Regulamin Konkursu Matematycznego ZAGIMAK. rok szkolny 2012/13

Wielkość: px
Rozpocząć pokaz od strony:

Download "Regulamin Konkursu Matematycznego ZAGIMAK. rok szkolny 2012/13"

Transkrypt

1 Regulamin Konkursu Matematycznego ZAGIMAK rok szkolny 2012/13 Organizatorem konkursu jest Lubelskie Samorządowe Centrum Doskonalenia Nauczycieli Oddział w Zamościu i Państwowa Wyższa Szkoła Zawodowa im. Szymona Szymonowica w Zamościu. Honorowy patronat nad konkursem sprawuje Prezydent Miasta Zamościa. 1. Celem konkursu jest: Rozwijanie uzdolnień i zainteresowań matematycznych uczniów gimnazjum. Promocja szkół, nauczycieli i uczniów biorących udział w konkursach 2. Konkursy są trzyetapowe I etap eliminacje szkolne II etap eliminacje międzyszkolne /rejonowe/ III etap finał. 3. Konkurs rozgrywany jest w trzech kategoriach Kategoria I uczniowie do klasy I włącznie Kategoria II uczniowie do klasy II włącznie Kategoria III uczniowie do klasy III włącznie 4. Udział w konkursie jest dobrowolny 5. Opiekę nad uczniami sprawują nauczyciele oddelegowani przez szkołę 6. Do kolejnego etapu konkursu kwalifikują się uczniowie, którzy uzyskali co najmniej 80% punktów. Laureatem konkursu finałowego zostają uczniowie, którzy z części finałowej uzyskali, co najmniej 80% możliwych do zdobycia punktów 7. Wszyscy uczestnicy III etapu dostają dyplomy uczestnictwa a laureaci dyplom laureata. 8. Konkursy przeprowadzają: I etap Szkolna Komisja Konkursowa, co najmniej dwuosobowa powołana przez dyrektora szkoły. II etap Rejonowa Komisja Konkursowa w skład, której wchodzą nauczyciele, których uczniowie biorą udział w danym etapie konkursu. Przewodniczącego komisji powołuje LSCDN w Zamościu. III etap Finałowa Komisja Konkursowa w skład, której wchodzą powołani przez LSCDN w Zamościu. Przewodniczącego komisji powołuje LSCDN w Zamościu.

2 9. Zadania komisji: Do obowiązków Szkolnej Komisji Konkursowej należy: Organizacja i przeprowadzenie eliminacji I etapu Przewodniczący Szkolnej Komisji Konkursowej odbiera w sekretariacie LSCDN w Zamościu materiały do przeprowadzenia konkursu na trzy dni przed terminem eliminacji szkolnych. Powielenie odpowiedniej ilości zestawów potrzebnych do przeprowadzenia eliminacji. (szkoła otrzymuje po jednym zestawie zadań do poszczególnych klas ) Sprawdzenie prac konkursowych Sporządzenie protokołu i przesłanie go wraz z pracami uczniów, którzy zostali zakwalifikowani do II etapu do LSCDN w Zamościu Do obowiązków Rejonowej Komisji Konkursowej należy: Organizacja i przeprowadzenie eliminacji II etapu Sprawdzenie prac konkursowych Sporządzenie protokołu i przesłanie go wraz z pracami uczniów, którzy zostali zakwalifikowani do III etapu do LSCDN w Zamościu LSCDN w Zamościu umieszcza wyniki II etapu konkursu na stronie internetowej. Do obowiązków Finałowej Komisji Konkursowej należy: Organizacja i przeprowadzenie eliminacji III etapu Sprawdzenie prac konkursowych Sporządzenie protokołu według kolejności zdobytych punktów, Sporządzenie listy laureatów i przesłanie go wraz ze wszystkimi pracami do LSCDN w Zamościu LSCDN w Zamościu zawiadamia laureatów poprzez dyrektorów ich szkół o terminie wręczenia Dyplomu Laureata. 10. Organizacja poszczególnych etapów konkursu: Etap szkolny: Etap szkolny odbywa się we wszystkich szkołach o godzinie 9 00 w dniu ustalonym przez LSCDN w Zamościu. Zestawy zadań powinny być otwarte o godzinie 9 00 w obecności uczestników konkursu w dniu eliminacji. Etap międzyszkolny: Etap międzyszkolny odbywa się w szkołach wytypowanych przez LSCDN w Zamościu Przewodniczący poszczególnych komisji dokonuje kodowania prac pisemnych uczestników

3 Etap finałowy: Zestawy zadań na eliminacje II etapu odbierają przewodniczący Rejonowych Komisji Konkursowych w terminie ustalonym przez LSCDN w Zamościu Zestawy zadań powinny być otwarte w obecności uczestników konkursu w dniu i godzinie eliminacji ustalonym przez LSCDN w Zamościu. Etap finałowy odbywa się w szkołach wytypowanych przez LSCDN w Zamościu Przewodniczący poszczególnych komisji dokonuje kodowania prac pisemnych uczestników Zestawy zadań na eliminacje III etapu odbierają przewodniczący Finałowych Komisji Konkursowych w terminie ustalonym przez LSCDN w Zamościu Zestawy zadań powinny być otwarte w obecności uczestników konkursu w dniu i godzinie finału ustalonym przez LSCDN w Zamościu. 11. Terminy poszczególnych etapów ustala LSCDN w Zamościu Terminy eliminacji w roku szkolnym 2012/13 : etap szkolny r. etap powiatowy r. etap finałowy r. 12. Udział w konkursach należy zgłaszać do 30 listopada 2012r. 13. Wszystkie osoby powołane do organizacji i przeprowadzania konkursu zobowiązane są do zachowania tajemnicy służbowej 14. Wymagania konkursowe na poszczególne etapy ujęte są w aneksach. 15. Sprawy nie ujęte w regulaminie rozstrzyga Kierownik LSCDN w Zamościu.

4 Aneks do regulaminu Konkursu Matematycznego ZAGIMAK Program merytoryczny konkursu. Klasa I I. Etap szkolny 1. Liczby i działania, procenty 2. Geometria Liczby całkowite: podzielność, NWW, NWD, działania, prawa działań, wartość bezwzględna liczby Ułamki zwykłe i dziesiętne, ułamki okresowe: zamiana, porównywanie, działania. Przybliżenia liczbowe: reguły zaokrąglania. Potęga o wykładniku naturalnym, działania. Obliczenia procentowe: zadania, obliczenia bankowe, stężenia procentowe, promile, stopy. Punkt, prosta, półprosta, odcinek. Kąt, rodzaje kątów, obliczanie kątów. Wielokąty: trójkąty, czworokąty klasyfikacja, własności, obwody i pola powierzchni. Prostokątny układ współrzędnych na płaszczyźnie: wyznaczanie zbiorów punktów, których współrzędne spełniają zadane warunki. Skala i plan. II. Etap okręgowy Obowiązuje zakres materiału określony dla etapu szkolnego, a ponadto: 1. Wyrażenia algebraiczne Budowanie wyrażeń algebraicznych, wartość liczbowa wyrażenia algebraicznego. Jednomian i suma algebraiczna działania. Rozkładanie sum algebraicznych na czynniki. III. Etap finałowy Obowiązuje zakres materiału określony dla etapu II, a ponadto: 1. Równania i nierówności Rozwiązywanie równań i nierówności I stopnia z jedną niewiadomą. Ilustracja rozwiązania nierówności na osi liczbowej. Równanie sprzeczne i tożsamościowe. Zastosowanie równań i nierówności do rozwiązywania zadań tekstowych.

5 Zapisywanie treści zadania w postaci wyrażenia algebraicznego, równania, lub nierówności. Dowodzenie prostych twierdzeń o treści algebraicznej Proste równania z wartością bezwzględną Figury przystające. Cechy przystawania trójkątów: zadania konstrukcyjne Dowodzenie prostych twierdzeń o treści geometrycznej. W każdym kolejnym etapie stopień trudności zadań będzie wzrastał. Klasa II I. Etap szkolny 1. Algebra Geometria Liczby całkowite: podzielność, NWW, NWD, działania, prawa działań, wartość bezwzględna liczby Ułamki zwykłe i dziesiętne, ułamki okresowe: zamiana, porównywanie, działania. Obliczenia procentowe: zadania, obliczenia bankowe, diagramy, promile. Przybliżenia liczbowe: reguły zaokrąglania. Potęga o wykładniku całkowitym: twierdzenia, działania. Pierwiastek arytmetyczny: twierdzenia, wyłączanie czynnika przed i włączanie czynnika pod znak pierwiastka, działania na pierwiastkach. Budowanie wyrażeń algebraicznych, wartość liczbowa wyrażenia algebraicznego. Jednomian i suma algebraiczna działania. Rozkładanie sum algebraicznych na czynniki. Rozwiązywanie równań i nierówności I stopnia z jedną niewiadomą. Ilustracja rozwiązania nierówności na osi liczbowej. Równanie sprzeczne i tożsamościowe. Zastosowanie równań i nierówności do rozwiązywania zadań tekstowych. Zapisywanie treści zadania w postaci wyrażenia algebraicznego, równania, lub nierówności. Dowodzenie prostych twierdzeń o treści algebraicznej Punkt, prosta, półprosta, odcinek. Kąt, rodzaje kątów, obliczanie kątów. Wielokąty: trójkąty, czworokąty klasyfikacja, własności, obwody i pola powierzchni. Pole koła i długość okręgu, długość łuku i pole wycinka koła. Symetria osiowa i środkowa. Oś symetrii i środek symetrii figury. Symetria w układzie współrzędnych.

6 Figury przystające. Cechy przystawania trójkątów: zadania konstrukcyjne i zadania na dowodzenie. Prostokątny układ współrzędnych na płaszczyźnie: wyznaczanie zbiorów punktów, których współrzędne spełniają zadane warunki. Skala i plan. Dowodzenie prostych twierdzeń o treści geometrycznej. II. Etap okręgowy Obowiązuje zakres materiału określony dla etapu szkolnego, a ponadto: Liczby całkowite: dzielenie z resztą. Zadania na prędkość, drogę i czas przeliczanie jednostek. Stopy, syropy, roztwory zadania. Pierwiastek arytmetyczny: pozbywanie się niewymierności w mianowniku. Stosunek i proporcjonalność: własności stosunku i proporcji, zastosowanie do zadań tekstowych. III. Etap finałowy Obowiązuje zakres materiału określony dla etapu II, a ponadto: Twierdzenie Pitagorasa i twierdzenie odwrotne zastosowania w zadaniach Prostopadłościan, sześcian, graniastosłup opis, siatka, pole powierzchni i objętość - zadania..okrąg i koło, figury w kole: kąt środkowy i kąt wpisany twierdzenia, ramiona kąta styczne do okręgu twierdzenia, trójkąt wpisany w okrąg i opisany na okręgu. Proste równania i nierówności z wartością bezwzględną Wzory skróconego mnożenia W każdym kolejnym etapie stopień trudności zadań będzie wzrastał. Klasa III I. Etap szkolny 1. Algebra Liczby całkowite: podzielność, NWW, NWD, działania, prawa działań, wartość bezwzględna liczby Obliczenia procentowe: zadania, obliczenia bankowe, diagramy, promile. Potęga o wykładniku całkowitym: twierdzenia, działania. Pierwiastek arytmetyczny: twierdzenia, wyłączanie czynnika przed i włączanie czynnika pod znak pierwiastka, działania na pierwiastkach. Budowanie wyrażeń algebraicznych, wartość liczbowa wyrażenia algebraicznego. Wzory skróconego mnożenia.

7 2. Geometria 3. Funkcja Rozkładanie sum algebraicznych na czynniki. Rozwiązywanie równań i nierówności I stopnia z jedną niewiadomą. Ilustracja rozwiązania nierówności na osi liczbowej. Rozwiązywanie układów równań liniowych, interpretacja geometryczna Zastosowanie równań, nierówności i układów równań do rozwiązywania zadań tekstowych. Zapisywanie treści zadania w postaci wyrażenia algebraicznego, równania, nierówności. lub układów równań Dowodzenie twierdzeń o treści algebraicznej Kąt, rodzaje kątów, obliczanie miar kątów Twierdzenie Pitagorasa i twierdzenie odwrotne zastosowania w zadaniach Wielokąty: trójkąty, czworokąty klasyfikacja, własności, obwody i pola powierzchni..okrąg i koło, figury w kole: kąt środkowy i kąt wpisany twierdzenia, ramiona kąta styczne do okręgu twierdzenia, trójkąt wpisany w okrąg i opisany na okręgu. Pole koła i długość okręgu, długość łuku,pole wycinka i odcinka koła. Symetria osiowa i środkowa. Oś symetrii i środek symetrii figury. Figury przystające. Cechy przystawania trójkątów: zadania konstrukcyjne i zadania na dowodzenie. Dowodzenie twierdzeń o treści geometrycznej. Pojęcie funkcji, dziedzina, zbiór wartości, wykres funkcji, własności, miejsce zerowe, monotoniczność. Wielkości wprost i odwrotnie proporcjonalne II. Etap okręgowy Obowiązuje zakres materiału określony dla etapu szkolnego, a ponadto: Podobieństwo figur. Cechy podobieństwa figur III. Etap finałowy Obowiązuje zakres materiału określony dla etapu II, a ponadto: Prostopadłościan, sześcian, graniastosłup, ostrosłup opis, siatka, pole powierzchni i objętość - zadania. Równania i nierówności z wartością bezwzględną Funkcja liniowa - zadania. Bryły obrotowe opis, pole powierzchni i objętość W każdym kolejnym etapie stopień trudności zadań będzie wzrastał.

Ułamki i działania 20 h

Ułamki i działania 20 h Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie

Bardziej szczegółowo

Rozdział VII. Przekształcenia geometryczne na płaszczyźnie Przekształcenia geometryczne Symetria osiowa Symetria środkowa 328

Rozdział VII. Przekształcenia geometryczne na płaszczyźnie Przekształcenia geometryczne Symetria osiowa Symetria środkowa 328 Drogi Czytelniku 9 Oznaczenia matematyczne 11 Podstawowe wzory 15 Rozdział I. Zbiory. Działania na zbiorach 21 1. Zbiór liczb naturalnych 22 1.1. Działania w zbiorze liczb naturalnych 22 1.2. Prawa działań

Bardziej szczegółowo

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h) Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby

Bardziej szczegółowo

Lista działów i tematów

Lista działów i tematów Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie

Bardziej szczegółowo

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h) Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby

Bardziej szczegółowo

wymagania programowe z matematyki kl. III gimnazjum

wymagania programowe z matematyki kl. III gimnazjum wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny

Bardziej szczegółowo

Egzamin gimnazjalny 2015 część matematyczna

Egzamin gimnazjalny 2015 część matematyczna Egzamin gimnazjalny 2015 część matematyczna imię i nazwisko Kalendarz gimnazjalisty Tydz. Dział start 22.09 29 26.09 Przygotowanie do pracy zapoznanie się z informacjami na temat egzaminu gimnazjalnego

Bardziej szczegółowo

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć

Bardziej szczegółowo

PYTANIA TEORETYCZNE Z MATEMATYKI

PYTANIA TEORETYCZNE Z MATEMATYKI Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA

Bardziej szczegółowo

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ ALGEBRA Klasa I 3 godziny tygodniowo Klasa II 4 godziny tygodniowo Klasa III 3 godziny tygodniowo A. Liczby (24) 1. Liczby naturalne i całkowite. a. Własności, kolejność

Bardziej szczegółowo

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,

Bardziej szczegółowo

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW 4014 180/99 Liczę z Pitagorasem Lp. Dział programu Tematyka jednostki metodycznej Uwagi 1 2 3 4 Lekcja organizacyjna I Działania

Bardziej szczegółowo

WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM

WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM TEMAT WYMAGANIA SZCZEGÓŁOWE 1. LICZBY I WYRAŻENIA ALGEBRAICZNE 2. System dziesiątkowy 1. Liczby wymierne dodatnie. Uczeń: 1) zaokrągla rozwinięcia dziesiętne

Bardziej szczegółowo

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki

Bardziej szczegółowo

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie

Bardziej szczegółowo

Wymagania edukacyjne klasa pierwsza.

Wymagania edukacyjne klasa pierwsza. Wymagania edukacyjne klasa pierwsza. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie liczb. Szacowanie wyników Dodawanie

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA I KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna:

PLAN WYNIKOWY Z MATEMATYKI DLA I KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: Ewa Koralewska LP... OGÓLNA PODSTA- WA PROGRA MOWA b c PLAN WYNIKOWY Z MATEMATYKI DLA I KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna. Liczby.

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

Projekt Planu wynikowego do programu MATEMATYKA 2001 Gimnazjum klasa 1. Osiągnięcia ponadprzedmiotowe

Projekt Planu wynikowego do programu MATEMATYKA 2001 Gimnazjum klasa 1. Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne i podstawowe Osiągnięcia ponadprzedmiotowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJĄCE WYKRACZAJĄCE czytać teksty w stylu

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne

Katalog wymagań programowych na poszczególne stopnie szkolne rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 0 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 4. Dodawanie i odejmowanie liczb dodatnich 1 1-

Bardziej szczegółowo

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1

RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny)

Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) Stopień Rozdział 1. Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn

Bardziej szczegółowo

Wewnątrzszkolne kryteria ocen z matematyki Klasa VIII

Wewnątrzszkolne kryteria ocen z matematyki Klasa VIII Wewnątrzszkolne kryteria ocen z matematyki Klasa VIII na ocenę dopuszczającą Liczby i działania zapisywanie i odczytywania liczb w systemie rzymskim do 3000; własności liczb naturalnych, w tym znajomość

Bardziej szczegółowo

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne

Katalog wymagań programowych na poszczególne stopnie szkolne rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania

Bardziej szczegółowo

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka I. Potęgi i pierwiastki. Klasa II 1. Zapisuje w postaci potęgi iloczyn tych samych czynników i odwrotnie. 2. Oblicza

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 20 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-2 2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 1 1-2 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Bardziej szczegółowo

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący Liczby i wyrażenia zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby niewymiernej, rzeczywistej zna sposób zaokrąglania liczb umie zapisać i odczytać liczby naturalne dodatnie w systemie

Bardziej szczegółowo

klasa I Dział Główne wymagania edukacyjne Forma kontroli

klasa I Dział Główne wymagania edukacyjne Forma kontroli semestr I 2007 / 2008r. klasa I Liczby wymierne Dział Główne wymagania edukacyjne Forma Obliczenia procentowe Umiejętność rozpoznawania podzbiorów zbioru liczb wymiernych. Umiejętność przybliżania i zaokrąglania

Bardziej szczegółowo

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot KARTA MONITOROWANIA PODSTAWY PROGRAMOWEJ KSZTAŁCENIA OGÓLNEGO III etap edukacyjny PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot matematyka Klasa......... Rok szkolny Imię i nazwisko nauczyciela

Bardziej szczegółowo

MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia

MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia KLASA I (3 h w tygodniu x 32 tyg. = 96 h; reszta godzin do dyspozycji nauczyciela) 1. Liczby rzeczywiste Zbiory Liczby naturalne Liczby wymierne

Bardziej szczegółowo

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych

Bardziej szczegółowo

MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE

MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE - pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, - sposób i potrzebę zaokrąglania liczb, - pojęcie wartości bezwzględnej,

Bardziej szczegółowo

Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego)

Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego) Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego) Ocena DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY Uczeń: Uczeń:

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia

WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia KLASA I 1. Liczby rzeczywiste i wyrażenia algebraiczne 1) Liczby naturalne, cechy podzielności stosuje cechy podzielności liczby przez 2, 3,

Bardziej szczegółowo

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie I gimnazjum

Kryteria ocen z matematyki w klasie I gimnazjum 1. Zbieranie, porządkowanie i prezentowanie danych 1. Liczby naturalne 1. Cechy podzielności 1. Działania na liczbach naturalnych 1. Algorytmy działań pisemnych odczytywać informacje przedstawione w tabelach

Bardziej szczegółowo

Plan wynikowy z rozkładem materiału

Plan wynikowy z rozkładem materiału Plan wynikowy z rozkładem materiału Plan wynikowy oraz rozkład materiału nauczania są indywidualnymi dokumentami nauczycielskimi związanymi z realizowanym programem nauczania. Uwzględniają specyfikę danej

Bardziej szczegółowo

Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych

Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczająca (2) P podstawowy ocena dostateczna (3) R rozszerzający ocena dobra

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII

Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII Temat 1. System rzymski. 2. Własności liczb naturalnych. 3. Porównywanie

Bardziej szczegółowo

Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum

Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum I LICZBY I WYRAŻENIA ALGEBRAICZNE podawanie przykładów liczb naturalnych, całkowitych, wymiernych i niewymiernych; porównywanie

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne stopnie szkolne klasa III

Wymagania edukacyjne na poszczególne stopnie szkolne klasa III Wymagania edukacyjne na poszczególne stopnie szkolne klasa III Rozdział 1. Bryły - wie, czym jest graniastosłup, graniastosłup prosty, graniastosłup prawidłowy - wie, czym jest ostrosłup, ostrosłup prosty,

Bardziej szczegółowo

Kryteria oceny osiągnięć uczniów w klasie I gimnazjum z matematyki ( Program Matematyka z plusem dla III etapu edukacyjnego) oprac.

Kryteria oceny osiągnięć uczniów w klasie I gimnazjum z matematyki ( Program Matematyka z plusem dla III etapu edukacyjnego) oprac. Kryteria oceny osiągnięć uczniów w klasie I gimnazjum z matematyki ( Program Matematyka z plusem dla III etapu edukacyjnego) oprac. Marta Wcisło DZIAŁ DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 3. System rzymski 5-6 WYMAGANIA SZCZEGÓŁOWE

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE 8 SZKOŁY PODSTAWOWEJ 1) ocenę celującą otrzymuje uczeń, który spełnił wymagania na ocenę bardzo dobrą oraz: - umie zapisać i odczytać w

Bardziej szczegółowo

Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej)

Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej) Wymagania programowe z matematyki - Klasa 3 obowiązujące w od roku szkolnego 2013/2014 UWAGA! Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej) znajomością

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII Uczeń na ocenę dopuszczającą: - zna znaki używane do zapisu liczb w systemie rzymskim, - umie zapisać i odczytać liczby naturalne dodatnie w systemie rzymskim

Bardziej szczegółowo

2. Kryteria oceniania

2. Kryteria oceniania 2. Kryteria oceniania OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 1 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe Umiejętności ponadpodstawowe Konieczne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 GIMNAZJUM KL. IA, ID ROK SZK. 2010/2011. Osiągnięcia ponadprzedmiotowe

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 GIMNAZJUM KL. IA, ID ROK SZK. 2010/2011. Osiągnięcia ponadprzedmiotowe WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 GIMNAZJUM KL. IA, ID ROK SZK. 2010/2011 W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne i podstawowe Osiągnięcia ponadprzedmiotowe

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA III KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: LICZBY I WYRAŻENIA ALGEBRAICZNE

PLAN WYNIKOWY Z MATEMATYKI DLA III KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: LICZBY I WYRAŻENIA ALGEBRAICZNE Ewa Koralewska PLAN WYNIKOWY Z MATEMATYKI DLA III KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem LP.. 2. 3. 5. OGÓLNA PODST- AWA PROGRA- MOWA a a TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna.

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych:

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych: Wymagania programowe na poszczególne oceny Poziom wymagań edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra) D dopełniający (ocena bardzo dobra)

Bardziej szczegółowo

Osiągnięcia przedmiotowe

Osiągnięcia przedmiotowe 1. Zbieranie, porządkowanie i prezentowanie danych przedstawione w tabelach przedstawione na przedstawiać dane w tabelach przedstawiać dane na przedstawione w tabelach przedstawione na porównywać informacje

Bardziej szczegółowo

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI Klasa I Liczby i działania wskazać liczby naturalne, całkowite, wymierne zaznaczyć liczbę wymierną na osi liczbowej podać liczbę przeciwną do danej

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA III FUNKCJE rozumie wykres jako sposób prezentacji informacji umie odczytać informacje z wykresu umie odczytać i porówna ć informacje z kilku wykresów

Bardziej szczegółowo

Orientacyjnie 140 godzin lekcyjnych, tj. 35 tygodni po 4 godziny lekcyjne tygodniowo.

Orientacyjnie 140 godzin lekcyjnych, tj. 35 tygodni po 4 godziny lekcyjne tygodniowo. 6 Orientacyjnie 40 godzin lekcyjnych, tj. 35 tygodni po 4 godziny lekcyjne tygodniowo.. Śmietankowe ponad wszystko Statystyka. Powtórzenie wiadomości ze statystyki 3 Czytanka. O języku matematyki, czyli

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny III klasy gimnazjum

Wymagania z matematyki na poszczególne oceny III klasy gimnazjum Wymagania z matematyki na poszczególne oceny III klasy gimnazjum Opracowano na podstawie planu realizacji materiału nauczania matematyki Matematyka Podręcznik do gimnazjum Nowa wersja Praca zbiorowa pod

Bardziej szczegółowo

DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE

DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z przedmiotu matematyka w III klasie gimnazjum w roku szkolnym 2013/2014 Wymagania edukacyjne dostosowane do obowiązującej

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 1 gimnazjum uczeń potrafi:

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 1 gimnazjum uczeń potrafi: 1 Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2015 Kryteria oceniania Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 1 gimnazjum uczeń potrafi:

Bardziej szczegółowo

ZESPÓŁ SZKÓŁ W OBRZYCKU

ZESPÓŁ SZKÓŁ W OBRZYCKU Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KL I NA POSZCZEGÓLNE OCENY W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ RUDKACH Marzena Zbrożyna

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KL I NA POSZCZEGÓLNE OCENY W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ RUDKACH Marzena Zbrożyna WYMAGANIA EDUKACYJNE Z MATEMATYKI W KL I NA POSZCZEGÓLNE OCENY W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytywać informacje przedstawione w tabelach

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 KLASA 1A, 1B, 1C GIMNAZJUM ROK SZK.2016/2017

WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 KLASA 1A, 1B, 1C GIMNAZJUM ROK SZK.2016/2017 WYMAGANIA EDUKACYJNE DO PROGRAMU MATEMATYKA 2001 KLASA 1A, 1B, 1C GIMNAZJUM ROK SZK.2016/2017 Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa III program Matematyka z plusem Dział: LICZBY I WYRAŻENIA ALGEBRAICZNE POZIOM KONIECZNY - ocena dopuszczająca Uczeń umie: szacować wyniki działań, zaokrąglać liczby

Bardziej szczegółowo

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować

Bardziej szczegółowo

Uczeo spełnia wymagania poziomu koniecznego oraz umie: porównywać liczby zapisane w różny sposób, obliczyć potęgę o wykładniku całkowitym,

Uczeo spełnia wymagania poziomu koniecznego oraz umie: porównywać liczby zapisane w różny sposób, obliczyć potęgę o wykładniku całkowitym, szacować wyniki działań, zaokrąglać liczby do podanego rzędu, zapisywać i odczytywać liczby naturalne w systemie rzymskim, podać rozwinięcie dziesiętne ułamka zwykłego, odczytać współrzędną punktu na osi

Bardziej szczegółowo

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Kryteria oceniania z matematyki KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Arytmetyka: Ocenę dopuszczającą otrzymuje uczeń, który potrafi : - określić pojęcie liczby naturalnej, całkowitej,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE

WYMAGANIA EDUKACYJNE SZKOŁA PODSTAWOWA W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie 8 Szkoły Podstawowej str. 1 Wymagania edukacyjne

Bardziej szczegółowo

NaCoBeZU z matematyki dla klasy 8

NaCoBeZU z matematyki dla klasy 8 NaCoBeZU z matematyki dla klasy 8 I. LICZBY I DZIAŁANIA 1. Zapisuję i odczytuję liczby naturalne dodatnie w systemie rzymskim w zakresie do 3000. 2. Rozpoznaję liczby podzielne przez: 2, 3, 4, 5, 9, 10,

Bardziej szczegółowo

Semestr Pierwszy Liczby i działania

Semestr Pierwszy Liczby i działania MATEMATYKA KL. I 1 Semestr Pierwszy Liczby i działania wskazać liczby naturalne, całkowite, wymierne zaznaczyć liczbę wymierną na osi liczbowej podać liczbę przeciwną do danej podać odwrotność liczby porównać

Bardziej szczegółowo

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę wymierną na osi liczbowej umie

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne, - szacować wartości

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE KLASA IAS, IBM

MATEMATYKA WYMAGANIA EDUKACYJNE KLASA IAS, IBM MATEMATYKA WYMAGANIA EDUKACYJNE KLASA IAS, IBM Lp. Temat lekcji Zakres treści Osiągnięcia uczeń: I. LICZBY 1. Oś liczbowa 1. pojęcie osi liczbowej 2. liczby przeciwne 1. zaznacza na osi liczbowej punkty

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy I gimnazjum

Wymagania edukacyjne z matematyki dla klasy I gimnazjum Wymagania edukacyjne z matematyki dla klasy I gimnazjum * Aby uczeń otrzymał ocenę wyższą, musi obok wymagań na daną ocenę opanować wiadomości i umiejętności przewidziane na ocenę niższą. Na ocenę dopuszczającą

Bardziej szczegółowo

Lista działów i tematów

Lista działów i tematów Lista działów i tematów Szkoła podstawowa. Klasa 4 Liczby i działania Rachunki pamięciowe - dodawanie i odejmowanie O ile więcej, o ile mniej Rachunki pamięciowe - mnożenie i dzielenie Mnożenie i dzielenie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie trzeciej gimnazjum.

Wymagania edukacyjne z matematyki w klasie trzeciej gimnazjum. Wymagania edukacyjne z matematyki w klasie trzeciej gimnazjum. Opracowano na podstawie programu Matematyka z plusem i podręcznika o numerze dopuszczenia 168/03/2011. Opracowały: Marzena Gąska Dorota Ścibak

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie

Bardziej szczegółowo

Wymagania szczegółowe z matematyki klasa 7

Wymagania szczegółowe z matematyki klasa 7 Wymagania szczegółowe z matematyki klasa 7 Dział Szczegółowe wymagania Liczby całkowite (liczby dodatnie, ujemne i zero) - wyróżnia wśród liczb wymiernych liczby naturalne i całkowite oraz liczby pierwsze,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa III program Matematyka z plusem Rok szkolny 2017/2018 I okres

Wymagania edukacyjne z matematyki Klasa III program Matematyka z plusem Rok szkolny 2017/2018 I okres LICZBY I WYRAŻENIA ALGEBRAICZNE Wymagania edukacyjne z matematyki Klasa III program Matematyka z plusem Rok szkolny 2017/2018 I okres rozróżniać liczby naturalne, całkowite, wymierne, dodawać, odejmować,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie

Bardziej szczegółowo

SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VIII Matematyka z kluczem

SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VIII Matematyka z kluczem SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI Wymagania na poszczególne oceny klasa VIII Matematyka z kluczem I. Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne na poszczególne oceny dla klasy I gimnazjum

Szczegółowe wymagania edukacyjne na poszczególne oceny dla klasy I gimnazjum Szczegółowe wymagania edukacyjne na poszczególne oceny dla klasy I gimnazjum POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny ocena dopuszczająca DZIAŁ 1. LICZBY I DZIAŁANIA pojęcie liczby naturalnej, całkowitej,

Bardziej szczegółowo

ZAKRES PODSTAWOWY. Proponowany rozkład materiału kl. I (100 h)

ZAKRES PODSTAWOWY. Proponowany rozkład materiału kl. I (100 h) ZAKRES PODSTAWOWY Proponowany rozkład materiału kl. I (00 h). Liczby rzeczywiste. Liczby naturalne. Liczby całkowite. Liczby wymierne. Liczby niewymierne 4. Rozwinięcie dziesiętne liczby rzeczywistej 5.

Bardziej szczegółowo

Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum

Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum Poziomy wymagań edukacyjnych: K konieczny P podstawowy R rozszerzający D dopełniający W wykraczający Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum Potęgi o wykładnikach naturalnych i całkowitych

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM BRYŁY

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM BRYŁY KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM OCENA DOPUSZCZAJĄCA BRYŁY UCZEŃ ZNA: - pojęcie graniastosłupa, prostopadłościanu i sześcianu; - pojęcie graniastosłupa prostego i prawidłowego;

Bardziej szczegółowo

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA 1. FUNKCJE 2. POTĘGI I PIERWIASTKI NaCoBeZu kryteria sukcesu w języku ucznia 1. Wiem, co to jest układ współrzędnych, potrafię nazwać osie układu. 2. Rysuję układ współrzędnych

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI GIMNAZJUM KLASA III Zgodnie z programem Matematyka z plusem

WYMAGANIA EDUKACYJNE Z MATEMATYKI GIMNAZJUM KLASA III Zgodnie z programem Matematyka z plusem Liczby i wyrażenia algebraiczne WYMAGANIA EDUKACYJNE Z MATEMATYKI GIMNAZJUM KLASA III Zgodnie z programem Matematyka z plusem zna pojęcie notacji wykładniczej umie oszacować wynik działań umie zaokrąglić

Bardziej szczegółowo