyklu treningowego (zmienna 1) oraz czasu biegu po zakończeniu

Bardziej szczegółowo

Na podstawie danych dotyczacych rocznych wydatków na pizze oszacowano parametry poniższego modelu:

Na podstawie danych dotyczacych rocznych wydatków na pizze oszacowano parametry poniższego modelu: Zadanie 1. Oszacowano model ekonometryczny liczby narodzin dzieci (w tys.) w Polsce w latach 2000 2010 w zależnosci od średniego rocznego wynagrodzenia (w ujęciu realnym, PLN), stopy bezrobocia (w punktach

Bardziej szczegółowo

Rodzaje testów. Testy. istnieje odpowiedź prawidłowa. autoekspresja brak odpowiedzi prawidłowej ZGADYWANIE TRAFNOŚĆ SAMOOPISU

Rodzaje testów. Testy. istnieje odpowiedź prawidłowa. autoekspresja brak odpowiedzi prawidłowej ZGADYWANIE TRAFNOŚĆ SAMOOPISU Rodzaje testów Testy wiedza umiejętności zdolności właściwości poznawcze właściwości afektywne uczucia postawy osobowość emocje wierzenia istnieje odpowiedź prawidłowa autoekspresja brak odpowiedzi prawidłowej

Bardziej szczegółowo