ANALIZA CZYNNIKOWA Przykład 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "ANALIZA CZYNNIKOWA Przykład 1"

Transkrypt

1 ANALIZA CZYNNIKOWA... stanowi zespół metod i procedur statystycznych pozwalających na badanie wzajemnych relacji między dużą liczbą zmiennych i wykrywanie ukrytych uwarunkowań, ktore wyjaśniają ich występowanie. Pozwala na sprowadzenie dużej liczby badanych zmiennych do znacznie mniejszej liczby wzajemnie niezależnych (nieskorelowanych) czynników. Wyodrębnione czynniki mają inną interpretację merytoryczną jednocześnie zachowują znaczną część informacji zawartych w zmiennych pierwotnych.

2 ANALIZA CZYNNIKOWA Przykład 1 Ocena nowej czekolady za pomocą zestawu 20 pytań, w których badani oceniali wiele jej różnych cech (smak, zapach, konsystencja, kolor, kształt, opakowanie itp.) Wykorzystując analizę czynnikową można sprawdzić, czy możliwe jest wyodrębnienie kilku ogólnych, ukrytych czynników, warunkujących stosunek respondentów do nowego produktu (np. wymiary "łącznej oceny smaku i zapachu" czy wyglądu).

3 ANALIZA CZYNNIKOWA Przykład 2 kwestionariusz dotyczący satysfakcji klientów zwykle zawiera wiele pytań dotyczących różnych aspektów działania firmy analizowanie każdego pytania osobno pozwala uzyskać wiele szczegółowych informacji. Natomiast zastosowanie analizy czynnikowej pozwala na uzyskanie ogólnego, syntetycznego obrazu powodów wpływających na satysfakcję klientów.

4 CELE ANALIZY CZYNNIKOWEJ Redukcja liczby zmiennych bez istotnej straty zawartych w nich informacji Wykrywanie ukrytych związków między zmiennymi formułowanie i weryfikacja hipotez dotyczących istnienia i charakteru prawidłowości kształtujących związki między zmiennymi

5 CELE ANALIZY CZYNNIKOWEJ Tworzenie skal i miar złożonych z kilku pytań Ustalanie wag określających znaczenie, jakie należy przypisać poszczególnym zmiennym i czynnikom w trakcie analiz Ortogonalizacja przestrzeni, w której rozpatrywane są obiekty, będące przedmiotem badań Opis zjawisk w kontekście nowych kategorii zdefiniowanych przez czynniki Prezentacja graficzna zbioru obserwacji wielowymiarowych

6 CELE ANALIZY CZYNNIKOWEJ Kiedy stosować? Analiza eksploracyjna czynniki są początkowo nieznane i zostają wyodrębnione dzięki analizie: dane grupowane są w zbiory zmiennych najsilniej ze sobą skorelowanych wykrywanie związków między zmiennymi bez wstępnych założeń Analiza konfirmacyjna weryfikacja hipotez co do określonej z góry struktury czynników i estymacja parametrów założonego modelu

7 OGÓLNY PODZIAŁ METOD ANALIZY CZYNNIKOWEJ A. Model "klasyczny" analizy czynnikowej (podział wariancji całkowitej zmiennych na dwie części: wariancję wspólną i wariancję ( specyficzną klasyczna analiza czynnikowa analiza kanoniczna B. Model "komponentowy" analizy czynnikowej (nieuwzględnianie struktury wariancji) metoda głównych składowych analiza współzależności

8 PROCEDURA Wybór zmiennych do analizy Wyznaczenie macierzy korelacji (kowariancji) Wyznaczenie głównych składowych /czynników Rotacja głównych składowych /czynników Interpretacja głównych składowych /czynników

9

10 METODA GŁÓWNYCH SKŁADOWYCH Analiza głównych składowych (principal components analysis) jest metodą transformacji obserwowalnych zmiennych pierwotnych w nowe, wzajemnie ortogonalne zmienne, tzw. główne składowe. Głównych składowych można wyznaczyć tyle, ile było zmiennych pierwotnych.

11 Własności głównych składowych - są liniową kombinacją obserwowalnych zmiennych - są ortogonalne względem siebie - kolejne składowe wyjaśniają malejącą ilość łącznej wariancji zmiennych - suma wariancji składowych jest równa sumie wariancji zmiennych pierwotnych

12 METODA GŁÓWNYCH SKŁADOWYCH W praktyce chodzi o sprawdzenie, czy kilka nowych zmiennych wyjaśnia maksymalnie dużo zmienności wyjściowego układu przy zachowaniu nieskorelowania, co daje w efekcie redukcję wymiaru.

13 METODA GŁÓWNYCH SKŁADOWYCH Redukcja wymiaru przestrzeni cech, uporządkowanie ich na podzbiory (główne składowe) jest przydatna głównie ze względu na możliwość: zmniejszenia liczby zmiennych w dalszych analizach interpretacji relacji między składowymi graficznej prezentacji konfiguracji porównywanych zmiennych uporządkowania zmiennych według przyjętych cech

14 METODA GŁÓWNYCH SKŁADOWYCH W analizie głównych składowych rozwiązywany problem można przedstawić następująco:

15 METODA GŁÓWNYCH SKŁADOWYCH Zmienne pierwotne są zestandaryzowane. Nowa zmienna powinna wyjaśniać maksymalną ilość wariancji zmiennych pierwotnych (jej wariancja jest przedstawiona na rysunku obszarem zacieniowanym). Wariancja tej nowej zmiennej wyjaśniającej pewną ilość zmienność zmiennych pierwotnych jest nazywana jej wartością własną (eigenvalue).

16 PROCEDURA METODY GŁÓWNYCH SKŁADOWYCH Przedmiot analizy: macierz danych, zawierająca n realizacji m zmiennych: X x ij, x ij 0, j i 1,2,..., m 1,2,..., n Po standaryzacji: Z= [ z ij ]

17 PROCEDURA METODY GŁÓWNYCH SKŁADOWYCH Podstawowe równanie metody głównych składowych można zapisać w postaci układu równań liniowych: Z T = AG T G = A T Z gdzie: Z - macierz j standaryzowanych zmiennych pierwotnych A - macierz współczynników składowych głównych G - macierz składowych głównych

18 PROCEDURA METODY GŁÓWNYCH SKŁADOWYCH Podstawą do wyznaczania elementów macierzy współczynników składowych głównych jest macierz korelacji: R 1 1 n r Z' Z z z p, j 1... m ij ip ij n n i 1 Wariancje na głównej przekątnej są miarą zasobów informacyjnych zmiennych pierwotnych.

19 PROCEDURA METODY GŁÓWNYCH SKŁADOWYCH Każdą z głównych składowych G l można przedstawić jako liniową kombinację pierwotnych zmiennych Z: k G l = i= 1 m j= 1 a i j Z j gdzie: m liczba zmiennych pierwotnych k liczba składowych głównych Z j j-ta zmienna standaryzowana (pierwotna) G l l-ta skłądowa główna a jl ładunki czynnikowe

20 METODA GŁÓWNYCH SKŁADOWYCH Pierwsza główna składowa G 1 jest taką kombinacją zmiennych pierwotnych, dla której wariancja próbkowa wyraża się wzorem: S 2 G1 = m m i 1 j 1 a i1 a j1 S ij i jest największa wśród wszystkich kombinacji liniowych takich, że: a 1 T a 1 =1 (warunek jednoznacznego wyznaczenia wektora współczynników).

21 METODA GŁÓWNYCH SKŁADOWYCH Druga główną składową można przedstawić w sposób analogiczny. Jest ona kombinacją liniową zmiennych pierwotnych maksymalizującą wariancję przy warunkach: a 1 T a 1 =1 oraz a 1 T a 2 = 0 Drugi z nich zapewnia ortogonalność powstałych składowych. Konsekwencją tego jest sumowanie się kolejnych wariancji głównych składowych do wariancji całkowitej.

22 PROCEDURA METODY GŁÓWNYCH SKŁADOWYCH Każda l-ta główna składowa jest liniowa kombinacją zmiennych pierwotnych i wyjaśnia i-tą część całkowitej zmienności. Główne składowe są tak wyznaczane, aby wariancje kolejnych składowych były coraz mniejsze. Można wyznaczyć tyle głównych składowych, ile mamy zmiennych wyjściowych, jednak zazwyczaj kilka pierwszych wystarcza do wyjaśnienia większości wariancji układu zmiennych.

23 METODA GŁÓWNYCH SKŁADOWYCH Znaczenie i użyteczność składowej głównej jest mierzona wielkością wyjaśnianej przez nią całkowitej zmienności. I tak, jeśli w układzie sześciu zmiennych pierwsza składowa wyjaśnia np. 85% zmienności, to znaczy to, że niemal cała zmienność tego układu da się przedstawić na prostej zamiast w sześciu wymiarach.

24 METODA GŁÓWNYCH SKŁADOWYCH W efekcie powstaje nam tyle głównych składowych, ile było początkowo zmiennych: nadal mamy układ m-wymiarowy. Ale w praktyce ograniczamy się do kilku pierwszych głównych składowych, które wyjaśniają z góry ustaloną część wariancji całkowitej, np. 75%.

25

26 PROCEDURA ANALIZY CZYNNIKOWEJ Analiza czynnikowa to metoda modelowania liniowego zakłada się, że zmienne można przedstawić za pomocą liniowej funkcji zmiennych nieobserwowalnych (czynników), przy czym wszystkie zmienne przedstawiane są jako funkcje tych samych czynników. Bazuje na korelacji lub kowariancji między zmiennymi.

27 PROCEDURA ANALIZY CZYNNIKOWEJ Przedmiot analizy: macierz danych, zawierająca n realizacji m zmiennych: X x ij, x ij 0, j i 1,2,..., m 1,2,..., n Po standaryzacji : Z= [ z ij ]

28 PROCEDURA ANALIZY CZYNNIKOWEJ Zakładamy, że pomiędzy zmiennymi X j zachodzą związki, których siłę i kierunek określają współczynniki korelacji liniowej Pearsona zawarte w macierzy korelacji: R n 1 1 ij ip ij... n n r Z' Z z z p, j 1 m i 1

29 PROCEDURA ANALIZY CZYNNIKOWEJ Zakładamy, że źródłem wzajemnych zależności między zmiennymi są ukryte wspólne czynniki, które można uznać za nośniki tej samej informacji, chcemy zatem je wyodrębnić w formie nowych, syntetycznych zmiennych. Jednak zakładamy też, że nie cała wariancja zmiennych jest powodowana tymi ukrytymi wspólnymi czynnikami każda zmienna pierwotna charakteryzuje się też pewnymi specyficznymi właściwościami.

30 PROCEDURA ANALIZY CZYNNIKOWEJ Podstawą identyfikacji składników wspólnych i specyficznych jest w analizie czynnikowej podział wariancji poszczególnych zmiennych na wariancję wspólną i specyficzną: h j 2 - zasób zmienności wspólnej - część wariancji objaśniona przez czynniki wspólne w j 2 - zasób zmienności swoistej - pozostałość po odjęciu zasobu zmienności wspólnej od wariancji całkowitej

31 PROCEDURA ANALIZY CZYNNIKOWEJ Założenia: - czynniki wspólne nie są skorelowane ze sobą - czynniki specyficzne również nie są ze sobą skorelowane - czynniki wspólne nie są skorelowane z czynnikami specyficznymi

32 PROCEDURA ANALIZY CZYNNIKOWEJ Model analizy czynnikowej można zapisać w postaciw postaci układu równań liniowych: gdzie: Z = AF + BU Z - macierz j standaryzowanych zmiennych pierwotnych A - macierz ładunków czynnikowych czynników wspólnych F - macierz czynników wspólnych B macierz (disgonalna) ładunków czynnikowych czynników specyficznych U - macierz czynników specyficznych

33 PROCEDURA ANALIZY CZYNNIKOWEJ Zatem każda z obserwowalnych zmiennych Z jest funkcją liniową zmiennych nieobserwowalnych (czynników wspólnych) oraz pojedynczej zmiennej specyficznej: k Z j = l=1 a jl F l b j U j gdzie: m - liczba zmiennych pierwotnych k - liczba czynników głównych (wspólnych) Z j - j-ta zmienna standaryzowana (pierwotna) F l - l-ty czynnik wspólny U j - j-ty czynnik swoisty a jl ładunek czynnikowy l-tego czynnika Fl w j-tej zmiennej obserwowalnej

34 PROCEDURA ANALIZY CZYNNIKOWEJ Dążymy do eliminacji wpływu czynników specyficznych na rzecz czynników wspólnych. W tym celu zastępujemy w macierzy R współczynniki korelacji na głównej przekątnej zasobami zmienności wspólnej, otrzymując tzw. zredukowaną macierz korelacji : ~ R r~ r dla i j ij ij r~ h 2 dla i j ij j

35 PROCEDURA ANALIZY CZYNNIKOWEJ Wartości h j 2 ustala się na poziomie: średniej arytmetycznej współczynników korelacji danej zmiennej z innymi zmiennymi: h j 2 = 1 m m i 1 r ij najwyższego co do modułu współczynnika korelacji j-tej zmiennej z pozostałymi: h 2 j = max [ r ij ], i j współczynnik determinacji wielorakiej R 2 danej zmiennej z innymi zmiennymi

36 PROCEDURA ANALIZY CZYNNIKOWEJ Zatem podstawowe zadanie analizy czynnikowej sprowadza się do rozwiązania równania: ~ R AA T ze względu na macierz A, czyli wyznaczenia ładunków czynnikowych czynników wspólnych.

37 PROCEDURA ANALIZY CZYNNIKOWEJ ~ Uporządkowane malejąco wartości własne macierzy R [ ] (l 1...m) oraz odpowiadające im wektory własne V: V l [ v ] (j 1...m) posłużą do wyznaczenia ładunków czynnikowych l-tego czynnika w zmiennych pierwotnych: a jl l jl 1 [ m j 1 v v jl 2 jl ] 1/ 2

38 PROCEDURA ANALIZY CZYNNIKOWEJ Kolejne wartości i wektory własne posłużą do uzyskania ładunków czynnikowych kolejnych czynników. Ładunki te odzwierciedlają korelację pomiędzy j-tą zmienną pierwotną i l-tym wspólnym czynnikiem. Znalezienie tego rozwiązania kończy właściwą analizę czynnikową.

39

40 ROTACJA CZYNNIKÓW Uzyskana macierz ładunków czynnikowych A nie jest jednym możliwym rozwiązaniem analizy czynnikowej. Poprzez obrót układu wzajemnie ortogonalnych osi - czynników głównych - można wygenerować nieskończenie wiele różnych macierzy ładunków. Dokonanie takiej rotacji pozwala często na takie ustalenie osi, aby odpowiadająca mu macierz ładunków zapewniła możliwie najłatwiejszą interpretację czynników.

41 ROTACJA CZYNNIKÓW Rotacja polega na znalezieniu ortogonalnej macierzy S (macierzy transformacji) spełniającej warunek: A 1 T = S A 0 T gdzie: A 0,A 1 - to wyjściowa i końcowa macierz ładunków,

42 ROTACJA CZYNNIKÓW Elementy macierzy transformacji S określają kąty, o jakie należy obrócić układ osi - czynników wspólnych tak, aby: - zmaksymalizować liczbę ładunków zerowych w każdej kolumnie macierzy czynników - zmaksymalizować korelacje między jak najmniejszą liczbą zmiennych, a każdym wyodrębnionym czynnikiem głównym

43 ROTACJA CZYNNIKÓW Innymi słowy - rotacja polega na sprowadzeniu struktury ładunków czynnikowych do prostej struktury, w której punkty reprezentujące zmienne skupiają się wokół osi czynników. Istotne jest, że wskutek rotacji zasoby zmienności wspólnej hj2 określające udział wszystkich czynników wspólnych w wyjaśnianiu wariancji zmiennej Xj nie ulegają zmianie.

44 ROTACJA CZYNNIKÓW Najczęściej stosuje się procedury rotacji ortogonalnej, z których najbardziej znanymi są varimax i quartimax. VARIMAX upraszcza interpretację czynników (minimalizuje liczbę zmiennych potrzebnych do wyjaśnienia danego czynnika) QUARTIMAX upraszcza interpretację zmiennych (minimalizuje liczbę czynników potrzebnych do wyjaśnienia danej zmiennej).

45 WYZNACZENIE WARTOŚCI CZYNNIKÓW Na koniec najczęściej potrzebny jest sposób wyznaczenia wartości poszczególnych czynników dla kolejnych obserwacji. Obliczanie realizacji czynników wspólnych odbywa się w oparciu o formułę: F = A T Z

46 ILE CZYNNIKÓW? Problemem w stosowaniu analizy czynnikowej jest określenie liczby czynników głównych Najczęściej spotykane techniki określania liczby czynników wspólnych to: a/ metoda "wartości własnej (lambda) większej od jedności" b/ metoda procentu wariancji tłumaczonej przez czynniki główne c/ metoda testu osypiska

47 ILE CZYNNIKÓW? a/ metoda "wartości własnej (lambda) większej od jedności" najczęściej spotykana jej podstawą jest to, że każdy czynnik powinien wyjaśniać zmienność co najmniej jednej zmiennej pierwotnej. Metoda ta powinna być stosowana gdy ilość zmiennych jest większa od 20. Gdy liczba zmiennych jest mniejsza istnieje tendencja wyodrębniania zbyt małej ilości czynników.

48 ILE CZYNNIKÓW? b/ metoda procentu wariancji tłumaczonej przez czynniki główne do ogólnej liczby wybranych czynników zalicza się te czynniki, które w sumie wyjaśniają 75%, 80% lub 90% wariancji, a żaden następny nie tłumaczy więcej niż 5% wariancji.

49 ILE CZYNNIKÓW? c/ metoda testu osypiska polega na sporządzeniu wykresu, na którym na osi poziomej wyznaczana jest ilość czynników a na osi pionowej - uzyskane wartości własne. Podstawowym zadaniem jest znalezienie "punktów załamania", w których rozpoczynają się kolejne "rumowiska" (w tych punktach zmienia się kąt załamania krzywej). Punkty te określają liczbę czynników kwalifikujących się do dalszej analizy. Metoda ta jest nieco bardziej "liberalna" niż metoda >1, pozwala włączyć do dalszej analizy nieco większą liczbę czynników.

50 INTERPRETACJA CZYNNIKÓW Interpretacja nowych zmiennych (czynników) odbywa się na bazie ładunków czynnikowych: należy wyodrębnić zmienne o najwyższych ładunkach czynnikowych względem danych czynników i znaleźć wspólne ich odniesienie do danego czynnika.

51 PCA / FA Obie służą sprowadzaniu informacji zawartych w wielu zmiennych do stosunkowo niewielkiej liczby wyjaśniających je wymiarów. Pomimo że w praktyce wyniki uzyskiwane przy pomocy obu z nich są zbliżone, to nie są to warianty tej samej metody, ale różne metody oparte na odmiennych założeniach.

52 PCA / FA Analiza czynnikowa Analiza głównych składowych Ch. Spearman (1904), L.L. Thurstone (1913) H. Hotteling (1933) Obejmuje pewną część wariancji zmiennych, zwaną wariancją wspólną Obejmuje wariancję całkowitą zmiennych orientacja kowariancyjna: punktem wyjścia orientacja wariancyjna: punktem wyjścia jest jest zredukowana macierz korelacji zwykła macierz korelacji Zmienna pierwotna jest funkcją czynników wspólnych i swoistych Główna składowa jest funkcją zmiennych pierwotnych Celem analizy jest identyfikacja ukrytych zmiennych Czynniki mogą być zarówno niezależne, jak i skorelowane Celem analizy jest uproszczenie struktury danych Główne składowe są zawsze niezależne

CELE ANALIZY CZYNNIKOWEJ

CELE ANALIZY CZYNNIKOWEJ ANALIZA CZYNNIKOWA... stanowi zespół metod i procedur statystycznych pozwalających na badanie wzajemnych relacji między dużą liczbą zmiennych i wykrywanie ukrytych uwarunkowań, ktore wyjaśniają ich występowanie.

Bardziej szczegółowo

Analiza składowych głównych. Wprowadzenie

Analiza składowych głównych. Wprowadzenie Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA

METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA AMFETAMINY Waldemar S. Krawczyk Centralne Laboratorium Kryminalistyczne Komendy Głównej Policji, Warszawa (praca obroniona na Wydziale Chemii Uniwersytetu

Bardziej szczegółowo

Kolejna z analiz wielozmiennowych Jej celem jest eksploracja danych, poszukiwanie pewnych struktur, które mogą utworzyć wskaźniki

Kolejna z analiz wielozmiennowych Jej celem jest eksploracja danych, poszukiwanie pewnych struktur, które mogą utworzyć wskaźniki Analiza czynnikowa Kolejna z analiz wielozmiennowych Jej celem jest eksploracja danych, poszukiwanie pewnych struktur, które mogą utworzyć wskaźniki Budowa wskaźnika Indeks był banalny I miał wady: o Czy

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Elementy statystyki wielowymiarowej

Elementy statystyki wielowymiarowej Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Elementy statystyki wielowymiarowej 1.1 Kowariancja i współczynnik korelacji 1.2 Macierz kowariancji 1.3 Dwumianowy rozkład normalny 1.4 Analiza składowych

Bardziej szczegółowo

Analiza składowych głównych idea

Analiza składowych głównych idea Analiza składowych głównych idea Analiza składowych głównych jest najczęściej używanym narzędziem eksploracyjnej analizy danych. Na metodę tę można spojrzeć jak na pewną technikę redukcji wymiarowości

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji Stosowana Analiza Regresji Wykład VIII 30 Listopada 2011 1 / 18 gdzie: X : n p Q : n n R : n p Zał.: n p. X = QR, - macierz eksperymentu, - ortogonalna, - ma zera poniżej głównej diagonali. [ R1 X = Q

Bardziej szczegółowo

Zadanie 1. Za pomocą analizy rzetelności skali i wspólczynnika Alfa- Cronbacha ustalić, czy pytania ankiety stanowią jednorodny zbiór.

Zadanie 1. Za pomocą analizy rzetelności skali i wspólczynnika Alfa- Cronbacha ustalić, czy pytania ankiety stanowią jednorodny zbiór. L a b o r a t o r i u m S P S S S t r o n a 1 W zbiorze Pytania zamieszczono odpowiedzi 25 opiekunów dzieci w wieku 8. lat na następujące pytania 1 : P1. Dziecko nie reaguje na bieżące uwagi opiekuna gdy

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować

Bardziej szczegółowo

Analiza czynnikowa Analiza głównych składowych

Analiza czynnikowa Analiza głównych składowych Analiza czynnikowa Analiza głównych składowych Wielowymiarowa Analiza Danych z wykorzystaniem pakietu SPSS Joanna Ciecieląg, Marek Pęczkowski WNE UW Wskazniki Metryczne Kategorialne Modelowanie strukturalne

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb Współzależność Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb (x i, y i ). Geometrycznie taką parę

Bardziej szczegółowo

10. Redukcja wymiaru - metoda PCA

10. Redukcja wymiaru - metoda PCA Algorytmy rozpoznawania obrazów 10. Redukcja wymiaru - metoda PCA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. PCA Analiza składowych głównych: w skrócie nazywana PCA (od ang. Principle Component

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VIII: Analiza kanoniczna

Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VIII: Analiza kanoniczna 1 Laboratorium VIII: Analiza kanoniczna Spis treści Laboratorium VIII: Analiza kanoniczna... 1 Wiadomości ogólne... 2 1. Wstęp teoretyczny.... 2 Przykład... 2 Podstawowe pojęcia... 2 Założenia analizy

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Współczynniki korelacji czastkowej i wielorakiej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017

Współczynniki korelacji czastkowej i wielorakiej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017 STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 18 listopada 2017 1 Regresja krzywoliniowa 2 Model potęgowy Model potęgowy y = αx β e można sprowadzić poprzez zlogarytmowanie obu stron równania

Bardziej szczegółowo

Metodologia badań psychologicznych. Wykład 12. Korelacje

Metodologia badań psychologicznych. Wykład 12. Korelacje Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Wykład 12. Korelacje Korelacja Korelacja występuje wtedy gdy dwie różne miary dotyczące tych samych osób, zdarzeń lub obiektów

Bardziej szczegółowo

Hierarchiczna analiza skupień

Hierarchiczna analiza skupień Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

TRANSFORMACJE I JAKOŚĆ DANYCH

TRANSFORMACJE I JAKOŚĆ DANYCH METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING TRANSFORMACJE I JAKOŚĆ DANYCH Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

Badania eksperymentalne

Badania eksperymentalne Badania eksperymentalne Analiza CONJOINT mgr Agnieszka Zięba Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Najpopularniejsze sposoby oceny wyników eksperymentu w schematach

Bardziej szczegółowo

(x j x)(y j ȳ) r xy =

(x j x)(y j ȳ) r xy = KORELACJA. WSPÓŁCZYNNIKI KORELACJI Gdy w badaniu mamy kilka cech, często interesujemy się stopniem powiązania tych cech między sobą. Pod słowem korelacja rozumiemy współzależność. Mówimy np. o korelacji

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

ZASTOSOWANIE TECHNIK CHEMOMETRYCZNYCH W BADANIACH ŚRODOWISKA. dr inż. Aleksander Astel

ZASTOSOWANIE TECHNIK CHEMOMETRYCZNYCH W BADANIACH ŚRODOWISKA. dr inż. Aleksander Astel ZASTOSOWANIE TECHNIK CHEMOMETRYCZNYCH W BADANIACH ŚRODOWISKA dr inż. Aleksander Astel Gdańsk, 22.12.2004 CHEMOMETRIA dziedzina nauki i techniki zajmująca się wydobywaniem użytecznej informacji z wielowymiarowych

Bardziej szczegółowo

Agnieszka Nowak Brzezińska

Agnieszka Nowak Brzezińska Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia

Bardziej szczegółowo

Szukanie struktury skali mierzącej problematyczne zachowania finansowe.

Szukanie struktury skali mierzącej problematyczne zachowania finansowe. Szukanie struktury skali mierzącej problematyczne zachowania finansowe. Celem poniższej analizy było stworzenie skali mierzącej problematyczne zachowania finansowej. Takie zachowania zdefiniowano jako

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Korelacja i regresja Ewa Szczurek szczurek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski 1/30 Ostrożnie z interpretacją p wartości p wartości zależą od dwóch rzeczy

Bardziej szczegółowo

Analiza regresji - weryfikacja założeń

Analiza regresji - weryfikacja założeń Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.

Bardziej szczegółowo

1. Eliminuje się ze zbioru potencjalnych zmiennych te zmienne dla których korelacja ze zmienną objaśnianą jest mniejsza od krytycznej:

1. Eliminuje się ze zbioru potencjalnych zmiennych te zmienne dla których korelacja ze zmienną objaśnianą jest mniejsza od krytycznej: Metoda analizy macierzy współczynników korelacji Idea metody sprowadza się do wyboru takich zmiennych objaśniających, które są silnie skorelowane ze zmienną objaśnianą i równocześnie słabo skorelowane

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Analiza współzależności zjawisk

Analiza współzależności zjawisk Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Badanie współzależności zmiennych Uwzględniając ilość zmiennych otrzymamy 4 odmiany zależności: Zmienna zależna jednowymiarowa oraz jedna

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

Analiza kanoniczna w pigułce

Analiza kanoniczna w pigułce Analiza kanoniczna w pigułce Przemysław Biecek Seminarium Statystyka w medycynie Propozycje tematów prac dyplomowych 1/14 Plan 1 Słów kilka o podobnych metodach (PCA, regresja) 2 Motywacja, czyli jakiego

Bardziej szczegółowo

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów: Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,

Bardziej szczegółowo

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem

Bardziej szczegółowo

Statystyka. Opisowa analiza zjawisk masowych

Statystyka. Opisowa analiza zjawisk masowych Statystyka Opisowa analiza zjawisk masowych Typy rozkładów empirycznych jednej zmiennej Rozkładem empirycznym zmiennej nazywamy przyporządkowanie kolejnym wartościom zmiennej (x i ) odpowiadających im

Bardziej szczegółowo

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model

Bardziej szczegółowo

Estymacja parametrów w modelu normalnym

Estymacja parametrów w modelu normalnym Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Wielowymiarowa Analiza Korespondencji. Wielowymiarowa Analiza Danych z wykorzystaniem pakietu SPSS. Joanna Ciecieląg, Marek Pęczkowski WNE UW

Wielowymiarowa Analiza Korespondencji. Wielowymiarowa Analiza Danych z wykorzystaniem pakietu SPSS. Joanna Ciecieląg, Marek Pęczkowski WNE UW Wielowymiarowa Analiza Korespondencji Wielowymiarowa Analiza Danych z wykorzystaniem pakietu SPSS Joanna Ciecieląg, Marek Pęczkowski WNE UW ANALIZA KORESPONDENCJI opisowa i eksploracyjna technika analizy

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Regresja wielokrotna Model dla zależności liniowej: Y=a+b 1 X 1 +b 2 X 2 +...+b n X n Cząstkowe współczynniki regresji wielokrotnej: b 1,..., b n Zmienne niezależne (przyczynowe): X 1,..., X n Zmienna

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ Korelacja oznacza fakt współzależności zmiennych, czyli istnienie powiązania pomiędzy nimi. Siłę i kierunek powiązania określa się za pomocą współczynnika korelacji

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

Metoda simpleks. Gliwice

Metoda simpleks. Gliwice Sprowadzenie modelu do postaci bazowej Sprowadzenie modelu do postaci bazowej Przykład 4 Model matematyczny z Przykładu 1 sprowadzić do postaci bazowej. FC: ( ) Z x, x = 6x + 5x MAX 1 2 1 2 O: WB: 1 2

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11; środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

Korelacja krzywoliniowa i współzależność cech niemierzalnych

Korelacja krzywoliniowa i współzależność cech niemierzalnych Korelacja krzywoliniowa i współzależność cech niemierzalnych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki Szczecińskiej

Bardziej szczegółowo

X WYKŁAD STATYSTYKA. 14/05/2014 B8 sala 0.10B Godz. 15:15

X WYKŁAD STATYSTYKA. 14/05/2014 B8 sala 0.10B Godz. 15:15 X WYKŁAD STATYSTYKA 14/05/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 10 ANALIZA KORELACJI Korelacja 1. Współczynnik korelacji 2. Kowariancja 3. Współczynnik korelacji liniowej definicja 4. Estymacja współczynnika

Bardziej szczegółowo

Wykład 4: Statystyki opisowe (część 1)

Wykład 4: Statystyki opisowe (część 1) Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można

Bardziej szczegółowo

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl

Bardziej szczegółowo

Sieci Kohonena Grupowanie

Sieci Kohonena Grupowanie Sieci Kohonena Grupowanie http://zajecia.jakubw.pl/nai UCZENIE SIĘ BEZ NADZORU Załóżmy, że mamy za zadanie pogrupować następujące słowa: cup, roulette, unbelievable, cut, put, launderette, loveable Nie

Bardziej szczegółowo

Regresja i Korelacja

Regresja i Korelacja Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane

Bardziej szczegółowo

ANALIZA CZYNNIKOWA W BADANIACH STRUKTURY RELACJI W MARKETINGU RELACYJNYM

ANALIZA CZYNNIKOWA W BADANIACH STRUKTURY RELACJI W MARKETINGU RELACYJNYM dr Magdalena Kowalska-Musiał Wyższa Szkoła Zarządzania i Bankowości w Krakowie ANALIZA CZYNNIKOWA W BADANIACH STRUKTURY RELACJI W MARKETINGU RELACYJNYM Wprowadzenie Zgodnie z najnowszymi trendami strategie

Bardziej szczegółowo

MODEL STRUKTURALNY RELACJI MIĘDZY SATYSFAKCJĄ

MODEL STRUKTURALNY RELACJI MIĘDZY SATYSFAKCJĄ MODEL STRUKTURALNY RELACJI MIĘDZY SATYSFAKCJĄ I LOJALNOŚCIĄ WOBEC MARKI Adam Sagan Akademia Ekonomiczna w Krakowie, Katedra Analizy Rynku i Badań Marketingowych Wstęp Modelowanie strukturalne ma wielorakie

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze

Bardziej szczegółowo

Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice

Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice Przedmowa do wydania polskiego Przedmowa CZĘŚĆ I. PODSTAWY STATYSTYKI Rozdział 1 Podstawowe pojęcia statystyki

Bardziej szczegółowo

1. Synteza automatów Moore a i Mealy realizujących zadane przekształcenie 2. Transformacja automatu Moore a w automat Mealy i odwrotnie

1. Synteza automatów Moore a i Mealy realizujących zadane przekształcenie 2. Transformacja automatu Moore a w automat Mealy i odwrotnie Opracował: dr hab. inż. Jan Magott KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 207 Temat: Automaty Moore'a i Mealy 1. Cel ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

9 Funkcje Użyteczności

9 Funkcje Użyteczności 9 Funkcje Użyteczności Niech u(x) oznacza użyteczność wynikającą z posiadania x jednostek pewnego dobra. Z założenia, 0 jest punktem referencyjnym, czyli u(0) = 0. Należy to zinterpretować jako użyteczność

Bardziej szczegółowo

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Analiza obrazów - sprawozdanie nr 2

Analiza obrazów - sprawozdanie nr 2 Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Teoria automatów

Wstęp do Techniki Cyfrowej... Teoria automatów Wstęp do Techniki Cyfrowej... Teoria automatów Alfabety i litery Układ logiczny opisywany jest przez wektory, których wartości reprezentowane są przez ciągi kombinacji zerojedynkowych. Zwiększenie stopnia

Bardziej szczegółowo

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną

Bardziej szczegółowo

ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU

ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU obraz dr inż. Jacek Naruniec Analiza Składowych Niezależnych (ICA) Independent Component Analysis Dąży do wyznaczenia zmiennych niezależnych z obserwacji Problem opiera

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Analiza Współzależności

Analiza Współzależności Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Współzależności Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

Rozpoznawanie obrazów na przykładzie rozpoznawania twarzy

Rozpoznawanie obrazów na przykładzie rozpoznawania twarzy Rozpoznawanie obrazów na przykładzie rozpoznawania twarzy Wykorzystane materiały: Zadanie W dalszej części prezentacji będzie omawiane zagadnienie rozpoznawania twarzy Problem ten można jednak uogólnić

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO

STATYSTYKA I DOŚWIADCZALNICTWO STATYSTYKA I DOŚWIADCZALNICTWO Wykład 9 Analiza skupień wielowymiarowa klasyfikacja obiektów Metoda, a właściwie to zbiór metod pozwalających na grupowanie obiektów pod względem wielu cech jednocześnie.

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń

Bardziej szczegółowo