DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE
|
|
- Bożena Baran
- 9 lat temu
- Przeglądów:
Transkrypt
1 Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z przedmiotu matematyka w III klasie gimnazjum w roku szkolnym 2013/2014 Wymagania edukacyjne dostosowane do obowiązującej podstawy programowej i podręcznika Matematyka klasa III gimnazjum opracowała - na podstawie programu nauczania Matematyka z plusem dla klasy III gimnazjum - mgr Agnieszka Kizior W zakresie ogólnych wymagań edukacyjnych obowiązują ucznia: Wewnątrzszkolny System Oceniania Wymagania edukacyjne dla przedmiotu Matematyka Zasady współpracy na przedmiocie Matematyka Z uwagi na to, że w bieżącym roku kończy się III etap edukacyjny, ocenie podlegają wszystkie umiejętności ujęte w podstawie programowej dla przedmiotu matematyka w gimnazjum. Ponadto po egzaminie realizowane będą niektóre treści z IV etapu edukacyjnego. Jednak stopień ich przyswojenia nie będzie sprawdzany za pomocą prac domowych i klasówek. Celem wdrożenia tych treści jest oswojenie uczniów z zakresem wiedzy, który będzie ich obowiązywał w IV etapie edukacyjnym, poszerzenie ich umiejętności, popularyzacja matematyki oraz rozwijanie ich uzdolnień i zainteresowań. W zakresie szczegółowych wymagań edukacyjnych stosuje się poniższe kryteria: (uwaga: przez pojęcia oblicza, podaje, rozwiązuje itd. rozumiemy, że uczeń wykonuje te czynności prawidłowo, przez pojęcie zna rozumiemy podaje wzór, definicję, treść twierdzenia) DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE zna pojęcie pierwiastka arytmetycznego II stopnia z liczby nieujemnej i III stopnia z dowolnej liczby, wzory dotyczące potęgowanie i pierwiastkowania, sposób zaokrąglania liczb, pojęcie potęgi o wykładniku: naturalnym, całkowitym ujemnym, pojęcie procentu, metodę równań równoważnych, metodę podstawiania, metodę przeciwnych współczynników podaje rozwinięcie dziesiętne ułamka zwykłego, odczytuje współrzędną punktu na osi liczbowej, zaznacza liczbę na osi liczbowej, oblicza pierwiastek arytmetyczny II stopnia z liczby nieujemnej i III stopnia z dowolnej liczby, wykonuje działania łączne na liczbach, zamienia procent na ułamek i odwrotnie, oblicza procent danej liczby, odczytuje diagram procentowy, rozwiązuje równanie, nierówność i układ równań oblicza potęgę o wykładniku: naturalnym, całkowitym ujemnym, zapisuje liczbę w notacji wykładniczej, szacuje wartość wyrażenia zawierającego pierwiastki, wyłącza 1
2 czynnik przed znak pierwiastka, usuwa niewymierność z mianownika korzystając z własności pierwiastków, rozwiązuje zadanie tekstowe związane z działaniami na liczbach i z procentami, oblicza liczbę na podstawie danego procentu, oblicza jakim procentem jednej liczby jest druga liczba, stosuje przekształcenia wyrażeń algebraicznych w zadaniach tekstowych, rozwiązuje równanie sprzeczne lub tożsamościowe, układ sprzeczny lub nieoznaczony, rozwiązuje równanie, korzystając z proporcji zna pojęcia: równania równoważne, tożsamościowe, sprzeczne, układ oznaczony, nieoznaczony, sprzeczny porównuje liczby przedstawione na różne sposoby, oblicza wartości wyrażeń arytmetycznych zawierających większą liczbę działań, rozwiązuje zadanie tekstowe dotyczące różnych sposobów zapisywania liczb, wyłącza czynnik przed znak pierwiastka, włącza czynnik pod znak pierwiastka, usuwa niewymierność z mianownika korzystając z własności pierwiastków, zapisuje liczbę w notacji wykładniczej, rozwiązuje układ liniowy metodą podstawiania lub metodą przeciwnych współczynników rozwiązuje zadanie tekstowe związane z działaniami na liczbach i procentami, oblicza wartość liczbową wyrażenia po przekształceniu do postaci dogodnej do obliczeń, rozwiązuje zadanie tekstowe związane z zastosowaniem równań lub układów równań DZIAŁ 2. FUNKCJE odczytuje informacje z wykresu, odczytuje wartość funkcji dla danego argumentu lub argument dla danej wartości z: tabelki, wykresu, grafu, sprawdza rachunkowo i na wykresie, czy punkt należy do wykresu funkcji zna pojęcia: funkcja, dziedzina, argument, wartość funkcji, zmienna zależna i niezależna, miejsce zerowe zna różne sposoby zapisu funkcji określonej danym wzorem, związek pomiędzy wielkościami wprost proporcjonalnymi, związek pomiędzy wielkościami odwrotnie proporcjonalnymi interpretuje informacje odczytane z wykresu, przedstawia funkcję za pomocą opisu słownego, wzoru, grafu, wykresu i tabelki, wskazuje i oblicza miejsce zerowe funkcji, na podstawie wzoru wyznacza argument dla danej wartości funkcji i odwrotnie, odczytuje z wykresu zbiór argumentów, dla których funkcja przyjmuje wartości dodatnie lub ujemne, oblicza współczynnik proporcjonalności, opisuje wzorem dane wielkości wprost proporcjonalne, rysuje wykres funkcji typu y=ax jeśli dziedziną jest zbiór R, opisuje wzorem dane wielkości odwrotnie proporcjonalne zna etapy rysowania wykresów funkcji, kształt linii będącej wykresem wielkości wprost proporcjonalnych, kształt linii będącej wykresem wielkości odwrotnie proporcjonalnych 2
3 przedstawia wykres funkcji spełniającej warunki, wyznacza współrzędne punktów przecięcia się wykresu z osiami x i y, dopasowuje wzory do wykresów funkcji, odczytuje z wykresu zbiór argumentów, dla których funkcja przyjmuje określone wartości, zastępuje wzorem opis słowny funkcji zna nazwy wykresów niektórych funkcji ( liniowa, parabola) na podstawie wzoru rysuje wykres funkcji, rozwiązuje zadania tekstowe związane z wielkościami wprost proporcjonalnymi oraz ich wykresami, rozwiązuje zadania tekstowe związane z wielkościami odwrotnie proporcjonalnymi oraz ich wykresami rozwiązuje zadania tekstowe związane z wykresem funkcji i jej wzorem DZIAŁ 3. FIGURY NA PŁASZCZYŹNIE zna sumę miar kątów wewnętrznych trójkąta, wzór na pole dowolnego trójkąta, twierdzenie Pitagorasa i twierdzenie odwrotne, wzory na obliczanie wysokości i pola trójkąta równobocznego, definicję prostokąta, kwadratu, trapezu, równoległoboku i rombu, wzory na obliczanie pól powierzchni czworokątów, wzór na obliczanie długości okręgu i pola koła, pojęcie okręgów rozłącznych, przecinających się i stycznych, pojęcie okręgu opisanego na wielokącie i wpisanego w wielokąt, symetralnej odcinka, dwusiecznej kąta, pojęcie punktów i figur symetrycznych względem prostej i względem punktu, pojęcie osi symetrii figury oblicza miarę trzeciego kąta trójkąta, mając dwa dane, oblicza długość przeciwprostokątnej i przyprostokątnej na podstawie twierdzenia Pitagorasa, oblicza wysokość i pole trójkąta równobocznego o danym boku, oblicza pole trójkąta o danej podstawie i wysokości, oblicza długość łuku jako określonej części okręgu i pole wycinka koła jako określonej części koła, konstruuje symetralną odcinka i dwusieczną kąta, znajduje punkty symetryczne do danych względem prostej i względem punktu, rysuje figury w symetrii osiowej, gdy figura i oś nie mają punktów wspólnych zna warunek istnienia trójkąta, zależność między bokami i kątami trójkąta prostokątnego o kątach 90 0, 45 0, 45 0 oraz 90 0, 30 0, 60 0 wzór na obliczanie długości łuku i pola wycinka koła, twierdzenie o kącie wpisanym opartym na półokręgu, wzór na promień okręgu opisanego i wpisanego w kwadrat, trójkąt równoboczny i sześciokąt sprawdza, czy z odcinków o danych długościach można zbudować trójkąt, oblicza długość odcinka w układzie współrzędnych, sprawdza, czy trójkąt o danych bokach jest prostokątny, rozwiązuje trójkąt prostokątny o kątach 90 0, 45 0, 45 0 oraz 90 0, 30 0, 60 0 oblicza długość okręgu i pole koła a także długość łuku i pole wycinka znając jego promień lub średnicę (miarę kąta środkowego), oblicza pole figury złożonej z wielokątów i wycinków koła, określa wzajemne położenie dwóch okręgów, znając ich promienie i odległość między ich środkami, konstruuje sześciokąt i ośmiokąt foremny wpisany w okrąg o danym promieniu, oblicza miarę kąta wewnętrznego wielokąta foremnego, znajduje punkty i figury symetryczne względem osi oraz początku układu współrzędnych, buduje figury posiadające oś symetrii i nie posiadające środka symetrii 3
4 oblicza pole trójkąta ograniczonego wykresami funkcji liniowych oraz osią ox lub oy, oblicza pole odcinka koła, stosować własność stycznej w obliczaniu miar kątów, oblicza długości promieni, pola i obwody kół wpisanych i opisanych na kwadracie, trójkącie równobocznym i sześciokącie rozwiązuje zadanie tekstowe związane z trójkątami wyznacza kąty czworokąta na podstawie danych z rysunku rozwiązuje zadanie tekstowe związane z wielokątami rozwiązuje zadanie tekstowe związane z okręgami i kołami rozwiązuje zadanie tekstowe związane z wzajemnym położeniem dwóch okręgów rozwiązuje zadanie tekstowe związane z okręgami opisanymi i wpisanymi w wielokąty foremne podaje współrzędne punktów symetrycznych względem prostych postaci y=a, x=a DZIAŁ 4. FIGURY PODOBNE zna pojęcie odcinków proporcjonalnych, twierdzenie Talesa, pojęcie figur podobnych i skali podobieństwa zapisuje proporcję odcinków leżących na ramionach kąta przeciętych prostymi równoległymi, dzieli konstrukcyjnie odcinek na równe części stosuje twierdzenie Talesa w zadaniach rachunkowych i konstrukcyjnych, określa skalę podobieństwa, podaje wymiary figury podobnej w danej skali, rozwiązuje zadanie tekstowe związane z figurami podobnymi, oblicza pole figury podobnej znając skalę podobieństwa, oblicza skalę podobieństwa znając pola figur podobnych sprawdza podobieństwo trójkątów o danych bokach, o danych dwóch kątach i podobieństwo trójkątów prostokątnych o danym kącie ostrym zna wzór na stosunek pól figur podobnych i cechy podobieństwa trójkątów zna twierdzenie odwrotne do twierdzenia Talesa stosuje twierdzenia Talesa w zadaniach rachunkowych i konstrukcyjnych, uzasadnia podobieństwo trójkątów rozwiązuje zadanie tekstowe związane z twierdzeniem Talesa i twierdzeniem odwrotnym i związane z podziałem odcinka oraz z polami figur podobnych, określi długości boków trójkąta prostokątnego podobnego, znając skalę podobieństwa DZIAŁ 5. BRYŁY zna pojęcie graniastosłupa, prostopadłościanu i sześcianu, wzory na obliczanie pola powierzchni i objętości graniastosłupa (ostrosłupa), jednostki pola i objętości, pojęcie ostrosłupa i czworościanu, pojęcie wysokości ostrosłupa, pojęcia: walec, stożek, kula, 4
5 pojęcie przekroju bryły obrotowej i osi obrotu, wzór na objętość i pole powierzchni całkowitej walca, stożka i kuli określa ilość wierzchołków, krawędzi i ścian graniastosłupa, oblicza sumę długości krawędzi graniastosłupa, oblicza pole powierzchni i objętość graniastosłupa, podstawiając do wzoru, określa ilość wierzchołków, krawędzi i ścian ostrosłupa, rysować bryły obrotowe w rzucie równoległym, oblicza pole powierzchni całkowitej i objętość kuli i sfery, znając promień zna pojęcie przekroju graniastosłupa, pojęcie kąta rozwarcia stożka zamienia jednostki pola i objętości, rozpoznaje siatkę graniastosłupa i ostrosłupa, rysuje graniastosłup i ostrosłup w rzucie równoległym, rozwiązuje zadanie tekstowe związane z graniastosłupem i ostrosłupem, oblicza długość odcinka w graniastosłupie i ostrosłupie korzystając z twierdzenia Pitagorasa, oblicza sumę długości krawędzi ostrosłupa, oblicza pole powierzchni i objętość ostrosłupa, podstawiając do wzoru, określa wymiary bryły powstałej w wyniku obrotu danej figury, oblicza pole przekroju osiowego bryły obrotowej, kreśli siatkę walca i stożka, oblicza pole powierzchni całkowitej lub bocznej walca (stożka), podstawiając do wzoru, rozwiązuje zadanie tekstowe związane z polem powierzchni lub objętością kuli zna pojęcie przekroju ostrosłupa określa wymiary bryły powstałej w wyniku obrotu danej figury, oblicza pole przekroju osiowego bryły obrotowej, stosuje twierdzenie Pitagorasa i własności trójkątów prostokątnych o kątach 90 0, 45 0, 45 0 oraz 90 0, 30 0, 60 0 w zadaniach o walcu Na ocenę bardzo dobrą (5) uczeń spełnia wymagania na ocenę dobrą oraz umie obliczyć długość odcinka w graniastosłupie i ostrosłupie i stożku korzystając z twierdzenia Pitagorasa i z własności trójkątów prostokątnych o kątach 90 0, 45 0, 45 0 oraz 90 0, rozwiązuje zadanie tekstowe związane z bryłami złożonymi z walców oraz walców i stożków, rozwiązuje zadanie tekstowe związane z polem powierzchni lub objętością kuli, rozwiązuje zadanie tekstowe związane z zamianą kształtu brył przy stałej objętości, oblicza pole powierzchni i objętość nietypowej bryły, powstałej w wyniku obrotu danej figury wokół osi DZIAŁ 6. MATEMATYKA W ZASTOSOWANIACH zna pojęcie jednostki, diagramu, mapy, skali mapy, cena netto, cena brutto, zależność między prędkością, drogą i czasem posługuje się jednostkami miary, zamienia jednostki stosowane w praktyce, odczytuje informacje przedstawione na diagramie, oblicza podatek VAT oraz cenę brutto dla danej stawki VAT, oblicza podatek od wynagrodzenia, oblicza stan konta po roku czasu odczytuje informacje przedstawione w formie tekstu, tabeli, schematu, selekcjonuje, porównuje, analizuje, przetwarza, interpretuje informacje, ustala skalę mapy, odległości na mapie o danej skali, określa na podstawie poziomic wysokość szczytu, wykonuje obliczenia w różnych sytuacjach praktycznych, operuje procentami, oblicza 5
6 stan konta po kilku latach, porównuje lokaty w banku, oblicza prędkość, drogę lub czas, mając dwie pozostałe wielkości, rozwiązuje zadanie tekstowe związane z prędkością, drogą i czasem, rozwiązuje zadanie dotyczące: -zmian długości, objętości, ciśnienia pod wpływem temperatury ; zamiany jednostek temperatury i roztworów zamienia jednostki nietypowe, porównuje informacje, ustala odległość wzdłuż stoku, na podstawie poziomic, określa nachylenie, określa azymut, oblicza lokalny czas w różnych miejscach na kuli ziemskiej, oblicza VAT przed obniżką znając cenę brutto po obniżce o dany procent, oblicza wysokość podatku dla różnych podstaw obliczenia, oblicza oprocentowanie, znając otrzymaną po roku kwotę i odsetki, sporządza wykres wielkości podanych w tabeli oraz odczytuje z niego potrzebne informacje rozwiązuje zadanie tekstowe związane z mapą, z obliczaniem różnych podatków, z oprocentowaniem, z prędkością, drogą i czasem na bazie wykresu PONADTO: Na ocenę celującą (6) uczeń spełnia wymagania na ocenę bardzo dobrą oraz: przekształca wyrażenia algebraiczne stosując wzory skróconego mnożenia usuwa niewymierność z mianownika stosując wzory skróconego mnożenia rysuje wykres funkcji typu y= x a biegle posługuje się zdobytymi wiadomościami i stosować je w sytuacjach nietypowych posiada wiadomości i umiejętności znacznie wykraczające poza program nauczania zdobywa oceny celujące z prac klasowych osiąga sukcesy w konkursach matematycznych 6
Wymagania z matematyki na poszczególne oceny III klasy gimnazjum
Wymagania z matematyki na poszczególne oceny III klasy gimnazjum Opracowano na podstawie planu realizacji materiału nauczania matematyki Matematyka Podręcznik do gimnazjum Nowa wersja Praca zbiorowa pod
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć
MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE
MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE - pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, - sposób i potrzebę zaokrąglania liczb, - pojęcie wartości bezwzględnej,
Dopuszczający Dostateczny Dobry Bardzo dobry Celujący
Liczby i wyrażenia zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby niewymiernej, rzeczywistej zna sposób zaokrąglania liczb umie zapisać i odczytać liczby naturalne dodatnie w systemie
WYMAGANIA EDUKACYJNE Z MATEMATYKI GIMNAZJUM KLASA III Zgodnie z programem Matematyka z plusem
Liczby i wyrażenia algebraiczne WYMAGANIA EDUKACYJNE Z MATEMATYKI GIMNAZJUM KLASA III Zgodnie z programem Matematyka z plusem zna pojęcie notacji wykładniczej umie oszacować wynik działań umie zaokrąglić
- umie obliczyć potęgę o wykładniku: naturalnym(k), całkowitym ujemnym - umie oszacować wartość wyrażenia zawierającego pierwiastki
KLASA III LICZBY I WYRAŻENIA ALGEBRAICZNE - zna pojęcie liczby naturalnej, całkowitej, wymiernej - zna pojęcie liczby niewymiernej, rzeczywistej - zna sposób zaokrąglania liczb - zna pojęcie potęgi o wykładniku:
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM DZIAŁ I: LICZBY I WYRAŻENIA ALGEBRAICZNE Na o cenę dopuszczający uczeń: zna pojęcie liczby naturalnej,
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III DZIAŁ: LICZBY I WYRAŻENIA ALGEBRAICZNE. zna: pojęcie liczby naturalnej, całkowitej, wymiernej, liczby niewymiernej, rzeczywistej, sposób zaokrąglania liczb,
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM BRYŁY
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM OCENA DOPUSZCZAJĄCA BRYŁY UCZEŃ ZNA: - pojęcie graniastosłupa, prostopadłościanu i sześcianu; - pojęcie graniastosłupa prostego i prawidłowego;
KRYTERIA OCENIANIA Z MATEMATYKI W KLASIE TRZECIEJ PUBLICZNEGO GIMNAZJUM IM. JANA PAWŁA II W BIADACZU
KRYTERIA OCENIANIA Z MATEMATYKI W KLASIE TRZECIEJ PUBLICZNEGO GIMNAZJUM IM. JANA PAWŁA II W BIADACZU OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM, NR DPN-5002-17/08 OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW
DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE
Kryteria oceniania z zakresu klasy trzeciej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE HASŁO PROGRAMOWE WIADOMOŚCI I UMIEJĘTNOŚCI PODSTAWOWE
Wymagania edukacyjne z matematyki w klasie trzeciej gimnazjum.
Wymagania edukacyjne z matematyki w klasie trzeciej gimnazjum. Opracowano na podstawie programu Matematyka z plusem i podręcznika o numerze dopuszczenia 168/03/2011. Opracowały: Marzena Gąska Dorota Ścibak
Uczeo spełnia wymagania poziomu koniecznego oraz umie: porównywać liczby zapisane w różny sposób, obliczyć potęgę o wykładniku całkowitym,
szacować wyniki działań, zaokrąglać liczby do podanego rzędu, zapisywać i odczytywać liczby naturalne w systemie rzymskim, podać rozwinięcie dziesiętne ułamka zwykłego, odczytać współrzędną punktu na osi
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Klasa III program Matematyka z plusem Dział: LICZBY I WYRAŻENIA ALGEBRAICZNE POZIOM KONIECZNY - ocena dopuszczająca Uczeń umie: szacować wyniki działań, zaokrąglać liczby
MATEMATYKA WYMAGANIA NA POSZCZEGÓLNE OCENY, KLASA 3 GIM
MATEMATYKA WYMAGANIA NA POSZCZEGÓLNE OCENY, KLASA 3 GIM Poziomy wymagań edukacyjnych: 2 konieczny ocena dopuszczająca (2) 3 podstawowy - ocena dostateczna (3) 4 rozszerzający ocena dobra (4) 5 dopełniający
Klasa III LICZBY I WYRAŻENIA ALGEBRAICZNE
Liczba godzin Klasa III LICZBY I WYRAŻENIA ALGEBRAICZNE dopuszczającą (K) Wymagania podstawowe na ocenę: dostateczną (P) 22 Różne sposoby zapisywania liczb. Działania na liczbach. Obliczenia procentowe.
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III GIMNAZJUM BARDZO DOBRY DOBRY DOSTATECZNY. DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE 26 godzin
DOPUSZCZAJĄCY WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III GIMNAZJUM BARDZO DOBRY DOBRY DOSTATECZNY DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE 26 godzin CELUJĄCY zaokrągla liczby do podanego rzędu szacuje
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (dp.) P - podstawowy ocena dostateczna (dst.) R - rozszerzający ocena dobra
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA III 2015/2016
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA III 2015/2016 Ocenę dopuszczającą otrzymuje uczeń, który: (Statystyka) zna pojęcie wykresu, zna pojęcie diagramu słupkowego i kołowego,
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III gimnazjum
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III gimnazjum Ocena dopuszczająca I półrocze Ocenę dopuszczającą śródroczną otrzymuje uczeń, który: zna sposób zaokrąglania liczb rozumie
Kryteria wymagań z matematyki klasa III
Kryteria wymagań z matematyki klasa III POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2); P podstawowy - ocena dostateczna (3); R rozszerzający - ocena dobra (4); D dopełniający - ocena
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM
L B WMG DUKJ MTMTK W KLS TJ GMJUM WG POGMU MTMTK PLUSM O DOPUSJĄ DOSTT DOB BDO DOB LUJĄ zna pojęcie liczby naturalnej, całkowitej, wymiernej zna sposób zaokrąglania liczb zna pojęcie potęgi o wykładniku:
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2); P podstawowy - ocena dostateczna (3); R rozszerzający - ocena dobra (4);
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM LICZBY I WYRAŻENIA ALGEBRAICZNE
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM OCENA DOPUSZCZAJĄCA LICZBY I WYRAŻENIA ALGEBRAICZNE - pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, rzeczywistej; - sposób zaokrąglania
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM. rok szkolny 2015/2016
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM rok szkolny 2015/2016 POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2); P podstawowy - ocena dostateczna (3); R rozszerzający
Dział 1. LICZBY I WYRAŻENIA ALGEBRAICZNE
Dział 1. LICZBY I WYRAŻENIA ALGEBRAICZNE zna pojęcie notacji wykładniczej zna sposób zaokrąglania liczb rozumie potrzebę zaokrąglania liczb umie oszacować wynik działań umie zaokrąglić liczby do podanego
KOŃCOWOROCZNE KRYTERIA OCENIANIA Z MATEMATYKI W ROKU SZKOLNYM 2015/2016 DLA KLAS III przygotowała mgr Magdalena Murawska
KOŃCOWOROCZNE KRYTERIA OCENIANIA Z MATEMATYKI W ROKU SZKOLNYM 2015/2016 DLA KLAS III przygotowała mgr Magdalena Murawska Ocenę dopuszczającą otrzymuje uczeń, który: definiuje notację wykładniczą przedstawia
WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA III GIMNAZJUM (IIIan1, IIIan2, IIIb) Na rok szkolny 2015/2016
WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA III GIMNAZJUM (IIIan1, IIIan2, IIIb) Na rok szkolny 2015/2016 OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/1/2009 POZIOMY WYMAGAŃ
Lekcja organizacyjna. Odczytywanie wykresów. Odczytywanie wykresów (cd.) Pojęcie funkcji. Zależności funkcyjne. Wzory a wykresy
Klasa III: DZIAŁ 1. FUNKCJE Lekcja organizacyjna. Odczytywanie wykresów Odczytywanie wykresów (cd.) Pojęcie funkcji. Zależności funkcyjne Wzory a wykresy Zależności między wielkościami proporcjonalnymi
KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny
Kryteria oceniania z matematyki KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Arytmetyka: Ocenę dopuszczającą otrzymuje uczeń, który potrafi : - określić pojęcie liczby naturalnej, całkowitej,
Wymagania na poszczególne oceny z matematyki w klasie III G.
Wymagania na poszczególne oceny z matematyki w klasie III G. DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Wymagania na ocenę dopuszczającą (2) zna sposób zaokrąglania liczb umie oszacować wynik działań umie
Matematyka klasa III - wymagania programowe dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki
Matematyka klasa III - wymagania programowe dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki STATYSTYKA Na ocenę dopuszczającą uczeń: zna pojęcie diagramu słupkowego i kołowego
SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA TRZECIA
SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA TRZECIA DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na
KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY
KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA III FUNKCJE rozumie wykres jako sposób prezentacji informacji umie odczytać informacje z wykresu umie odczytać i porówna ć informacje z kilku wykresów
Minimalne wymagania edukacyjne na poszczególne oceny z matematyki w klasie trzeciej Matematyka z plusem dla gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE
Minimalne wymagania edukacyjne na poszczególne oceny z matematyki w klasie trzeciej Matematyka z plusem dla gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE K zna pojęcie notacji wykładniczej (K) zna sposób zaokrąglania
Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej)
Wymagania programowe z matematyki - Klasa 3 obowiązujące w od roku szkolnego 2013/2014 UWAGA! Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej) znajomością
Na ocenę dopuszczającą uczeń:
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM Na ocenę dopuszczającą uczeń: zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki zna
Wymagania edukacyjne na poszczególne oceny Matematyka klasa III Gimnazjum
Wymagania edukacyjne na poszczególne oceny Matematyka klasa III Gimnazjum Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których
Wymagania edukacyjne na poszczególne oceny Matematyka Kl.III gimnazjum
Wymagania edukacyjne na poszczególne oceny Matematyka Kl.III gimnazjum Ocena dopuszczająca Uczeń: - zna pojęcie notacji wykładniczej - zna sposób i potrzebę zaokrąglania liczb - umie oszacować wynik działań
GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI
GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI Klasa III Liczby i wyrażenia algebraiczne Na ocenę dopuszczającą uczeń: zna pojęcie notacji wykładniczej rozumie potrzebę zaokrąglania liczb umie
MATEMATYKA GIMNAZJUM
MATEMATYKA GIMNAZJUM Uczeń otrzymuje ocenę: WYMAGANIA OGÓLNE NA POSZCZEGÓLNE OCENY SZKOLNE - dopuszczającą, gdy: pracuje na lekcji i w domu na miarę swoich możliwości, uczestniczy w zajęciach dodatkowych
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2); P podstawowy - ocena dostateczna (3); R rozszerzający - ocena dobra (4);
Szczegółowe wymagania edukacyjne z matematyki Klasa III. na ocenę dopuszczającą
Szczegółowe wymagania edukacyjne z matematyki Klasa III na ocenę dopuszczającą UCZEŃ zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki; W zakresie
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM w roku szkolnym 2013/2014
WMG DUKCJ Z MTMTK W KLS GMZJUM WG POGMU MTMTK Z PLUSM w roku szkolnym 2013/2014 L C Z B OC DOPUSZCZJĄC DOSTTCZ DOB BDZO DOB CLUJĄC zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby
WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE III GIMNAZJUM
WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE III GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający
Wymagania edukacyjne z matematyki dla klasy III gimnazjum opracowane na podstawie programu Matematyka z plusem
mgr Mariola Jurkowska mgr Barbara Pierzchała Gimnazjum Zgromadzenia Sióstr Najświętszej Rodziny z Nazaretu w Krakowie Wymagania edukacyjne z matematyki dla klasy III gimnazjum opracowane na podstawie programu
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM w roku szkolnym 2014/2015
WMG DUKCJ Z MTMTK W KLS TRZCJ GMZJUM WG PROGRMU MTMTK Z PLUSM w roku szkolnym 2014/2015 L C Z B OC DOPUSZCZJĄC DOSTTCZ DOBR BRDZO DOBR CLUJĄC zna pojęcie liczby naturalnej, zna pojęcie notacji wykładniczej
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OBOWIĄZUJĄCY PODRĘCZNIK Matematyka 3. Podręcznik dla gimnazjum. Nowa wersja, praca zbiorowa
Wymagania: na kolejną - wyższą ocenę konieczna jest również znajomość materiału i posiadanie umiejętności wymaganych na ocenę niższą.
1 Wymagania: na kolejną - wyższą ocenę konieczna jest również znajomość materiału i posiadanie umiejętności wymaganych na ocenę niższą. dopuszczający zna pojęcie notacji wykładniczej, zna sposób zaokrąglania
WYMAGANIA Z MATEMATYKIW KLASIE TRZECIEJ GIMNAZJUM
WYMAGANIA Z MATEMATYKIW KLASIE TRZECIEJ GIMNAZJUM OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/03/2011 4 GODZ. TYGODNIOWO 125 GODZ. W CIĄGU ROKU POZIOMY WYMAGAŃ EDUKACYJNYCH:
punktów przecięcia się wykresu z umie dopasować wzory do wykresów funkcji (R-D) umie zastąpić wzorem opis słowny funkcji (R-D)
FUNKCJE Dopuszczający K Dostateczny P Dobry R Bardzo dobry D Celujący W rozumie wykres jako sposób prezentacji informacji umie odczytać informacje z wykresu umie odczytać i porównać informacje z kilku
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH DZIAŁ 1. LICZBY I WYRAŻENIA Uczeń otrzymuje ocenę dopuszczającą wtedy gdy: 1. zna pojęcie
ZAKRES WYMAGAŃ Z MATEMATYKI DLA KLASY III
ZAKRES WYMAGAŃ Z MATEMATYKI DLA KLASY III Ocena dopuszczająca: Liczby i wyrażenia algebraiczne: Pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, rzeczywistej Sposób zaokrąglania liczb Pojęcie
PLAN PRACY DYDAKTYCZNO-WYCHOWAWCZEJ Z MATEMATYKI W KLASIE IIIA, IIIC, IIIE GIMNAZJUM W ROKU SZKOLNYM 2018/2019 WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN PRACY DYDAKTYCZNO-WYCHOWAWCZEJ Z MATEMATYKI W KLASIE IIIA, IIIC, IIIE GIMNAZJUM W ROKU SZKOLNYM 2018/2019 WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM,
Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum
Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum I LICZBY I WYRAŻENIA ALGEBRAICZNE podawanie przykładów liczb naturalnych, całkowitych, wymiernych i niewymiernych; porównywanie
Wymagania edukacyjne z matematyki Klasa III program Matematyka z plusem Rok szkolny 2017/2018 I okres
LICZBY I WYRAŻENIA ALGEBRAICZNE Wymagania edukacyjne z matematyki Klasa III program Matematyka z plusem Rok szkolny 2017/2018 I okres rozróżniać liczby naturalne, całkowite, wymierne, dodawać, odejmować,
PLAN PRACY DYDAKTYCZNO-WYCHOWAWCZEJ Z MATEMATYKI W KLASIE IIID, IIIE GIMNAZJUM W ROKU SZKOLNYM 2015/2016 WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN PRACY DYDAKTYCZNO-WYCHOWAWCZEJ Z MATEMATYKI W KLASIE IIID, IIIE GIMNAZJUM W ROKU SZKOLNYM 2015/2016 WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM, NR
WYMAGANIA EDUKACYJNE klasa III
Matematyka z plusem dla gimnazjum WYMAGANIA EDUKACYJNE klasa III POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2); P podstawowy - ocena dostateczna (3); R rozszerzający - ocena dobra
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III GIMNAZJUM NA ROK SZKOLNY 2017/2018
SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III GIMNAZJUM NA ROK SZKOLNY 2017/2018 1. Ocena niedostateczna: Uczeń nie opanował wiadomości i umiejętności przewidzianych podstawą programową.
KOŃCOWOROCZNE KRYTERIA OCENIANIA Z MATEMATYKI DLA KLASY III
KOŃCOWOROCZNE KRYTERIA OCENIANIA Z MATEMATYKI DLA KLASY III Ocenę dopuszczającą otrzymuje uczeń, który: definiuje notację wykładniczą przedstawia sposób zaokrąglania liczb szacuje wynik działań zaokrągla
Opracowała: Anna Ochel
Rozkład materiału nauczania z MATEMATYKI do KLASY 3a, 3b na rok szkolny 2015/2016 opracowany w oparciu o program nauczania MATEMATYKA Z PLUSEM DPN-5002-17/08 I PODRĘCZNIKA O NR DOP. 168/3/2011 zgodny z
PLAN WYNIKOWY Z MATEMATYKI DLA III KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: LICZBY I WYRAŻENIA ALGEBRAICZNE
Ewa Koralewska PLAN WYNIKOWY Z MATEMATYKI DLA III KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem LP.. 2. 3. 5. OGÓLNA PODST- AWA PROGRA- MOWA a a TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna.
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE III GIMNAZJUM
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE III GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki
WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA III GIMNAZJUM
WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA III GIMNAZJUM OCENA DOPUSZCZAJĄCA -pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, rzeczywistej, -sposób zaokrąglania liczb, -pojęcie wartości bezwzględnej,
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE ŚRÓDROCZNE I ROCZNE OCENY KLASYFIKACYJNE Z MATEMATYKI W III KLASIE GIMNAZJUM
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE ŚRÓDROCZNE I ROCZNE OCENY KLASYFIKACYJNE Z MATEMATYKI W III KLASIE GIMNAZJUM Nauczyciel p. Urszula Żychowicz Rok szkolny 2018/2019 I. LICZBY I WYRAZENIA ALGEBRAICZNE
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/3/2011
Bożena Poręba WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA 3
Bożena Poręba WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA 3 WYMAGANIA KONIECZNE OCENA DOPUSZCZAJĄCA: Uczeń: - zna pojęcie notacji wykładniczej - zna sposób zaokrąglania liczb - rozumie potrzebę zaokrąglania
Wymagania edukacyjne z matematyki w klasie III gimnazjum
Wymagania edukacyjne z matematyki w klasie III gimnazjum Dział Poziom wymagań koniecznych (na ocenę dopuszczającą) Poziom wymagań podstawowych (na ocenę dostateczną) Poziom wymagań rozszerzających (na
Wymagania edukacyjne z MATEMATYKI Matematyka z plusem GWO kl. III
Wymagania edukacyjne z MATEMATYKI Matematyka z plusem GWO kl. III LICZBY I WYRAŻENIA ALGEBRAICZNE Ocena dopuszczająca: zna sposób zaokrąglania liczb rozumie potrzebę zaokrąglania liczb rozumie potrzebę
WYMAGANIA NA POSZCZEGÓLNE OCENY Z KAŻDEGO REALIZOWANEGO DZIAŁU
WYMAGANIA NA POSZCZEGÓLNE OCENY Z KAŻDEGO REALIZOWANEGO DZIAŁU POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2) P podstawowy - ocena dostateczna (3) R rozszerzający - ocena dobra (4)
DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE
Wymagania przedmiotowe z matematyki w klasie III gimnazjum w roku szkolnym 2011/2012 opracowane dla programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2)
Wymagania edukacyjne z matematyki opracowane do programu Matematyka z plusem GWO w GIMNAZJUM
Wymagania edukacyjne z matematyki opracowane do programu Matematyka z plusem GWO w GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczający (2) P - podstawowy ocena dostateczny (3) R -
Wymagania edukacyjne z matematyki dla klasy III a gimnazjum rok szkolny 2018/2019
Wymagania edukacyjne z matematyki dla klasy III a gimnazjum rok szkolny 2018/2019 DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) TEMAT ZAJĘĆ CELE PODSTAWOWE CELE PONADPODSTAWOWE 1. Lekcja organizacyjna.
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - ocena dopuszczająca (2); K, P ocena dostateczna (3); K, P, R ocena dobra (4); K, P, R, D ocena bardzo dobra
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III GIMNAZJUM. Ocenę dobrą otrzymuje uczeń, który:
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III GIMNAZJUM Ocenę dopuszczającą otrzymuje uczeń, który: Ocenę dostateczną otrzymuje uczeń, który: Ocenę dobrą otrzymuje uczeń, który: Ocenę bardzo dobrą otrzymuje
PLAN NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW WYDANYCH PRZEZ GWO Matematyka 3. Podręcznik dla gimnazjum. Praca zbiorowa
Matematyka klasa trzecia gimnazjum Wymagania na poszczególne oceny
Matematyka klasa trzecia gimnazjum Wymagania na poszczególne oceny POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra
Wymagania programowe na poszczególne stopnie szkolne klasa 3 GIMNAZJUM
Wymagania programowe na poszczególne stopnie szkolne klasa 3 GIMNAZJUM Nauczyciel matematyki ocenia osiągnięcia ucznia, wykorzystując następujące formy: prace pisemne (prace klasowe, sprawdziany, kartkówki)
wymagania programowe z matematyki kl. III gimnazjum
wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny
2-4. System dziesiątkowy. 5-6.System rzymski Liczby wymierne i niewymierne Podstawowe działania na liczbach
DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) TEMAT ZAJĘĆ CELE PODSTAWOWE CELE PONADPODSTAWOWE 1. Lekcja organizacyjna. Uczeń: zna podręcznik, z którego będzie korzystał w ciągu roku szkolnego (K) zna
WYMAGANIA EDUKACYJNE
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Z MATEMATYKI W KLASIE III GIMNAZJUM W SŁOPNICACH W ROKU SZKOLNYM 2016 /2017 Wymagania edukacyjne dostosowane są do programu MATEMATYKA Z PLUSEM POZIOM WYMAGAŃ
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW WYDANYCH PRZEZ GWO Matematyka 3. Podręcznik dla gimnazjum.
DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2); P podstawowy -
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) TEMAT ZAJĘĆ CELE PODSTAWOWE CELE PONADPODSTAWOWE 1. Lekcja organizacyjna. Uczeń: Uczeń: zna
LICZBY I WYRAŻENIA ALGEBRAICZNE
LICZBY I WYRAŻENIA ALGEBRAICZNE POZIOM K ocena dopuszczająca zna pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, rzeczywistej zna sposób zaokrąglania liczb i stosuje go rozumie potrzebę
LICZBY I WYRAZENIA ALGEBRAICZNE WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE
WYMAGANIA PROGRAMOWE DLA KLASY III GIMNAZJUM Wymagania podstawowe(k- ocena dopuszczająca, P ocena dostateczna), wymagania ponadpodstawowe( R ocena dobra, D ocena bardzo dobra, W ocena celująca) DZIAŁ:
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III GIMNAZJUM
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III GIMNAZJUM Uczeń otrzymuje: ocenę niedostateczną otrzymuje uczeń, który nie spełnił wymagań na ocenę dopuszczającą ocenę dopuszczającą, jeżeli spełnia wymagania
DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE
Kryteria ocen z matematyki w klasie III a i III b gimnazjum na rok szkolny 2015/2016 POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2); P podstawowy - ocena dostateczna (3); R rozszerzający
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH 4 GODZ. TYGODNIOWO 115 GODZ. W CIĄGU ROKU POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny
Wymagania przedmiotowe z matematyki w klasie III gimnazjum
Wymagania przedmiotowe z matematyki w klasie III gimnazjum Ocena celująca Uczeń spełnia wymagania na ocenę bardzo dobrą oraz ponadto: potrafi rozwiązać zadania na kilka sposobów; umie rozwiązywać zadania
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM Opracowano na podstawie programu Matematyka z plusem dla III etapu edukacyjnego (klasy I III) dopuszczonego przez MEN do użytku szkolnego i
Szczegółowe wymagania edukacyjne z matematyki klasa III gim
Szczegółowe wymagania edukacyjne z matematyki klasa III gim POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2); P podstawowy - ocena dostateczna (3); R rozszerzający - ocena dobra (4);
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III gimnazjum. roku szkolnym 2018 /2019.
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie gimnazjum roku szkolnym 2018 /2019. PG: Z PLUS PCWN N PDSW ZŁŻŃ D PLNU WNWG Z DL LS ( ze strony www. gwo.pl) Nazwisko i imię nauczycieli:
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH POZIOMY WYMAGAŃ EDUKACYJNYCH: ocena dopuszczająca (2) ocena dostateczna (3) wraz z całym
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2); P podstawowy - ocena dostateczna (3); R rozszerzający - ocena dobra (4);
WYMAGANIA EUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM
WYMAGANIA EUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2); P podstawowy - ocena dostateczna (3); R rozszerzający - ocena dobra (4);
PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
Matematyka z plusem dla gimnazjum PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH 4 GODZ. TYGODNIOWO 115 GODZ. W CIĄGU ROKU POZIOMY
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 3 GIM
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 3 GIM POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2); P podstawowy - ocena dostateczna (3); R rozszerzający - ocena dobra (4); D dopełniający
Matematyka - klasy III
Matematyka z plusem dla gimnazjum Matematyka - klasy III Wymagania edukacyjne z matematyki dla klasy 3 oparte na Programie nauczania matematyki w gimnazjum Matematyka z plusem autorstwa M. Jucewicz, M.