Zdolność rozdzielcza decyduje o możliwościach badawczych mikroskopów!

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zdolność rozdzielcza decyduje o możliwościach badawczych mikroskopów!"

Transkrypt

1 Zdolność rozdzielcza decyduje o możliwościach badawczych mikroskopów! Abbé E. (1873) wykazanie ograniczenia mikroskopii świetlnej przez długość użytej fali. Obiekt może być widoczny, jeśli jego rozmiary są większe lub równe połowie długości fali. Oko ludzkie: zdolność rozdzielcza 0,07 mm, czyli 70 µm. Wynika ona również z odległości dobrego widzenia (250 mm). Mikroskopia świetlna: zdolność rozdzielcza 0,0002 mm, czyli 0,2 µm. Wynika ona z najkrótszej, dostępnej dla naszego oka długości fali 0,4 µm. Zdolność rozdzielcza wyznaczana przez maksimum intensywności obrazu punktu pierwszego i minimum intensywności punktu sąsiadującego.

2 Niestety, ze względu na zjawisko dyfrakcji fal, obraz punktowego źródła światła jest plamką (dyskiem Airy ego), której średnica osiąga rozmiary: Jest to błąd dyfrakcji, którego nie można wyeliminować z żadnego układu optycznego D=1,22 λ nsin α Promień dysku Airy ego, a zatem i zdolność rozdzielcza mikroskopu określimy jako: Gdzie: λ długość fali, d= 0,61 λ nsinα α wartość kąta aperturowego, n współczynnik załamania światła

3 d= 0,61 λ NA NA=nsin α Zdolność rozdzielcza transmisyjnej mikroskopii świetlnej ograniczona jest więc długością fali λ (0,400 µm) oraz kątem aperturowym α (sin90 =1). Przełom wieku XIX i XX odkrycie, że promieniowanie rentgenowskie jest promieniowaniem elektromagnetycznym i ma bardzo krótką falę! Problem trudności ze skupianiem promieni X ze względu na porównywalne współczynniki załamania materii dla promieniowania rentgenowskiego. Mikroskopia na bazie cieni obiektów możliwa, lecz zdolność rozdzielcza metody porównywalna z mikroskopią świetlną.

4 Odkrycia prekursorowe prowadzące do konstrukcji mikroskopu elektronowego: Geissler H. (1855) konstrukcja rurek z rozrzedzonym gazem i obserwacja wyładowań elektrycznych Crooke W. (1860) promienie nie przechodzą przez metalowe obiekty Plücker H. (1858) pierwsze obserwacje promieniowania różnych gazów i opracowanie ich widm spektralnych (trzy widma emisyjne wodoru) Goldstein E. (1876) promienie katodowe Thomson JJ. (1897) wyznaczenie stosunku ładunku do masy promieni katodowych - odkrycie elektronu; serie eksperymentów nad zachowaniem się elektronów w polu elektrycznym i magnetycznym Wiechert E. (1899) ogniskuje promienie katodowe Wiedza na temat zachowania się promieni katodowych prowadzi do budowy oscylografu.

5 Doświadczenie Geisslera szklana rurka podłączona do pompy próżniowej, końce rurki wyposażone w elektrody: katodę i anodę, elektrody połączone z ogniwem, rozrzedzony gaz zaczyna świecić. Anoda (+) Katoda (-) Do pompy próżniowej

6 Doświadczenie Crooke'a typowa rurka Geisslera z rozrzedzonym gazem wewnątrz, metalowy przedmiot pomiędzy katodą i ekranem, obraz przedmiotu pojawia się na ekranie, promienie wychodzące z katody nie przenikają metalowego przedmiotu. Katoda (-) Płaszczyzna obrazowa Do pompy próżniowej Anoda (+) Przedmiot

7 Doświadczenie Wiecherta typowa rurka Geisslera, ekran fluoryzujący na końcu biegu promieni katodowych, cewka z przyłożonym do niej prądem elektrycznym, promienie wychodzące z katody skupiają się lub rozpraszają w zależności od kierunku przepływu prądu. Katoda (-) Płaszczyzna obrazowa + - Do pompy próżniowej Anoda (+)

8 Twórcy podstaw optyki elektronowej: De Broglie LV hipoteza: każde ciało poruszające się ma przyporządkowaną falę a jej długość jest ilorazem stałej Plancka i pędu. Elektrony powinny więc mieć naturę falową. Schrödinger E badania nad mechaniką i optyką fal (Hamilton, 1830). Busch H pole magnetyczne i elektryczne może działać na naładowane cząstki jak soczewki szklane na światło początek i rozwój optyki elektronowej. Dlaczego równanie de Broglie a jest takie ważne dla mikroskopii elektronowej? λ - długość fali m - masa spoczynkowa e - V - prędkość e - λ= h mv h - stała Plancka (4.14x10-15 ev s)

9 Twórcy podstaw optyki elektronowej: De Broglie LV hipoteza: każde ciało poruszające się ma przyporządkowaną falę a jej długość jest ilorazem stałej Plancka i pędu. Elektrony powinny więc mieć naturę falową. Schrödinger E badania nad mechaniką i optyką fal (Hamilton, 1830). Busch H pole magnetyczne i elektryczne może działać na naładowane cząstki jak soczewki szklane na światło. λ 1 Wynika ono z podstawowego prawa optyki jakim jest prawo załamania fali na granicy dwóch ośrodków (prawo Snella). i r λ 2 sin i sin r = n 2 n 1 sin i sin r = p 2 p 1 sin i sin r = λ 1 λ 2

10 Ruska E rozpoczyna pracę nad soczewkami magnetycznymi a w 1931 publikuje wraz z Knollem wyniki swojej pracy magisterskiej na temat soczewek magnetycznych Pierwszy opis konstrukcji mikroskopu elektronowego został opublikowany przez Ruskę w 1934 roku i był modyfikacją wysokonapięciowego oscylografu. Pierwszy patent związany z firmą Siemens w Berlinie należy do Rüdenberga (1931). Pierwsze mikroskopy za oceanem: - Prebus A. i Hillier J. (Toronto, Kanada) Hall CE. (USA) Pierwsze mikroskopy do celów laboratoryjnych (komercyjne): 1938 zdolność rozdzielcza: 10 nm 1940 zdolność rozdzielcza: 2,4 nm 1945 zdolność rozdzielcza: 1 nm W 1986 roku Ruska E. otrzymuje Nagrodę Nobla!

11 Równanie de Broglie a jest bardzo uproszczoną formą... Okazuje się, że wraz z prędkością ciała zmienia się również jego masa (wynik teorii względności Einsteina). m= m 0 1 V 2 c 2 Ciała mogą także wykonywać obroty wokół własnej osi w tym przypadku uwzględniamy spin elektronu (wynik teorii Comptona). Efektywna długość fali możliwa do osiągnięcia w mikroskopie elektronowym może być zapisana jako: = V Dla napięcia przyspieszającego 60 kev jesteśmy w stanie uzyskać długość fali 0,005 nm!

12 Soczewki magnetyczne. Podstawowe prawa optyki świetlnej obowiązują w optyce elektronowej! Długość ogniskowej soczewki magnetycznej zależy od mocy soczewki i prędkości elektronów. I A f=k V r N d NI 2 długość żelaznej obręczy Moc soczewki zależy od prądu przepływającego przez zwoje cewek oraz liczby zwojów cewki gdzie K jest stałą, V r napięciem przyspieszającym, N liczbą zwojów cewki, a I natężeniem prądu płynącego przez cewki.

13 Soczewki magnetyczne. Zwoje osłonięte płaszczem z miękkiego magnetyku (żelaza) o symetrii osiowej, zaopatrzone w szczelinę wypełnioną materiałem niemagnetycznym (np. miedzią) lub dołączonym nabiegunnikiem. Zwoje d Soczewkę magnetyczną o długiej ogniskowej cechuje duża średnica otworu soczewki (l) i niewielka szczelina (d). l d Słabe soczewki kondensorowe! Płaszcz z żelaza

14 Soczewki magnetyczne. Zwoje osłonięte płaszczem z miękkiego magnetyku (żelaza) o symetrii osiowej, zaopatrzone w szczelinę wypełnioną materiałem niemagnetycznym (np. miedzią) lub dołączonym nabiegunnikiem. l Zwoje d d Soczewkę magnetyczną o krótkiej ogniskowej cechuje minimalna średnica otworu soczewki (l) w stosunku do szczeliny. Soczewki obiektywowe i projekcyjne! Płaszcz z żelaza

15 Soczewki magnetyczne. Zwoje osłonięte płaszczem z miękkiego magnetyku (żelaza) o symetrii osiowej, zaopatrzone w szczelinę wypełnioną materiałem niemagnetycznym (np. miedzią) lub dołączonym nabiegunnikiem. Zwoje Soczewkę magnetyczną o krótkiej ogniskowej realizuje się przez umieszczenie w szczelinie nabiegunnika. l Nabiegunnik Niemal stałe pole magnetyczne: H = 4 N I 10 l Płaszcz z żelaza

16 Zasada odwzorowania Gaussa gęstość cząstek tworzących obraz jest na tyle mała, aby oddziaływania pomiędzy nimi były zaniedbywalne, soczewki elektronowe mają doskonałą symetrię obrotową, oś wiązki elektronów pokrywa się z osią symetrii soczewek elektronowych, kąty, jakie tworzą tory elektronów z osią symetrii są tak małe, że ich funkcje trygonometryczne mogą być zastąpione odpowiednimi kątami. Obszar działania pola d z Płaszczyzna przedmiotu Płaszczyzna obrazu

17 Problemy w odwzorowaniu obrazów aberracje. Aberracja sferyczna (znacząca). Zdolność rozdzielcza teoretyczna dla mikroskopu elektronowego: d s = 1 2 C s 3 Korekcja aberracji sferycznej zmniejszanie wartości kąta aperturowego przez zmniejszanie średnicy przesłony punktowe źródło elektronów soczewka ognisko stała prędkość elektronów zmienne w przestrzeni pole magnetyczne

18 Problemy w odwzorowaniu obrazów aberracje. Aberracja chromatyczna (znacząca). Zdolność rozdzielcza teoretyczna dla mikroskopu elektronowego: d c =C c V V 2 I I Korekcja aberracji chromatycznej zmniejszanie wartości kąta aperturowego przez zmniejszanie średnicy przesłony, stabilizacja prądu soczewek i źródła elektronów punktowe źródło elektronów soczewka ognisko zmienna prędkość elektronów stałe w przestrzeni pole magnetyczne

19 Problemy w odwzorowaniu obrazów aberracje. Astygmatyzm (znaczący). ognisko punktowe źródło elektronów obraz w płaszczyźnie X obraz w płaszczyźnie Y Korekcja astygmatyzmu ośmiobiegunowy korektor elektrostatyczny, czystość przesłon i nabiegunników soczewek

20 Soczewki magnetyczne. Przykłady soczewek magnetycznych obiektywowych: wiązka elektronowa cewki skanujące płaszcz Fe stygmator Soczewka stożkowa (z asymetrycznym otworem): - pole magnetyczne odizolowane od preparatu, zwoje - brak ograniczeń w wielkości preparatu, - duża głębia ostrości, przesłona obiektywu e - detektor - błędy w odwzorowaniu preparatu (aberracje), - średnia rozdzielczość. stolik mikroskopowy

21 Soczewki magnetyczne. Przykłady soczewek magnetycznych obiektywowych: wirtualna przesłona płaszcz Fe wiązka elektronowa e - detektor Soczewka immersyjna: - preparat w polu magnetycznym soczewki, - ograniczenia w wielkości preparatu, - mała głębia ostrości, - minimalne błędy w odwzorowaniu preparatu (aberracje), - wysoka rozdzielczość. nabiegunnik zwoje

22 Soczewki magnetyczne. Przykłady soczewek magnetycznych obiektywowych: wirtualna przesłona zwoje e - detektor Soczewka jednobiegunowa (snorkel lens): - preparat w zewnętrznym polu magnetycznym soczewki, - brak ograniczeń w wielkości preparatu, - duża głębia ostrości, e - detektor - minimalne błędy w odwzorowaniu preparatu (aberracje), - wysoka rozdzielczość. stolik mikroskopowy

23 Źródło elektronów działo elektronowe osłona Wehnelta Dawca elektronów włókno (filament) lub kryształ Osłona Wehnelta Anoda Rozmiary źródła elektronów, czyli średnica d zależy od: - typu źródła elektronowego, - typu osłony Wehnelta, - potencjału osłony Wehnelta, - położenia włókna w stosunku do osłony Wehnelta, - temperatury włókna. potencjometr _ wysokie napięcie + _ 0 + zasilanie katody katoda d anoda uziemienie

24 Katoda wolframowa rozżarzony cienki drucik wyprofilowany w kształcie litery V. Katoda LaB 6 kryształ sześcioborku lantanu zamknięty w uchwycie molibdenowym osłona Wehnelta anoda podgrzewacz katoda _ kryształ LaB 6 +

25 Katoda polowa zimna emisja elektronów w silnym polu elektrycznym Wolfram (także węgiel, cyrkon lub krzem w formie nanorureczek) w układzie trójelementowym: emiter anoda ekstrakcyjna anoda przyspieszająca osłona Wehnelta anoda ekstrakcyjna anoda przyspieszająca katoda _ + wolfram +

26 Osłona Wehnelta. Posiada niewielki ładunek ujemny w celu skupiania emitowanych elektronów. Wielkość ładunku osłony ma wpływ na jasność katody wyznaczana odległością końcówki włókna od ścian osłony Wehnelta. osłona Wehnelta anoda zasilanie Wehnelta zasilanie katody katoda d 0 + _ + wysokie napięcie uziemienie Brak zasilania osłony Wehnelta! Wartość d wyznaczona średnicą otworu anody.

27 Osłona Wehnelta. Posiada niewielki ładunek ujemny w celu skupiania emitowanych elektronów. Wielkość ładunku osłony ma wpływ na jasność katody wyznaczana odległością końcówki włókna od ścian osłony Wehnelta. osłona Wehnelta anoda zasilanie Wehnelta zasilanie katody katoda d _ 0 + _ + wysokie napięcie Minimalne zasilanie osłony Wehnelta! uziemienie

28 Osłona Wehnelta. Posiada niewielki ładunek ujemny w celu skupiania emitowanych elektronów. Wielkość ładunku osłony ma wpływ na jasność katody wyznaczana odległością końcówki włókna od ścian osłony Wehnelta. osłona Wehnelta anoda zasilanie Wehnelta zasilanie katody katoda d _ 0 + _ + wysokie napięcie uziemienie Optymalne zasilanie osłony Wehnelta! Minimalna wartość d.

29 Jasność katody Haine ME. i Einstein A. (1952) serie doświadczeń z emisją elektronów z katody; wprowadzenie jasności świecenia katody. gdzie, J c jest gęstością prądu katody, e ładunkiem, V napięciem przyspieszającym, k stałą Boltzmanna (8.6x10-5 ev/k), T temperatura. J c = A c T 2 exp E w k T β= J c ev πkt Energia pracy pracy (Temp.) (T) Ucieczka elektronu Jasność wzrasta więc wraz z napięciem przyspieszającym oraz paradoksalnie z temperaturą włókna wolframowego! Gęstość prądu katody rośnie bowiem wraz z temperaturą. Energia Fermiego wolfram próżnia

30 Gęstość prądu katody (natężenie) można zapisać równaniem Richardsona: A c stała dla materiału emitującego (120 Acm -2 K -2 ), T temperatura emisji (K), E w energia pracy (ev), J c = A c T 2 exp E w k T k stała Boltzmanna (8,6x10-5 ev/k) Gęstość prądu katody polowej zależy głównie od efektywności pola elektrycznego. Dla katody wolframowej w polu elektrycznym powyżej 0.3 ev gęstość prądu wyniesie: Acm -2 Dla zwykłej katody wolframowej przy temperaturze 2700 K gęstość prądu wyniesie: 3,4 Acm -2 Dla katody LaB 6 przy temperaturze 1800 K gęstość prądu wyniesie: 40 Acm -2

31 Przesłony. 1. Wykonane z platyny lub molibdenu (pochłanianie energii z rozproszonych elektronów. 2. Wymienne w zależności od potrzeb użytkownika. 3. Maksymalnie cienkie (ograniczenie tworzenia warstwy zanieczyszczenia. Przesłony kondensorowe ograniczają iluminację preparatu, zmieniają kąt aperturowy, ograniczają powstawanie promieniowania X w kolumnie mikroskopu. Umiejscowienie tuż pod drugą soczewką kondensorową. Średnica od 80 do 400 µm Przesłony obiektywowe zmniejszają aberracje sferyczną i chromatyczną, zmieniają kąt aperturowy. Umiejscowienie w obrębie szczeliny soczewki obiektywowej. Średnica od 80 do 300 µm

32 Schematyczny układ optyczny mikroskopu elektronowego transmisyjnego. preparat obraz pośredni obraz ostateczny K OW A SK1 P SK2 P SO SPo P SPr Ek K katoda OW osłona Wehnelta A anoda SK1 pierwsza soczewka kondensora SK2 druga soczewka kondensora P przesłony SO soczewka obiektywu SPo soczewka pośrednia SPr soczewka projekcyjna Ek ekran fluoryzujący

33 Układ próżniowy. Pompa rotacyjna: - tworzenie wstępnej próżni, - zakres pracy (atm mbar), - obsługa pomp dyfuzyjnej, jonowej i turbomolekularnej, - mocno zanieczyszcza węglowodorami, - wprowadza wibracje i hałas. Pompa jonowa: - tworzenie próżni końcowej, - zakres pracy ( mbar), - nie zanieczyszcza węglowodorami.

34 Układ próżniowy. Pompa turbomolekularna: - tworzenie próżni końcowej, - zakres pracy (atm mbar), - lekko zanieczyszcza węglowodorami, - wprowadza wibracje. Pompa dyfuzyjna: - tworzenie próżni końcowej, - zakres pracy ( mbar), - lekko zanieczyszcza węglowodorami, - brak wibracji i hałasu.

h λ= mv h - stała Plancka (4.14x10-15 ev s)

h λ= mv h - stała Plancka (4.14x10-15 ev s) Twórcy podstaw optyki elektronowej: De Broglie LV. 1924 hipoteza: każde ciało poruszające się ma przyporządkowaną falę a jej długość jest ilorazem stałej Plancka i pędu. Elektrony powinny więc mieć naturę

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA 1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 6 Optyka promieni 2 www.zemax.com Diafragmy Pęk promieni świetlnych, przechodzący przez układ optyczny

Bardziej szczegółowo

Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2.

Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2. Ia. OPTYKA GEOMETRYCZNA wprowadzenie Niemal każdy system optoelektroniczny zawiera oprócz źródła światła i detektora - co najmniej jeden element optyczny, najczęściej soczewkę gdy system służy do analizy

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

Ćw.6. Badanie własności soczewek elektronowych

Ćw.6. Badanie własności soczewek elektronowych Pracownia Molekularne Ciało Stałe Ćw.6. Badanie własności soczewek elektronowych Brygida Mielewska, Tomasz Neumann Zagadnienia do przygotowania: 1. Budowa mikroskopu elektronowego 2. Wytwarzanie wiązki

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego MIKROSKOPIA ELEKTRONOWA Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Tło historyczne Pod koniec XIX wieku stosowanie mikroskopów świetlnych w naukach

Bardziej szczegółowo

Podstawowe właściwości elektronu

Podstawowe właściwości elektronu Podstawowe właściwości elektronu Ładunek elektronu (e) (-)1.602 x 10-19 C 1 ev 1.602 x 10-19 J Masa spoczynkowa m o Energia kinetyczna (ładunek x różnica potencjałów) Stała Plancka Szybkość światła w próżni

Bardziej szczegółowo

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA 1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 7 Dystorsja Zależy od wielkości pola widzenia. Dystorsja nie wpływa na ostrość obrazu lecz dokonuje

Bardziej szczegółowo

Ćwiczenie 53. Soczewki

Ćwiczenie 53. Soczewki Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.

Bardziej szczegółowo

6. Badania mikroskopowe proszków i spieków

6. Badania mikroskopowe proszków i spieków 6. Badania mikroskopowe proszków i spieków Najprostszy układ optyczny stanowią dwie współosiowe soczewki umieszczone na końcach tubusu (rysunek 42). Odwzorowanie mikroskopowe jest dwustopniowe: obiektyw

Bardziej szczegółowo

Mikroskopy uniwersalne

Mikroskopy uniwersalne Mikroskopy uniwersalne Źródło światła Kolektor Kondensor Stolik mikroskopowy Obiektyw Okular Inne Przesłony Pryzmaty Płytki półprzepuszczalne Zwierciadła Nasadki okularowe Zasada działania mikroskopu z

Bardziej szczegółowo

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład X Transmisyjna mikroskopia elektronowa (TEM) Dyfrakcja elektronowa (ED) Zalety mikroskopii elektronowej

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak

POMIARY OPTYCZNE 1. Wykład 1.  Dr hab. inż. Władysław Artur Woźniak POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło

Bardziej szczegółowo

+OPTYKA 3.stacjapogody.waw.pl K.M.

+OPTYKA 3.stacjapogody.waw.pl K.M. Zwierciadło płaskie, prawo odbicia. +OPTYKA.stacjapogody.waw.pl K.M. Promień padający, odbity i normalna leżą w jednej płaszczyźnie, prostopadłej do płaszczyzny zwierciadła Obszar widzialności punktu w

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski 3 listopad 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 5 1/41 Plan wykładu Podstawy optyki geometrycznej Załamanie światła, soczewki Odbicie

Bardziej szczegółowo

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka.

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka. Fale materii 194- Louis de Broglie teoria fal materii, 199- nagroda Nobla Hipoteza de Broglie głosi, że dwoiste korpuskularno falowe zachowanie jest cechą nie tylko promieniowania, lecz również materii.

Bardziej szczegółowo

Optyka. Wykład XI Krzysztof Golec-Biernat. Równania zwierciadeł i soczewek. Uniwersytet Rzeszowski, 3 stycznia 2018

Optyka. Wykład XI Krzysztof Golec-Biernat. Równania zwierciadeł i soczewek. Uniwersytet Rzeszowski, 3 stycznia 2018 Optyka Wykład XI Krzysztof Golec-Biernat Równania zwierciadeł i soczewek Uniwersytet Rzeszowski, 3 stycznia 2018 Wykład XI Krzysztof Golec-Biernat Optyka 1 / 16 Plan Równanie zwierciadła sferycznego i

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,

Bardziej szczegółowo

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 7 Elektronowy mikroskop skaningowy-analogowy w badaniach morfologii powierzchni ciała stałego. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo

Podstawowe właściwości elektronu

Podstawowe właściwości elektronu Podstawowe właściwości elektronu Ładunek elektronu (e) 1 ev Masa spoczynkowa m o Energia kinetyczna (ładunek x różnica potencjałów) Stała Plancka Szybkość światła w próżni (-)1.602 x 10-19 C 1.602 x 10-19

Bardziej szczegółowo

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA 1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Raał Kasztelanic Wykład 4 Obliczenia dla zwierciadeł Równanie zwierciadła 1 1 2 1 s s r s s 2 Obliczenia dla zwierciadeł

Bardziej szczegółowo

Mikroskop teoria Abbego

Mikroskop teoria Abbego Zastosujmy teorię dyfrakcji do opisu sposobu powstawania obrazu w mikroskopie: Oświetlacz typu Köhlera tworzy równoległą wiązkę światła, padającą na obserwowany obiekt (płaszczyzna 0 ); Pole widzenia ograniczone

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki Nazwisko i imię: Zespół: Data: Ćwiczenie nr : Soczewki Cel ćwiczenia: Wyznaczenie ogniskowych soczewki skupiającej i układu soczewek (skupiającej i rozpraszającej) oraz ogniskowej soczewki rozpraszającej

Bardziej szczegółowo

Światło ma podwójną naturę:

Światło ma podwójną naturę: Światło ma podwójną naturę: przejawia własności fal i cząstek W. C. Roentgen ( Nobel 1901) Istnieje ciągłe przejście pomiędzy tymi własnościami wzdłuż spektrum fal elektromagnetycznych Dla niskich częstości

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie

Bardziej szczegółowo

Wykład 18: Elementy fizyki współczesnej -1

Wykład 18: Elementy fizyki współczesnej -1 Wykład 18: Elementy fizyki współczesnej -1 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Promieniowanie ciała doskonale czarnego

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

39 DUALIZM KORPUSKULARNO FALOWY.

39 DUALIZM KORPUSKULARNO FALOWY. Włodzimierz Wolczyński 39 DUALIZM KORPUSKULARNO FALOWY. ZJAWISKO FOTOELEKTRYCZNE. FALE DE BROGILE Fale radiowe Fale radiowe ultrakrótkie Mikrofale Podczerwień IR Światło Ultrafiolet UV Promienie X (Rentgena)

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA TEST JEDNOKROTNEGO WYBORU

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA TEST JEDNOKROTNEGO WYBORU autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 39 ATOM WODORU. PROMIENIOWANIE. WIDMA Zadanie 1 1 punkt TEST JEDNOKROTNEGO WYBORU Moment pędu elektronu znajdującego się na drugiej orbicie w atomie

Bardziej szczegółowo

Optyka w fotografii Ciemnia optyczna camera obscura wykorzystuje zjawisko prostoliniowego rozchodzenia się światła skrzynka (pudełko) z małym okrągłym otworkiem na jednej ściance i przeciwległą ścianką

Bardziej szczegółowo

Wyznaczanie stosunku e/m elektronu

Wyznaczanie stosunku e/m elektronu Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się

Bardziej szczegółowo

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje.

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Działanie obrazujące soczewek lub układu soczewek wygodnie

Bardziej szczegółowo

Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa

Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa Pokazy Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa Zjawisko fotoelektryczne Zjawisko fotoelektryczne polega na tym, że w wyniku

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

Ćwiczenia z mikroskopii optycznej

Ćwiczenia z mikroskopii optycznej Ćwiczenia z mikroskopii optycznej Anna Gorczyca Rok akademicki 2013/2014 Literatura D. Halliday, R. Resnick, Fizyka t. 2, PWN 1999 r. J.R.Meyer-Arendt, Wstęp do optyki, PWN Warszawa 1979 M. Pluta, Mikroskopia

Bardziej szczegółowo

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,

Bardziej szczegółowo

II. KWANTY A ELEKTRONY

II. KWANTY A ELEKTRONY II. KWANTY A ELEKTRONY II.1. PROMIENIE KATODOWE Promienie katodowe są przyczyną fluorescencji. Odegrały one bardzo ważną rolę w odkryciu elektronów. Skład promieniowania katodowego stanowią cząstki elektrycznie

Bardziej szczegółowo

Optyka geometryczna MICHAŁ MARZANTOWICZ

Optyka geometryczna MICHAŁ MARZANTOWICZ Optyka geometryczna Optyka geometryczna światło jako promień, opis uproszczony Optyka falowa światło jako fala, opis pełny Fizyka współczesna: światło jako cząstka (foton), opis pełny Optyka geometryczna

Bardziej szczegółowo

Matura z fizyki i astronomii 2012

Matura z fizyki i astronomii 2012 Matura z fizyki i astronomii 2012 Arkusz A1 poziom podstawowy Odpowiedzi do zadań z serwisu filoma.org fizyka matura i zadania na filoma.org 1 2 3 4 5 6 7 8 9 10 D B C D C D A C C B Zadanie 11 a) 3 b)

Bardziej szczegółowo

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. Światło wykazuje zjawisko dyfrakcyjne. Rys.VII.1.Światło padające na

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA

WOJSKOWA AKADEMIA TECHNICZNA 1 WOJSKOWA AKADEMIA TECHNICZNA WYDZIAŁ NOWYCH TECHNOLOGII I CHEMII FIZYKA Ćwiczenie laboratoryjne nr 43 WYZNACZANIE ABERRACJI SFERYCZNEJ SOCZEWEK I ICH UKŁADÓW Autorzy: doc. dr inż. Wiesław Borys dr inż.

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Fizyka współczesna. Pracownia dydaktyki fizyki. Instrukcja dla studentów. Tematy ćwiczeń

Fizyka współczesna. Pracownia dydaktyki fizyki. Instrukcja dla studentów. Tematy ćwiczeń Pracownia dydaktyki fizyki Fizyka współczesna Instrukcja dla studentów Tematy ćwiczeń I. Wyznaczanie stałej Plancka z wykorzystaniem zjawiska fotoelektrycznego II. Wyznaczanie stosunku e/m I. Wyznaczanie

Bardziej szczegółowo

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

Propagacja światła we włóknie obserwacja pól modowych.

Propagacja światła we włóknie obserwacja pól modowych. Propagacja światła we włóknie obserwacja pól modowych. Przy pomocy optyki geometrycznej łatwo można przedstawić efekty propagacji światła tylko w ośrodku nieograniczonym. Nie ukazuje ona jednak interesujących

Bardziej szczegółowo

III. EFEKT COMPTONA (1923)

III. EFEKT COMPTONA (1923) III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.

Bardziej szczegółowo

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,

Bardziej szczegółowo

Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, Spis treści

Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, Spis treści Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, 2016 Spis treści Wykaz ważniejszych skrótów i oznaczeń 11 Przedmowa 17 Wstęp 19 Literatura 26 Rozdział I.

Bardziej szczegółowo

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy Oddziaływanie promieniowania X z materią Podstawowe mechanizmy Promieniowanie od oscylującego elektronu Rozpraszanie Thomsona Dyspersja podejście klasyczne Fala padająca Wymuszony, tłumiony oscylator harmoniczny

Bardziej szczegółowo

OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X

OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X X4 OBRAZOWANIE ORAZ BADANIE ROZMIARÓW I POŁOŻENIA OBIEKTÓW NAŚWIETLONYCH PROMIENIOWANIEM X 1. Cel ćwiczenia Celem ćwiczenia jest jakościowe poznanie podstawowych zjawisk fizycznych wykorzystywanych w obrazowaniu

Bardziej szczegółowo

Wykład FIZYKA II. 7. Optyka geometryczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 7. Optyka geometryczna.   Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 7. Optyka geometryczna Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ WSPÓŁCZYNNIK ZAŁAMANIA Współczynnik załamania ośrodka opisuje zmianę prędkości fali

Bardziej szczegółowo

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Modele atomu wodoru Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Demokryt: V w. p.n.e najmniejszy, niepodzielny metodami chemicznymi składnik materii. atomos - niepodzielny Co to jest atom? trochę

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1.1 Narysowanie toru ruchu ciała w rzucie ukośnym. Narysowanie wektora siły działającej na ciało w

Bardziej szczegółowo

Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R 1 i R 2.

Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R 1 i R 2. Optyka geometryczna dla soczewek Autorzy: Zbigniew Kąkol, Piotr Morawski Soczewkami nazywamy ciała przeźroczyste ograniczone dwoma powierzchniami o promieniach krzywizn R i R 2. Nasze rozważania własności

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 6 Elektronowy mikroskop transmisyjny w badaniach struktury metali metodą elektronograficzną Cel ćwiczenia: Celem ćwiczenia jest zbadanie struktury

Bardziej szczegółowo

PODZIAŁ PODSTAWOWY OBIEKTYWÓW FOTOGRAFICZNYCH

PODZIAŁ PODSTAWOWY OBIEKTYWÓW FOTOGRAFICZNYCH OPTYKA PODZIAŁ PODSTAWOWY OBIEKTYWÓW FOTOGRAFICZNYCH OBIEKTYWY STAŁO OGNISKOWE 1. OBIEKTYWY ZMIENNO OGNISKOWE (ZOOM): a) O ZMIENNEJ PRZYSŁONIE b) O STAŁEJ PRZYSŁONIE PODSTAWOWY OPTYKI FOTOGRAFICZNEJ PRZYSŁONA

Bardziej szczegółowo

Optyka instrumentalna

Optyka instrumentalna Optyka instrumentalna wykład 7 20 kwietnia 2017 Wykład 6 Optyka geometryczna cd. Przybliżenie przyosiowe Soczewka, zwierciadło Ogniskowanie, obrazowanie Macierze ABCD Punkty kardynalne układu optycznego

Bardziej szczegółowo

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące

Bardziej szczegółowo

Początek XX wieku. Dualizm korpuskularno - falowy

Początek XX wieku. Dualizm korpuskularno - falowy Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy

Bardziej szczegółowo

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2)

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007

Bardziej szczegółowo

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach.

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. Zagadnienia, które należy znać przed wykonaniem ćwiczenia: Dyfrakcja światła to zjawisko fizyczne zmiany kierunku rozchodzenia

Bardziej szczegółowo

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena

Bardziej szczegółowo

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Modele atomu wodoru Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Demokryt: V w. p.n.e najmniejszy, niepodzielny metodami chemicznymi składnik materii. atomos - niepodzielny Co to jest atom? trochę

Bardziej szczegółowo

3.5 Wyznaczanie stosunku e/m(e22)

3.5 Wyznaczanie stosunku e/m(e22) Wyznaczanie stosunku e/m(e) 157 3.5 Wyznaczanie stosunku e/m(e) Celem ćwiczenia jest wyznaczenie stosunku ładunku e do masy m elektronu metodą badania odchylenia wiązki elektronów w poprzecznym polu magnetycznym.

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 8, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 8, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 8, 09.03.0 wykład: pokazy: ćwiczenia: zesław Radzewicz Radosław hrapkiewicz, Filip Ozimek Ernest Grodner Wykład 7 - przypomnienie eikonał

Bardziej szczegółowo

FALOWE WŁASNOŚCI MIKROCZĄSTEK SPRAWDZANIE HIPOTEZY DE BROGLIE'A

FALOWE WŁASNOŚCI MIKROCZĄSTEK SPRAWDZANIE HIPOTEZY DE BROGLIE'A FALOWE WŁASNOŚCI MIKROCZĄSTEK SPRAWDZANIE HIPOTEZY DE BROGLIE'A 1. PODSTAWY FIZYCZNE Podane przez Einsteina w 1905 roku wyjaśnienie efektu fotoelektrycznego jak również zaobserwowane w 1923r. zjawisko

Bardziej szczegółowo

Uniwersytet Warszawski, Wydział Fizyki Rafał Kasztelanic Uniwersytet Warszawski, Wydział Fizyki Rafał Kasztelanic

Uniwersytet Warszawski, Wydział Fizyki Rafał Kasztelanic Uniwersytet Warszawski, Wydział Fizyki Rafał Kasztelanic TELEDETEKCJA A źródło B oddziaływanie z atmosferą C obiekt, oddziaływanie z obiektem D detektor E zbieranie danych F analiza G zastosowania A D TELEDETEKCJA UKŁADY OPTYCZNE Najprostszym elementem optycznym

Bardziej szczegółowo

Kwantowa natura promieniowania

Kwantowa natura promieniowania Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 7 Temat: Pomiar kąta załamania i kąta odbicia światła. Sposoby korekcji wad wzroku. 1. Wprowadzenie Zestaw ćwiczeniowy został

Bardziej szczegółowo

Spis treści. Historia

Spis treści. Historia Mikroskop to instrument służący do obserwacji małych obiektów, zwykle niewidocznych gołym okiem (tzn. nie mieszczących się w zakresie rozdzielczości ludzkiego oka). Znamy obecnie m.in. mikroskopy optyczne,

Bardziej szczegółowo

I. Mikroskop optyczny podstawowe informacje. 1. Budowa i rozchodzenie się światła wewnątrz mikroskopu.

I. Mikroskop optyczny podstawowe informacje. 1. Budowa i rozchodzenie się światła wewnątrz mikroskopu. I. Mikroskop optyczny podstawowe informacje. 1. Budowa i rozchodzenie się światła wewnątrz mikroskopu. Rysunek 1 Budowa mikroskopu [1] 1 Okular 2 Rewolwer obrotowa tarcza zawierająca zestaw obiektywów

Bardziej szczegółowo

Unikalne cechy płytek i szalek IBIDI

Unikalne cechy płytek i szalek IBIDI Unikalne cechy płytek i szalek IBIDI Grubość płytki jest kluczowym aspektem jakości obrazowania. Typowa grubość szkiełek nakrywkowych wynosi 0,17 mm (170 µm). Większość obiektywów stosowanych do mikroskopii

Bardziej szczegółowo

Wykład FIZYKA II. 11. Optyka kwantowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 11. Optyka kwantowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 11. Optyka kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ FIZYKA KLASYCZNA A FIZYKA WSPÓŁCZESNA Fizyka klasyczna

Bardziej szczegółowo

Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014.

Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014. Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 1 tomu I X 26 Optyka: zasada najkrótszego

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.

Bardziej szczegółowo

41P6 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY

41P6 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY 41P6 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V Optyka fizyczna POZIOM PODSTAWOWY Dualizm korpuskularno-falowy Atom wodoru. Widma Fizyka jądrowa Teoria względności Rozwiązanie zadań należy

Bardziej szczegółowo

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe

Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Fizyka dr Bohdan Bieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D.

Bardziej szczegółowo

Falowa natura materii

Falowa natura materii r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie

Bardziej szczegółowo

Optyka. Wykład XII Krzysztof Golec-Biernat. Dyfrakcja. Laser. Uniwersytet Rzeszowski, 17 stycznia 2018

Optyka. Wykład XII Krzysztof Golec-Biernat. Dyfrakcja. Laser. Uniwersytet Rzeszowski, 17 stycznia 2018 Optyka Wykład XII Krzysztof Golec-Biernat Dyfrakcja. Laser Uniwersytet Rzeszowski, 17 stycznia 2018 Wykład XII Krzysztof Golec-Biernat Optyka 1 / 23 Plan Dyfrakcja na jednej i dwóch szczelinach Dyfrakcja

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA 1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 9 Przyrządy optyczne - lupa Aperturę lupy ogranicza źrenica oka. Pole widzenia zależy od położenia

Bardziej szczegółowo

Mikroskopia polowa. Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania. Bolesław AUGUSTYNIAK

Mikroskopia polowa. Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania. Bolesław AUGUSTYNIAK Mikroskopia polowa Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania Bolesław AUGUSTYNIAK Efekt tunelowy Efekt kwantowy, którym tłumaczy się przenikanie elektronu w sposób niezgodny

Bardziej szczegółowo

OPTYKA INSTRUMENTALNA

OPTYKA INSTRUMENTALNA OPTYKA INSTRUMENTALNA Wykład 1: POJĘCIA WSTĘPNE OPTYKI GEOMETRYCZNEJ (I NIE TYLKO): promienie charakterystyczne (aperturowy, polowy); przysłony (aperturowa i polowa); obrazy przysłon (źrenice i luki);

Bardziej szczegółowo

Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu.

Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu. Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu. A. Opis zagadnienia I. Doświadczenie Franka-Hertza W 1914 roku James Franck i Gustav Hertz przeprowadzili doświadczenie,

Bardziej szczegółowo

41R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do końca)

41R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM ROZSZERZONY (od początku do końca) Włodzimierz Wolczyński 41R POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do końca) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania

Bardziej szczegółowo

( 5 4 ) Urządzenie do nanoszenia cienkich warstw metalicznych i/lub ceramicznych

( 5 4 ) Urządzenie do nanoszenia cienkich warstw metalicznych i/lub ceramicznych RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 163335 (13) B1 (21) Numer zgłoszenia: 289562 Urząd Patentowy (22) Data zgłoszenia: 21. 03. 1991 Rzeczypospolitej Polskiej (51) IntCl5: C23C 14/56

Bardziej szczegółowo

Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu

Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu Imię i nazwisko ucznia Nazwa i adres szkoły Imię i nazwisko nauczyciela Tytuł eksperymentu Dział fizyki Potrzebne materiały do doświadczeń Kamil Jańczyk i Mateusz Kowalkowski I Liceum Ogólnokształcące

Bardziej szczegółowo

zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź.

zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź. zadania zamknięte W zadaniach od 1. do 10. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (1 p.) Wybierz ten zestaw wielkości fizycznych, który zawiera wyłącznie wielkości skalarne. a. ciśnienie,

Bardziej szczegółowo

Ładunek elektryczny jest skwantowany

Ładunek elektryczny jest skwantowany 1. WSTĘP DO MECHANIKI KWANTOWEJ 1.1. Budowa materii i kwantowanie ładunku Materia w skali mikroskopowej nie jest ciągła lecz zbudowana z atomów mówimy, że jest skwantowana Powierzchnia platyny Ładunek

Bardziej szczegółowo

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo