Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VIII: Analiza kanoniczna

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VIII: Analiza kanoniczna"

Transkrypt

1 1 Laboratorium VIII: Analiza kanoniczna Spis treści Laboratorium VIII: Analiza kanoniczna... 1 Wiadomości ogólne Wstęp teoretyczny Przykład... 2 Podstawowe pojęcia... 2 Założenia analizy kanonicznej... 4 Podsumowanie Analiza kanoniczna w STATISTICE... 4 Ćwiczenia... 9

2 2 Wiadomości ogólne 1. Wstęp teoretyczny. W badaniach biologicznych bardzo często spotykane są problemy badawcze, w których poszukuje się zakresu i kierunku zależności pomiędzy zbiorami zmiennych {,,, } oraz {,,, }, np. może nas interesować powiązanie różnych czynników ryzyka z pewną grupą symptomów. Należy wówczas znaleźć metodę, która odpowie na szereg różnych pytań, w szczególności: Jaki jest zakres oddziaływania zbioru zmiennych niezależnych {,,, } na zbiór zmiennych zależnych {,,, }? Który z możliwych zbiorów zmiennych niezależnych wyjaśnia maksymalny zakres zmienności w obszarze zbioru {,,, }? Czy wprowadzenie nowych zmiennych niezależnych lub zależnych do analizowanych zbiorów zwiększy zakres wyjaśnionej wariancji całkowitej? Do uzyskania odpowiedzi na tego typu pytania służy procedura wnioskowania statystycznego, zwana analizą kanoniczną. Analiza kanoniczna umożliwia badanie związku pomiędzy dwoma zbiorami zmiennych. Pozwala ona sprawdzić, czy zmienne jednej grupy mogą być użyte do wyjaśniania jak największego zakresu zmienności zmiennych z innej grupy, co jest bardzo przydatne w badaniach medycznych. Przykład Przeprowadzamy w pewnych zakładach pracy dwa badania. W pierwszym oceniamy szkodliwe warunki występujące w pracy za pomocą ankiety z 3 pytaniami, a w drugim za pomocą 10 pytań oceniamy stan zdrowia pracujących osób. Chcemy poznać i ocenić wpływ warunków pracy na pozytywną ocenę stanu zdrowia. Podstawowe pojęcia W takim przypadku uzasadnione jest badanie korelacji pomiędzy sumami ważonymi udzielonych odpowiedzi. Jeżeli w zakładzie pracy występuje szkodliwy czynnik (np. niebezpieczne opary), wpływający negatywnie na stan zdrowia, to przyporządkujemy mu wyższą wagę niż innemu, występującemu w niewielkim stopniu. Ogólnie rzecz biorąc, analiza kanoniczna sprowadza się do badania zależności dwóch zbiorów zmiennych {,,, } i {,,, } do analizowania powiązań ukrytych zmiennych. Te nowe, ukryte zmienne są sumami ważonymi zmiennych pierwszego i drugiego zbioru, czyli przyjmują postać: oraz Wagi dla tych dwóch zbiorów zmiennych są tak dobierane, aby te dwie sumy były ze sobą maksymalnie skorelowane. Spełnienie warunku maksymalnego skorelowania oznacza, że otrzymane pary sum ważonych można uważać za dobrą reprezentację danych w ramach utworzonego modelu. Tak otrzymane zmienne, będące sumami ważonymi, w analizie kanonicznej nazywane są pierwiastkami lub zmiennymi kanonicznymi, zaś korelacje między nimi korelacjami kanonicznymi. Wagi określające zmienne kanoniczne nazywa się wagami kanonicznymi. Im większa jest wartość bezwzględna wagi kanonicznej, tym większy wkład (dodatni lub ujemny) danej zmiennej do zmiennej kanonicznej. Dlatego też wagi kanoniczne pozwalają na zrozumienie i prostą interpretację zmiennych

3 3 kanonicznych. Aby ułatwić porównywanie między wagami kanonicznymi, są one podawane dla zmiennych standaryzowanych (o średniej 0 i odchyleniu standardowym 1). Zmienne (pierwiastki) kanoniczne można symbolicznie oznaczyć jako: =, +, + +, =, +, + +, Liczba zmiennych kanonicznych jest równa minimalnej liczbie zmiennych w jednym z analizowanych zbiorów. Dla powyższego przykładu, mając 3 wskaźniki opisujące warunki pracy i 10 wskaźników opisujących stan zdrowia załogi, możemy więc wyliczyć 3 zmienne kanoniczne. Pierwsza zmienna kanoniczna będzie miała postać: =, +, + +, Druga zmienna kanoniczna: =, +, + +, =, +, + +, Trzecia zmienna kanoniczna: =, +, + +, =, +, + +, =, +, + +, W analizie kanonicznej wylicza się również korelacje pomiędzy zmiennymi kanonicznymi a zmiennymi w każdym zbiorze. Nazywa się je kanonicznymi ładunkami czynnikowymi. Im większy ładunek czynnikowy, tym większy kładzie się nacisk na tą zmienną przy interpretacji zmiennej kanonicznej. Kwadrat korelacji, zwany współczynnikiem determinacji, odzwierciedla udział wariancji jednej zmiennej wyjaśnionej przez drugą zmienną. Dlatego też, jeśli podniesiemy wartości ładunków czynnikowych (które reprezentują korelacje) do kwadratu, otrzymamy udział wariancji danej zmiennej wyjaśnionej przez zmienną kanoniczną. Obliczając średnią z tych udziałów po wszystkich zmiennych dla danej zmiennej kanonicznej, otrzymujemy informację o tym ile procent wariancji wyjaśnia średnio dana zmienna kanoniczna w tym zbiorze danych. Wariancja ta nazywa się wariancją wyodrębnioną. Po przemnożeniu kwadratu korelacji kanonicznej przez wariancję wyodrębnioną lewego zbioru {,,, }, otrzymamy nowy, syntetyczny wskaźnik zwany redundancją lewego zbioru zmiennych przy drugim (prawym {,,, }) zbiorze zmiennych. Redundancja (nadmiarowość) mówi o tym, ile przeciętnej wariancji w jednym zbiorze jest wyjaśnione przez daną zmienną kanoniczną przy drugim zbiorze. Jeżeli na przykład, redundancja pierwszej zmiennej kanonicznej zbioru {,,, } wynosi 0,61, oznacza to, że pierwsza zmienna kanoniczna wyjaśnia przeciętnie 61% zmienności w zbiorze zmiennych {,,, } w oparciu o zbiór zmiennych {,,, }.

4 4 Założenia analizy kanonicznej Do najważniejszych założeń analizy kanonicznej należą wymienione poniżej: Wszystkie rozkłady zmiennych w populacji, z której pobieramy próbę, są wielowymiarowe normalne. Należy więc sprawdzić, czy rozkład każdej z rozważanych zmiennych jest rozkładem normalnym. Do otrzymania rzetelnych wyników zalecana jest liczebność grupy próbnej co najmniej 20 razy większa od ilości zmiennych do analizy. Czyli dla 15 zmiennych potrzebujemy co najmniej 300-elementową próbę. Zmienne w dwóch zbiorach nie powinny być współliniowe. W wychwyceniu współliniowości zmiennych pomocna jest analiza macierzy korelacji. Analiza kanoniczna jest bardzo wrażliwa na punkty odstające. Warto zatem na początek przeanalizować wykresy rozrzutu, aby wykryć możliwe punkty odstające. Podsumowanie Istotna analizy kanonicznej polega na: Znalezieniu zmiennych kanonicznych nieskorelowanych ze sobą i wyjaśniających coraz to nową swoistą część zmienności w dwóch zbiorach. Obliczeniu wag kanonicznych Obliczeniu ładunków czynnikowych Wyliczeniu wariancji wyodrębnionej, a następnie redundancji 2. Analiza kanoniczna w STATISTICE Analizę kanoniczną wywołuje się z menu Statystyka, następnie Wielowymiarowe techniki eksploracyjne/analiza kanoniczna. W oknie wstępnym analizy kanonicznej (rys. 1) możemy określić: Wszystkie zmienne, które mają być uwzględnione w analizie Rodzaj pliku wejściowego (dane surowe lub macierz korelacji) Sposób postępowania z brakującymi danymi Rys. 1. Okno wstępne analizy kanonicznej. Opcja Przegląd statystyk opisowych i macierzy korelacji umożliwia przeglądnięcie szczegółowych statystyk opisowych zmiennych uwzględnionych w analizie. P można dokonać przed rozpoczęciem właściwej analizy. Wybranie tej opcji powoduje otwarcie okna widocznego na rysunku 2.

5 5 Rys. 2. Okno przeglądu statystyk opisowych. Klikając odpowiednie przyciski możemy wyświetlić arkusze wyników zawierające średnie, odchylenia standardowe, korelacje lub kowariancje dla wybranych zmiennych. Przyciski Wykr. Ramka-wąsy zmiennych oraz Macierzowy wykres korelacji pozwalają na utworzenie dwóch typów wykresów przedstawiających rozkłady zmiennych. Dzięki wykresom ramka-wąsy (Mediana/Kwartyle/Rozstęp) możemy ocenić czy rozkład zmiennej jest symetryczny. Jeżeli nie jest, możemy podejrzewać brak normalności. Z kolei macierzowy wykres korelacji pozwoli znaleźć przypadki odstające. Po zakończeniu przeglądu klikamy na przycisk OK, by otworzyć okno Definicja modelu (rys. 3). Rys. 3. Okno definicji modelu w analizie kanonicznej Okno to umożliwia dokładne określenie dwóch zbiorów zmiennych. Kolejność tworzenia zbiorów zmiennych jest całkowicie obojętna. W omawianym oknie można ponownie wywołać arkusze wyników z wartościami statystyk opisowych oraz wspomniane wyżej wykresy (na karcie Statystyki opisowe). Na karcie Podstawowe jest dostępna opcja Automatyczne przetwarzanie i raportowanie. Wybranie jej powoduje (po kliknięciu przycisku OK) automatyczne wykonanie analizy. Wszystkie wyniki przeprowadzanej analizy umieszczane są w raporcie, skoroszycie lub oddzielnych oknach w zależności od przyjętych ustawień w oknie Ustawienia wyjścia w menu Plik. Analiz rozpoczynamy po określeniu list zmiennych i kliknięciu przycisku OK. Pojawia się wówczas okno Wyniki analizy kanonicznej (rys. 4).

6 6 [1] [3] [2] [4] Rys. 4. Okno z wynikami analizy kanonicznej W górnej części okna znajduje się Pole podsumowania, zawierające ogólne podsumowanie wyników bieżącej analizy. Kanoniczne R to współczynnik korelacji między pierwszymi i najbardziej istotnymi zmiennymi kanonicznymi w obu zbiorach (odpowiadającymi pierwszym pierwiastkom kanonicznym). W Polu podsumowania mamy kolejno: [1] Wartość największej i najbardziej istotnej korelacji kanonicznej. Wartości pozostałych można odczytać po kliknięciu przycisku Testy Chi kwadrat na karcie Czynniki kanoniczne. [2] Wartość testu chi kwadrat sprawdzającego istotność największej korelacji kanonicznej oraz poziom prawdopodobieństwa p. [3] Liczbę ważnych przypadków [4] Liczbę zmiennych, wartość wariancji wyodrębnionej oraz całkowitą redundancję dla prawego i lewego zbioru danych. Te same wartości otrzymujemy po kliknięciu przycisku Podsumowanie: wyniki kanoniczne na karcie Podstawowe. W oknie przedstawionym na rysunku 4 mamy możliwość otrzymania kilku różnych statystyk i wykresów związanych z analizą kanoniczną. Dostępne są one po wybraniu odpowiedniego przycisku na jednej z czterech dostępnych kart: Podstawowe, Czynniki kanoniczne, Struktura czynnikowa oraz Wartości kanoniczne. Korelacje wewnątrz każdego zbioru zmiennych oraz pomiędzy zbiorami można przeglądać po kliknięciu przycisku Korelacje wewnątrz i między zbiorami na karcie Struktura czynnikowa. Dokładna analiza tych korelacji umożliwia znalezienie zmiennych, które w decydujący sposób przyczyniły się do powstania interesujących nas korelacji kanonicznych. Punktem wyjścia w analizie kanonicznej są pary zmiennych kanonicznych o określonym stopniu skorelowania. Program wylicza najpierw wagi (czyli,,,,, oraz,,,,, ), które maksymalizują korelację dwóch sum ważonych (dla pierwszej pary zmiennych kanonicznych: ). Następnie znajdywane są następne wagi (czyli,,,,, oraz,,,,, ),, które maksymalizują drugą korelację kanoniczną (dla drugiej pary zmiennych kanonicznych: ).,

7 7 wyjaśniającą dodatkową część zmienności w dwóch zbiorach, zapewniając jednocześnie brak skorelowania z wyodrębnioną już zmienną kanoniczną. Obliczenia są kontynuowane aż do wyliczenia wszystkich zmiennych kanonicznych, których liczba jest równa minimalnej liczbie zmiennych w którymś ze zbiorów. Aby wyświetlić pierwiastki kanoniczne i otrzymać wagi kanoniczne, które je definiują, na karcie Wartości kanoniczne klikamy przycisk Wagi kanoniczne, lewy i prawy zbiór. Rys. 5. Arkusz z wyliczonymi wagami kanonicznymi. Wyliczone wagi ułatwiają poznanie struktury zmiennych kanonicznych poprzez pokazanie swoistego wkładu każdej zmiennej do sumy ważonej. Obliczone wagi i zmienne kanoniczne możemy zapisać za pomocą przycisku Zapisz wartości kanoniczne na karcie Wartości kanoniczne. Odczytując odpowiednie wagi z rysunku 5 pierwsza para zmiennych kanonicznych wygląda w następujący sposób: = 0,57 0,95 0,07 =0,23 0,29 0,77 +0,29 Z wyników przedstawionych na rysunku 5 wynika, że mamy w sumie 3 pary zmiennych kanonicznych. Patrząc na parę pierwszą oraz na największe wartości wag kanonicznych, widać największy związek pomiędzy zmiennymi oraz : im mniejsza wartość zmiennej (waga -0,95), tym mniejsza wartość zmiennej (waga -0,77). W analizie bierzemy pod uwagę tylko istotne statystycznie zmienne kanoniczne. Aby sprawdzić, które pary zmiennych kanonicznych są istotne, należy przeprowadzić test statystyczny. Wyniki testowania istotności zmiennych kanonicznych możemy poznać klikając na karcie Czynniki kanoniczne przycisk Testy Chi kwadrat. Przykładowy arkusz wyników obliczeń znajduje się na rysunku 6. [1] [2] [3] [4] [5] [6] Rys. 6. Arkusz wyników testowania istotności pierwiastków kanonicznych. Test jest wykonywany sekwencyjnie w taki sposób, że na początku rozważamy wszystkie pary zmiennych kanonicznych i istotność modelu oceniamy testem chi-kwadrat. Wartość tego testu i jego wynik (prawdopodobieństwo p) jest wyświetlone w pierwszym wierszu. Z punktu widzenia testowania istotności par zmiennych kanonicznych najbardziej nas interesuje kolumna zawierająca wartości prawdopodobieństwa p. Przyjmując poziom istotności =0,05, istotne są te zmienne, dla których wartość <0,05. Następnie usuwamy pierwszą parę zmiennych kanonicznych ( pierw.

8 8 usunięty: 1 ) i sprawdzamy, czy pozostałe pary są istotne statystycznie. Kolejno usuwane są z modelu kolejne pary zmiennych kanonicznych ( pierw. usunięty: 1, potem pierw. usunięty: 2 ) aż do momentu uzyskania braku istotności statystycznej (>0,05). W przypadku pokazanym na tylko pierwsza para zmiennych kanonicznych jest istotna statystycznie po jej usunięciu >0,05. Pozostałe pola przedstawione na rysunku 6 zawierają następujące informacje: [1] Wartości kolejnych korelacji kanonicznych R. [2] #, czyli wartości kwadratów kolejnych korelacji kanonicznych. Wartości 1 # są estymatorami wariancji niewyjaśnionej przez kolejne zmienne kanoniczne. Są to tak zwane wartości własne, pomocne przy wyliczaniu zmiennych kanonicznych i korelacji kanonicznej. [3] Wartość testu chi kwadrat, testującego istotność zmiennych kanonicznych (tzn. hipotezę zerową mówiącą, że wszystkie korelacje kanoniczne są równe zero) [4] Liczba stopni swobody testu chi kwadrat [5] Poziom prawdopodobieństwa p dla testu chi kwadrat [6] Wartości statystyki lambda Wilksa. Wartość lambda jest stosowana jako test istotności dla kwadratu korelacji kanonicznej i ma rozkład chi kwadrat. Podsumowanie rozważań i interpretacji otrzymamy po kliknięciu na przycisk Podsumowanie: wyniki kanoniczne na karcie Czynniki kanoniczne (rys. 7). Rys. 7. Zestawienie wyników analizy kanonicznej. Wartości w wierszach oznaczonych nazwami Wariancja wyodrębniona i Całkowita redundancja traktujemy jako wskaźniki ogólnych korelacji między dwoma zbiorami zmiennych. Wariancja wyodrębniona pokazuje przeciętną ilość wariancji wyodrębnionej ze zmiennych w odpowiednim zbiorze przez wszystkie zmienne kanoniczne (odpowiednio 100% oraz 54%). Całkowita redundancja natomiast to suma redundancji dla wszystkich zmiennych kanonicznych. Wartość tę można interpretować jako przeciętny procent wariancji wyjaśnionej w jednym zbiorze zmiennych przy danym drugim zbiorze zmiennych, w oparciu o wszystkie zmienne kanoniczne. Na podstawie wyników przedstawionych na rysunku 7 możemy powiedzieć, że lewy zbiór zmiennych w 62% wyjaśnia zmienność prawego zbioru zmiennych, natomiast prawy zbiór zmiennych w 33% wyjaśnia zmienność lewego zbioru.

9 9 Ćwiczenia Dane znajdują się w pliku dane8.sta. Zawierają dane 600 obserwacji 8 zmiennych: 3 pomiarów psychologicznych, 4 pomiarów osiągnięć akademickich (standaryzowane wyniki testów) oraz płeć. Zmienne psychologiczne to: locus_of_control, self_concept oraz motivation. Zmienne akademickie podają standaryzowane wyniki testów w czytaniu (read), pisaniu (write), matematyce (math) i nauce (science). Dodatkowo zmienna female 0-1 określa płeć studenta (1 oznacza kobietę). Chcemy zbadać związki pomiędzy uwarunkowaniami psychologicznymi a osiągnięciami. 1. Wczytaj plik z danymi. 2. Uruchom analizę kanoniczną i wybierz wszystkie zmienne. Analizę rozpocznij od przeglądu statystyk opisowych. 3. Utwórz wykresy ramka-wąsy oraz macierzowy wykres korelacji, aby zbadać charakter rozkładu analizowanych zmiennych oraz wykryć istnienie ewentualnych obserwacji odstających. 4. W przypadku wątpliwości, wyświetl średnie i odchylenia standardowe dla badanych zmiennych, a następnie przeglądnij histogramy z dopasowaną krzywą normalną. Czy wszystkie zmienne mają charakter normalny? Niewiele wiadomo o skutkach naruszenia założenia o wielowymiarowej normalności. Jednakże przy dostatecznie dużych próbach (liczba przypadków znacznie większa od liczby zmiennych) wyniki analizy korelacji kanonicznej są zwykle całkiem odporne na brak rozkładu normlanego. 5. Przejdź do definicji modelu. W pierwszej liście zmiennych wybierz zmienne psychologiczne, w drugiej pozostałe. Rozpocznij analizę. 6. Wyświetl wagi kanoniczne i zapisz kolejne pary zmiennych kanonicznych. 7. Testem chi kwadrat sprawdź istotność pierwiastków kanonicznych które pierwiastki/pary zmiennych kanonicznych możemy uznać za istotne statystycznie? 8. Jakie wnioski można wysunąć analizując wagi dla istotnych zmiennych kanonicznych? 9. Wyświetl podsumowanie analizy kanonicznej: ile wynosi redundancja całkowita dla lewego, a ile dla prawego zbioru zmiennych?

Analiza regresji - weryfikacja założeń

Analiza regresji - weryfikacja założeń Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Spis treści. LaboratoriumV: Podstawy korelacji i regresji. Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych

Spis treści. LaboratoriumV: Podstawy korelacji i regresji. Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych 1 LaboratoriumV: Podstawy korelacji i regresji Spis treści Laboratorium V: Podstawy korelacji i regresji...1 Wiadomości ogólne...2 1. Wstęp teoretyczny....2 1.1 Korelacja....2 1.2 Funkcja regresji....5

Bardziej szczegółowo

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna

Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Sposoby prezentacji problemów w statystyce

Sposoby prezentacji problemów w statystyce S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Badanie współzależności zmiennych Uwzględniając ilość zmiennych otrzymamy 4 odmiany zależności: Zmienna zależna jednowymiarowa oraz jedna

Bardziej szczegółowo

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD

Bardziej szczegółowo

Zawartość. Zawartość

Zawartość. Zawartość Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na

Bardziej szczegółowo

Analiza Statystyczna

Analiza Statystyczna Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych 1 Laboratorium III: Testy statystyczne Spis treści Laboratorium III: Testy statystyczne... 1 Wiadomości ogólne... 2 1. Krótkie przypomnienie wiadomości na temat testów statystycznych... 2 1.1. Weryfikacja

Bardziej szczegółowo

Wykład 4: Statystyki opisowe (część 1)

Wykład 4: Statystyki opisowe (część 1) Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Kolejna z analiz wielozmiennowych Jej celem jest eksploracja danych, poszukiwanie pewnych struktur, które mogą utworzyć wskaźniki

Kolejna z analiz wielozmiennowych Jej celem jest eksploracja danych, poszukiwanie pewnych struktur, które mogą utworzyć wskaźniki Analiza czynnikowa Kolejna z analiz wielozmiennowych Jej celem jest eksploracja danych, poszukiwanie pewnych struktur, które mogą utworzyć wskaźniki Budowa wskaźnika Indeks był banalny I miał wady: o Czy

Bardziej szczegółowo

Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie

Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie Satysfakcja z życia rodziców dzieci niepełnosprawnych intelektualnie Zadanie Zbadano satysfakcję z życia w skali 1 do 10 w dwóch grupach rodziców: a) Rodzice dzieci zdrowych oraz b) Rodzice dzieci z niepełnosprawnością

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

Analizy wariancji ANOVA (analysis of variance)

Analizy wariancji ANOVA (analysis of variance) ANOVA Analizy wariancji ANOVA (analysis of variance) jest to metoda równoczesnego badania istotności różnic między wieloma średnimi z prób pochodzących z wielu populacji (grup). Model jednoczynnikowy analiza

Bardziej szczegółowo

Statystyka. #6 Analiza wariancji. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2015/ / 14

Statystyka. #6 Analiza wariancji. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2015/ / 14 Statystyka #6 Analiza wariancji Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2015/2016 1 / 14 Analiza wariancji 2 / 14 Analiza wariancji Analiza wariancji jest techniką badania wyników,

Bardziej szczegółowo

7.4 Automatyczne stawianie prognoz

7.4 Automatyczne stawianie prognoz szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo

ANALIZA WARIANCJI - KLASYFIKACJA WIELOCZYNNIKOWA

ANALIZA WARIANCJI - KLASYFIKACJA WIELOCZYNNIKOWA ANALIZA WARIANCJI - KLASYFIKACJA WIELOCZYNNIKOWA Na poprzednich zajęciach omawialiśmy testy dla weryfikacji hipotez, że kilka średnich dla analizowanej zmiennej grupującej mają jednakowe wartości średnie.

Bardziej szczegółowo

Badanie zależności skala nominalna

Badanie zależności skala nominalna Badanie zależności skala nominalna I. Jak kształtuje się zależność miedzy płcią a wykształceniem? II. Jak kształtuje się zależność między płcią a otyłością (opis BMI)? III. Jak kształtuje się zależność

Bardziej szczegółowo

ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA

ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA Na poprzednich zajęciach omawialiśmy testy dla weryfikacji hipotez, że dwie populacje o rozkładach normalnych mają jednakowe wartości średnie. Co jednak

Bardziej szczegółowo

1. Eliminuje się ze zbioru potencjalnych zmiennych te zmienne dla których korelacja ze zmienną objaśnianą jest mniejsza od krytycznej:

1. Eliminuje się ze zbioru potencjalnych zmiennych te zmienne dla których korelacja ze zmienną objaśnianą jest mniejsza od krytycznej: Metoda analizy macierzy współczynników korelacji Idea metody sprowadza się do wyboru takich zmiennych objaśniających, które są silnie skorelowane ze zmienną objaśnianą i równocześnie słabo skorelowane

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VII: Regresja logistyczna

Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VII: Regresja logistyczna 1 Laboratorium VII: Regresja logistyczna Spis treści Laboratorium VII: Regresja logistyczna... 1 Wiadomości ogólne... 2 1. Wstęp teoretyczny.... 2 1.1. Wprowadzenie.... 2 2. Regresja logistyczna w STATISTICE...

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM

Bardziej szczegółowo

ZARZĄDZANIE DANYMI W STATISTICA

ZARZĄDZANIE DANYMI W STATISTICA Wprowadzenie do STATISTICA Krzysztof Regulski AGH, WIMiIP ZARZĄDZANIE DANYMI W STATISTICA 1) Zastosowanie: STATISTICA umożliwia w zakresie zarządzania danymi m.in.: scalanie plików sprawdzanie danych sortowanie

Bardziej szczegółowo

Zadanie 1. Za pomocą analizy rzetelności skali i wspólczynnika Alfa- Cronbacha ustalić, czy pytania ankiety stanowią jednorodny zbiór.

Zadanie 1. Za pomocą analizy rzetelności skali i wspólczynnika Alfa- Cronbacha ustalić, czy pytania ankiety stanowią jednorodny zbiór. L a b o r a t o r i u m S P S S S t r o n a 1 W zbiorze Pytania zamieszczono odpowiedzi 25 opiekunów dzieci w wieku 8. lat na następujące pytania 1 : P1. Dziecko nie reaguje na bieżące uwagi opiekuna gdy

Bardziej szczegółowo

Porównanie wyników grupy w odniesieniu do norm Test t dla jednej próby

Porównanie wyników grupy w odniesieniu do norm Test t dla jednej próby Porównanie wyników grupy w odniesieniu do norm Test t dla jednej próby 1. Wstęp teoretyczny Prezentowane badanie dotyczy analizy wyników uzyskanych podczas badania grupy rodziców pod kątem wpływu ich przekonań

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres

Bardziej szczegółowo

Regresja linearyzowalna

Regresja linearyzowalna 1 z 5 2007-05-09 23:22 Medycyna Praktyczna - portal dla lekarzy Regresja linearyzowalna mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie Data utworzenia:

Bardziej szczegółowo

Metodologia badań psychologicznych. Wykład 12. Korelacje

Metodologia badań psychologicznych. Wykład 12. Korelacje Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Wykład 12. Korelacje Korelacja Korelacja występuje wtedy gdy dwie różne miary dotyczące tych samych osób, zdarzeń lub obiektów

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N = HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki

Bardziej szczegółowo

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde

Bardziej szczegółowo

Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności.

Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności. Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności. Badanie normalności rozkładu Shapiro-Wilka: jest on najbardziej zalecanym testem normalności rozkładu. Jednak wskazane jest, aby

Bardziej szczegółowo

Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności

Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności Badanie normalności rozkładu Shapiro-Wilka: jest on najbardziej zalecanym testem normalności rozkładu. Jednak wskazane jest, aby

Bardziej szczegółowo

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Wykład 5: Statystyki opisowe (część 2)

Wykład 5: Statystyki opisowe (część 2) Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz

Bardziej szczegółowo

Analiza składowych głównych. Wprowadzenie

Analiza składowych głównych. Wprowadzenie Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących

Bardziej szczegółowo

Dwuczynnikowa ANOVA dla prób niezależnych w schemacie 2x2

Dwuczynnikowa ANOVA dla prób niezależnych w schemacie 2x2 Dwuczynnikowa ANOVA dla prób niezależnych w schemacie 2x2 Poniżej prezentujemy przykładowe pytania z rozwiązaniami dotyczącymi dwuczynnikowej analizy wariancji w schemacie 2x2. Wszystkie rozwiązania są

Bardziej szczegółowo

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych

Bardziej szczegółowo

LINIOWOŚĆ METODY OZNACZANIA ZAWARTOŚCI SUBSTANCJI NA PRZYKŁADZIE CHROMATOGRAFU

LINIOWOŚĆ METODY OZNACZANIA ZAWARTOŚCI SUBSTANCJI NA PRZYKŁADZIE CHROMATOGRAFU LINIOWOŚĆ METODY OZNACZANIA ZAWARTOŚCI SUBSTANCJI NA PRZYKŁADZIE CHROMATOGRAFU Tomasz Demski, StatSoft Polska Sp. z o.o. Wprowadzenie Jednym z elementów walidacji metod pomiarowych jest sprawdzenie liniowości

Bardziej szczegółowo

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu

Bardziej szczegółowo

ANALIZA REGRESJI SPSS

ANALIZA REGRESJI SPSS NLIZ REGRESJI SPSS Metody badań geografii społeczno-ekonomicznej KORELCJ REGRESJ O ile celem korelacji jest zmierzenie siły związku liniowego między (najczęściej dwoma) zmiennymi, o tyle w regresji związek

Bardziej szczegółowo

Analiza zależności liniowych

Analiza zależności liniowych Narzędzie do ustalenia, które zmienne są ważne dla Inwestora Analiza zależności liniowych Identyfikuje siłę i kierunek powiązania pomiędzy zmiennymi Umożliwia wybór zmiennych wpływających na giełdę Ustala

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 Inne układy doświadczalne 1) Układ losowanych bloków Stosujemy, gdy podejrzewamy, że może występować systematyczna zmienność między powtórzeniami np. - zmienność

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k: Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,

Bardziej szczegółowo

X WYKŁAD STATYSTYKA. 14/05/2014 B8 sala 0.10B Godz. 15:15

X WYKŁAD STATYSTYKA. 14/05/2014 B8 sala 0.10B Godz. 15:15 X WYKŁAD STATYSTYKA 14/05/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 10 ANALIZA KORELACJI Korelacja 1. Współczynnik korelacji 2. Kowariancja 3. Współczynnik korelacji liniowej definicja 4. Estymacja współczynnika

Bardziej szczegółowo

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe

Typy zmiennych. Zmienne i rekordy. Rodzaje zmiennych. Graficzne reprezentacje danych Statystyki opisowe Typy zmiennych Graficzne reprezentacje danych Statystyki opisowe Jakościowe charakterystyka przyjmuje kilka możliwych wartości, które definiują klasy Porządkowe: odpowiedzi na pytania w ankiecie ; nigdy,

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Tabele przestawne tabelą przestawną. Sprzedawcy, Kwartały, Wartości. Dane/Raport tabeli przestawnej i wykresu przestawnego.

Tabele przestawne tabelą przestawną. Sprzedawcy, Kwartały, Wartości. Dane/Raport tabeli przestawnej i wykresu przestawnego. Tabele przestawne Niekiedy istnieje potrzeba dokonania podsumowania zawartości bazy danych w formie dodatkowej tabeli. Tabelę taką, podsumowującą wybrane pola bazy danych, nazywamy tabelą przestawną. Zasady

Bardziej szczegółowo

Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne

Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład

Bardziej szczegółowo

Metody Statystyczne. Metody Statystyczne.

Metody Statystyczne. Metody Statystyczne. gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 Metody sprawdzania założeń w analizie wariancji: -Sprawdzanie równości (jednorodności) wariancji testy: - Cochrana - Hartleya - Bartletta -Sprawdzanie zgodności

Bardziej szczegółowo

Wydział Matematyki. Testy zgodności. Wykład 03

Wydział Matematyki. Testy zgodności. Wykład 03 Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy

Bardziej szczegółowo

Analiza wariancji jednej zmiennej (UNIANOVA)

Analiza wariancji jednej zmiennej (UNIANOVA) UNIANOVA ocena BY pĺ eä szkoĺ a doĺ wiadczenie /METHOD=SSTYPE(3) /INTERCEPT=INCLUDE /POSTHOC=szkoĹ a(snk) /PLOT=PROFILE(szkoĹ a*doĺ wiadczenie*pĺ eä doĺ wiadczenie*szkoĺ a*pĺ eä szkoĺ a*pĺ eä *doĺ wiadczenie

Bardziej szczegółowo

Analiza autokorelacji

Analiza autokorelacji Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących

Bardziej szczegółowo

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Paweł Cibis pawel@cibis.pl 23 lutego 2007 1 Regresja liniowa 2 wzory funkcje 3 Korelacja liniowa

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania analizy wariancji w opracowywaniu wyników badań empirycznych Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki -

Bardziej szczegółowo

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

TABELE WIELODZIELCZE

TABELE WIELODZIELCZE TABELE WIELODZIELCZE W wielu badaniach gromadzimy dane będące liczebnościami. Przykładowo możemy klasyfikować chore zwierzęta w badanej próbie do różnych kategorii pod względem wieku, płci czy skali natężenia

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Spis treści. Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów. Wstęp Wprowadzenie...

Spis treści. Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów. Wstęp Wprowadzenie... Księgarnia PWN: Bruce M. King, Edward W. Minium - Statystyka dla psychologów i pedagogów Wstęp... 13 1. Wprowadzenie... 19 1.1. Statystyka opisowa.................................. 21 1.2. Wnioskowanie

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 1

KARTA KURSU. Kod Punktacja ECTS* 1 KARTA KURSU Nazwa Nazwa w j. ang. Wprowadzenie do statystyki Introduction to statistics Kod Punktacja ECTS* 1 Koordynator Prof. dr hab. Jerzy Wołek Zespół dydaktyczny Prof. dr hab. Jerzy Wołek doktoranci

Bardziej szczegółowo

S t a t y s t y k a, część 3. Michał Żmihorski

S t a t y s t y k a, część 3. Michał Żmihorski S t a t y s t y k a, część 3 Michał Żmihorski Porównanie średnich -test T Założenia: Zmienne ciągłe (masa, temperatura) Dwie grupy (populacje) Rozkład normalny* Równe wariancje (homoscedasticity) w grupach

Bardziej szczegółowo

Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań

Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań Zaawansowana eksploracja danych - sprawozdanie nr 1 Rafał Kwiatkowski 89777, Poznań 6.11.1 1 Badanie współzależności atrybutów jakościowych w wielowymiarowych tabelach danych. 1.1 Analiza współzależności

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40 Statystyka dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl wersja 20.01.2013/13:40 Tematyka wykładów 1. Definicja statystyki 2. Populacja, próba 3. Skale pomiarowe 4. Miary położenia (klasyczne i pozycyjne)

Bardziej szczegółowo

Excel zadania sprawdzające 263

Excel zadania sprawdzające 263 Excel zadania sprawdzające 263 Przykładowe zadania do samodzielnego rozwiązania Zadanie 1 Wpisać dane i wykonać odpowiednie obliczenia. Wykorzystać wbudowane funkcje Excela: SUMA oraz ŚREDNIA. Sformatować

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo