ANALIZA I MODELOWANIE POLA CIĘŻKOŚCI ZIEMI

Wielkość: px
Rozpocząć pokaz od strony:

Download "ANALIZA I MODELOWANIE POLA CIĘŻKOŚCI ZIEMI"

Transkrypt

1 ANALIZA I MODELOWANIE POLA CIĘŻKOŚCI ZIEMI Wykład 5: Grawimetria dynamiczna prof. dr hab. inż. Janusz Bogusz Zakład Geodezji Satelitarnej i Nawigacji

2 Grawimetria dynamiczna Grawimetria dynamiczna (satelitarna) jest metodą badania pola ciężkości Ziemi za pomocą sztucznych satelitów.

3 Era kosmiczna 4 października 1957 r. o godz. 18:28 GMT z kosmodromu Bajkonur rakieta R-7 wyniosła na orbitę Sputnik 1 pierwszego sztucznego satelitę Ziemi. Masa Sputnika 1 wynosiła 83 kg, średnica kuli 58 cm, wyposażenie dwa nadajniki radiowe. Poruszał się 21 dni po orbicie odległej o ok. 250 km od powierzchni Ziemi.

4 Era kosmiczna 31 stycznia 1958 r. rakieta JUPITER C wynosi na orbitę pierwszego amerykańskiego satelitę EXPLORER 1: licznik Geigera-Müllera eksperyment promieniowania kosmicznego; trzy detektory mikrometeoroidów; termometry wewnętrzne do badania temperatury statku.

5 Era kosmiczna ponad startów rakiet; ponad wyniesionych różnych obiektów; ponad 800 czynnych satelitów i sond kosmicznych. Sztuczne satelity Ziemi można podzielić na: komunikacyjne; nawigacyjne; meteorologiczne, geodezyjne; geofizyczne; cywilne; środowiskowe. wojskowe.

6 Era kosmiczna Index of Objects Launched into Outer Space (United Nations Office for Outer Space Affairs (UNOOSA), marzec 2017 r.): orbitujących satelitów.

7 Era kosmiczna The Earth observation handbook 2017 ESA (European Space Agency): 137 currently being flow 86 approved (do 2026) 73 planned (do 2024) 27 considered (do 2030)

8 Prawa Keplera 1. Ruch satelity względem ciała centralnego odbywa się po orbicie będącej krzywą stożkową, przy czym ciało centralne znajduje się w jednym z ognisk tej krzywej: r p = 1+ ecosϑ

9 Prawa Keplera 2. Pole zakreślone przez promień wodzący satelity jest proporcjonalne do czasu (satelita porusza się ze stałą prędkością polową): 2S = C t ( ) t p

10 Prawa Keplera 3. Kwadraty okresów obiegu satelitów wokół ciała centralnego są proporcjonalne do trzecich potęg ich średnich odległości od ciała centralnego: a a T T = Uogólnione trzecie prawo Keplera: a a M m M m T T = + +

11 Orbity p r = 1+ ecosϑ p parametr ogniskowy orbity, e mimośród orbity, ϑ anomalia prawdziwa. e=0 - orbita kołowa; 0<e<1 - orbita eliptyczna; e=1 - orbita paraboliczna; e>1 - orbita hiperboliczna.

12 Orbity

13 Spadek swobodny

14 Pierwsza prędkość kosmiczna Rzucamy kamieniem w kierunku poziomym: 1. Ziemia jest płaska i nie przyciąga: kamień leci ruchem jednostajnym w nieskończoność.

15 Pierwsza prędkość kosmiczna Rzucamy kamieniem w kierunku poziomym: 2. Ziemia jest płaska i przyciąga: kamień leci ruchem jednostajnym, ale siła przyciągania kieruje go w stronę Ziemi i kiedyś spada.

16 Pierwsza prędkość kosmiczna Rzucamy kamieniem w kierunku poziomym: 3. Ziemia jest okrągła i nie przyciąga: kamień leci ruchem jednostajnym po prostej, ale z uwagi na zakrzywiony kształt Ziemi cały czas się od niej oddala.

17 Pierwsza prędkość kosmiczna Rzucamy kamieniem w kierunku poziomym: 4. Ziemia jest okrągła i przyciąga: kamień leci ruchem jednostajnym, Ziemia zakrzywia jego trajektorię w kierunku środka masy.

18 Pierwsza prędkość kosmiczna najmniejsza prędkość, jaką należy nadać ciału względem środka masy przyciągającego je ciała niebieskiego w kierunku równoległym do jego powierzchni, aby dane ciało stało się sztucznym satelitą tego ciała niebieskiego.

19 Pierwsza prędkość kosmiczna

20 Pierwsza prędkość kosmiczna Przewidział to już Newton w swoim dziele Philosophiæ Naturalis Principia Mathematica :

21 Pierwsza prędkość kosmiczna Pierwszą prędkość kosmiczną można wyznaczyć zauważając, że podczas ruchu orbitalnego siła oddziaływania grawitacyjnego stanowi siłę dośrodkową: czyli: m v R 2 G M R m 2 v I = M G R

22 Pierwsza prędkość kosmiczna Równoważenie siły oddziaływania grawitacyjnego przez siłę odśrodkową jest wytłumaczeniem, ale tylko w układzie nieinercjalnym związanym z satelitą.

23 Pierwsza prędkość kosmiczna Przykładowe wartości: Ziemia Księżyc Słońce km v I = s km v I =1. 68 s km v I = s

24 Prędkości poruszania się satelitów W zależności od wysokości orbity: niskie (450 km) km v = s średnie (GPS km) geostacjonarne ( km) wysokie ( km) km v = s km v = s km v = s

25 Orbita perturbowana Orbita perturbowana nie jest przekrojem stożkowym, ale wszystkie jej elementy są funkcjami czasu. Rzeczywista orbita satelity jest zawsze ściśle styczna do coraz to innej, zmieniającej się orbity keplerowskiej, a punkt w którym znajduje się satelita jest punktem styczności. Ciągle zmieniającą się orbitę nazywamy orbitą oskulacyjną (chwilową), a jej elementy wylicza się poprzez scałkowanie równań ruchu i nazywa elementami oskulacyjnymi.

26 Orbita perturbowana kula sferoida Ziemia elipsa Keplera precesująca elipsa Keplera precesująca elipsa z wpływem czynników grawitacyjnych

27 Czynniki wpływające na zmiany ruchu satelity:

28 Czynniki wpływające na zmiany pola ciężkości Ziemi:

29 Czynniki wpływające na zmiany pola ciężkości Ziemi:

30 Czynniki wpływające na zmiany pola ciężkości Ziemi:

31 Czynniki wpływające na zmiany pola ciężkości Ziemi:

32 Satelitarne badanie pola ciężkości Ziemi Ze względu na odległości od powierzchni wyróżnia się orbity: niskie (LEO Low Earth Orbit) km; średnie (MEO Medium Earth Orbit) km; geostacjonarne km; wysokie (HEO High Earth Orbit) powyżej km.

33 Satelitarne badanie pola ciężkości Ziemi

34 Satelitarne badanie pola ciężkości Ziemi CHAMP badanie globalnego pola siły ciężkości z rozdzielczością przestrzenną około 100 km, badanie pola magnetycznego Ziemi. GRACE dostarczenie modeli pola siły ciężkości z rozdzielczością przestrzenną około 150 km, monitorowanie redystrybucji mas na powierzchni i we wnętrzu Ziemi. GOCE wyznaczanie modeli pola siły ciężkości Ziemi z rozdzielczością przestrzenną około 100 km, wyznaczanie geoidy z dokładnością 1-2 cm, badanie cyrkulacji wody w oceanach.

35 Misja CHAMP CHAMP SST-HL: satellite-to-satellite tracking high-low GRACE SST-LL: satellite-to-satellite tracking low-low GOCE SGG: satellite gravity gradiometry

36 Misja CHAMP CHAMP (CHAllenging Minisatellite Payload) niemiecka misja satelitarna mająca na celu wieloletnie pomiary pól: magnetycznego i grawitacyjnego Ziemi. Satelita wystrzelony z rosyjskiego kosmodromu w Plesiecku 15 lipca 2000 roku. Parametry orbity: nachylenie , ekscentr , długość dużej półosi km (452 km na powierzchnią Ziemi, satelita typu LEO), obieg wokół Ziemi co min.

37 Misja CHAMP Parametry satelity: masa 522 kg; wysokość 0.7 m; długość 8.3 m; szerokość 1.6 m;

38 Misja CHAMP Cele: badanie pola grawitacyjnego Ziemi (geoida, anomalie siły ciężkości, odchylenia pionu i inne funkcje pola siły ciężkości jako wielkości bazowe dla realizacji spójnego globalnego systemu odniesienia); badanie jonosfery (zawartości elektronów w jonosferze); badanie pola magnetycznego Ziemi (pulsacji geomagnetycznych).

39 Misja CHAMP CHAMP pracuje w trybie wysoki-niski :

40 Misja CHAMP Geoida [m]: odstępy geoidy od elipsoidy

41 Misja CHAMP Pre-CHAMP (GRIM5)

42 Misja CHAMP CHAMP 2004

43 Misja CHAMP CHAMP 2010

44 Misja CHAMP Anomalie grawimetryczne [mgal]: różnice modułów wektorów przyspieszenia na geoidzie i normalnego na elipsoidzie

45 Misja CHAMP Gęstość elektronów w jonosferze ( , GMT):

46 Misja CHAMP Efekt diamagnetyczny: pod wpływem zewnętrznego pola magnetycznego diamagnetyki magnesują się przeciwnie do tego pola

47 Misja CHAMP Misję zakończono 19 września 2010 roku po 10 latach, 2 miesiącach i 4 dniach pracy oraz obiegach satelity wokół Ziemi.

48 Misja GRACE Gravity Recovery And Climate Experiment - wspólne amerykańsko-niemieckie przedsięwzięcie mające na celu badanie zmian pola ciężkości Ziemi.

49 Misja GRACE GRACE to dwa satelity pracujące w trybie satelita-satelita :

50 Misja GRACE Satelity wystrzelono z rosyjskiego kosmodromu w Plesiecku 15 marca 2002 roku. Jest to misja wspólna NASA (National Aeronautics and Space Administration) oraz DLR (Deutsches Zentrum für Luft- und Raumfahrt Niemieckie Centrum Lotów Powietrznych i Kosmicznych).

51 Misja GRACE Parametry orbity: perygeum: 505 km; apogeum: 497 km; nachylenie do równika: 87.2 ; odległość pomiędzy satelitami: 220 km; wysokość nad Ziemią: 456 km; obieg Ziemi co 1 h 33 m.

52 Misja GRACE

53 Misja GRACE

54 Misja GRACE skorupa ziemska:

55 Misja GRACE ocean:

56 Misja GRACE atmosfera:

57 Misja GRACE kriosfera:

58 Misja GRACE GRACE Gravity Model 01 (2003 r.):

59 Misja GRACE GRACE 2004

60 Misja GRACE

61 Misja GRACE GRACE 2010

62 Misja GRACE GRACE 2010+dane powierzchniowe

63 GEODEZJA FIZYCZNA Misja GRACE Zawartość wody w kontynentach:

64 GEODEZJA FIZYCZNA Misja GRACE Badania ruchów pionowych:

65 GEODEZJA FIZYCZNA Misja GRACE Monitorowanie zmian pokrywy lodowej:

66 Misja GRACE Satelita GRACE-B spalił się w ziemskiej atmosferze 24 grudnia 2017, GRACE-A: 10 marca 2018 roku. Misja kontynuacyjna (GRACE-FO) rozpoczęła się w maju 2018 r.

67 Misja GOCE Gravity Field and Steady-State Ocean Circulation Explorer - przedsięwzięcie Europejskiej Agencji Kosmicznej (ESA European Space Agency). Cele: badanie budowy wnętrza Ziemi na podstawie zmian pola ciężkości; badanie klimatu, a w szczególności cyrkulacji wody w oceanach oraz zmian masy lodowców i poziomu oceanów.

68 Misja GOCE wysokość: 250 km; nachylenie: 96,5 ; synchroniczna ze Słońcem; pokrycie czasowe dni; umieszczenie na orbicie: r. (Plesieck) koniec misji: XI 2013 r., koszt misji: 350 mln dol.

69 Misja GOCE

70 Misja GOCE

71 Misja GOCE

72 Misja GOCE orbita synchroniczna ze Słońcem:

73 Misja GOCE tryb wysoki-niski

74 Misja GOCE Satelita GOCE zawiera dwa instrumenty umożliwiające kompletny pomiar pola siły ciężkości: 1. satellite gravity gradient (SGG) gradientometr do pomiaru gradientów przyspieszenia, dzięki któremu można uzyskać średnio i krótkofalowy zakres widma pola siły ciężkości; 2. satellite-to-satellite (high-low) tracking (hl-sst) odbiornik GPS/GLONASS do precyzyjnego wyznaczenia pozycji satelity, dzięki któremu uzyskuje się długofalowy zakres widma pola siły ciężkości

75 Misja GOCE a ponadto: 3. compensations system (CS) system kompensacji wpływu oporu atmosfery i ciśnienia słonecznego; 4. laser reflector (LR) odbłyśnik laserowy umożliwiający śledzenie go przez laserowe stacje naziemne.

76 Misja GOCE

77 Misja GOCE Zmienność pola siły ciężkości: spłaszczenie Ziemi wywołane jej ruchem obrotowym; zróżnicowanie powierzchni Ziemi występowanie zarówno wysokich gór jak i głębi oceanicznych; niejednolite rozmieszczenie materiałów we wnętrzu Ziemi występują nieregularności warstw w skorupie i płaszczu jak również rozmieszczenie mas wewnątrz każdej z warstw nie jest jednorodne; występowanie ropy, złóż minerałów oraz zbiorników wód podziemnych; zmiany poziomu morza, zmiany topografii, wybuchy wulkanów.

78 Misja GOCE

79 Misja GOCE Podstawowe założenia misji: 1. Zapewnienie dużej dokładności i rozdzielczości modelu geoidy (lepszej niż 70 km) poprzez wyznaczenie współczynników harmonicznych sferycznych w rozwinięcia potencjału ciężkości w szereg funkcji kulistych aż do 300 stopnia. 2. Satelita oraz system czujników stanowią jedno urządzenie do pomiaru ciężkości głównym czujnikiem jest sam satelita.

80 Misja GOCE Podstawowe założenia misji: 3. Otrzymanie wysokiej dokładności i rozdzielczości modelu poprzez: 1. ciągłe wyznaczanie pozycji satelity; 2. wybór wyjątkowo niskiej wysokości orbity, by zwiększyć wpływ pola siły ciężkości; 3. ciągła kompensacja wpływu sił nie-grawitacyjnych jak opór atmosfery i ciśnienie światła słonecznego; 4. użycie gradiometru w celu zwiększenia dokładności pomiaru siły ciężkości.

81 Misja GOCE Zastosowanie w badaniu pola ciężkości Ziemi: rozwiązania podstawowego zadania, czyli określenia kształtu i figury Ziemi, poprzez określenie współczynników harmonicznych sferycznych do stopnia i rzędu 300; wyznaczenia globalnych i lokalnych anomalii siły ciężkości; kontrolowanie, porównanie, a może nawet zmiana tradycyjnych systemów wysokości na systemy globalne. Wpłynie to na możliwość realnego stosowania systemów satelitarnych np. GPS do określania wysokości, czyli przeprowadzania niwelacji satelitarnej.

82 Misja GOCE Aby odpowiadać oczekiwaniom podczas misji mają zostać wykonane pomiary określające pole anomalii siły ciężkości z dokładnością 10-5 m/s 2, co pozwala na określenie przebiegu geoidy z dokładnością poniżej 1 cm

83

84 Misja GOCE (geoida - kwiecień 2011):

85 Misja GOCE (geoida - kwiecień 2011): Szacowana dokładność geoidy: 1-2 cm dla rozdzielczości przestrzennej 100 km.

86 Misja GOCE (anomalie Bouguera kwiecień 2015):

87 Misja GOCE (granica MOHO marzec 2012): nieciągłość Mohorovicicia granica pomiędzy płaszczem ziemskim a skorupą.

88 Misja GOCE (granica MOHO marzec 2012): inwersja danych grawimetrycznych

89 Misja GOCE: Misję zakończono 11 listopada 2013 roku. Kontynuacja (GOCE-FO) jest na etapie projektowania, będzie to pierwszy pomiar pola ciężkości Ziemi za pomocą interferometrii chłodnych atomów (CAI Cold Atom Interferometry).

90 Modele geopotencjału km N

91 Sprawdzian pisemny z ćwiczeń: godz CSE. Sprawdzian pisemny z wykładów: godz CSE. Termin zaliczeniaćwiczeń rachunkowych: godzina CSE;

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu

Bardziej szczegółowo

Satelity Ziemi. Ruch w polu grawitacyjnym. dr inż. Stefan Jankowski

Satelity Ziemi. Ruch w polu grawitacyjnym. dr inż. Stefan Jankowski Satelity Ziemi Ruch w polu grawitacyjnym dr inż. Stefan Jankowski s.jankowski@am.szczecin.pl Satellites Satelity można podzielić na: naturalne (planety dla słońca/ gwiazd, księżyce dla planet) oraz sztuczne

Bardziej szczegółowo

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m. Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..

Bardziej szczegółowo

Grawitacja - powtórka

Grawitacja - powtórka Grawitacja - powtórka 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Jednorodne pole grawitacyjne istniejące w obszarze sali lekcyjnej jest wycinkiem centralnego

Bardziej szczegółowo

14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego.

14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego. Włodzimierz Wolczyński 14 POLE GRAWITACYJNE Wzór Newtona M r m G- stała grawitacji Natężenie pola grawitacyjnego 6,67 10 jednostka [ N/kg] Przyspieszenie grawitacyjne jednostka [m/s 2 ] Praca w polu grawitacyjnym

Bardziej szczegółowo

Obszar badawczy i zadania geodezji satelitarnej

Obszar badawczy i zadania geodezji satelitarnej Obszar badawczy i zadania geodezji satelitarnej [na podstawie Seeber G., Satellite Geodesy ] dr inż. Paweł Zalewski Akademia Morska w Szczecinie cirm.am.szczecin.pl Literatura: 1. Januszewski J., Systemy

Bardziej szczegółowo

Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO...

Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO... Spis treści PRZEDMOWA DO WYDANIA PIERWSZEGO....................... XI 1. WPROWADZENIE DO GEODEZJI WYŻSZEJ..................... 1 Z historii geodezji........................................ 1 1.1. Kształt

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka 4. Pole grawitacyjne. Praca. Moc.Energia zadania z arkusza I 4.8 4.1 4.9 4.2 4.10 4.3 4.4 4.11 4.12 4.5 4.13 4.14 4.6 4.15 4.7 4.16 4.17 4. Pole grawitacyjne. Praca. Moc.Energia - 1 - 4.18 4.27 4.19 4.20

Bardziej szczegółowo

4π 2 M = E e sin E G neu = sin z. i cos A i sin z i sin A i cos z i 1

4π 2 M = E e sin E G neu = sin z. i cos A i sin z i sin A i cos z i 1 1 Z jaką prędkością porusza się satelita na orbicie geostacjonarnej? 2 Wiedząc, że doba gwiazdowa na planecie X (stała grawitacyjna µ = 500 000 km 3 /s 2 ) trwa 24 godziny, oblicz promień orbity satelity

Bardziej szczegółowo

Geodezja fizyczna i grawimetria geodezyjna. Teoria i praktyka

Geodezja fizyczna i grawimetria geodezyjna. Teoria i praktyka Zapraszamy do sklepu www.sklep.geoezja.pl I-NET.PL Sp.J. o. GeoSklep Olsztyn, ul. Cementowa 3/301 tel. +48 609 571 271, 89 670 11 00, 58 7 421 571 faks 89 670 11 11, 58 7421 871 e-mail sklep@geodezja.pl

Bardziej szczegółowo

Obraz Ziemi widzianej z Księżyca

Obraz Ziemi widzianej z Księżyca Grawitacja Obraz Ziemi widzianej z Księżyca Prawo powszechnego ciążenia Dwa punkty materialne o masach m 1 i m przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną

Bardziej szczegółowo

Geodezja fizyczna. Potencjał normalny. Potencjał zakłócajacy. Dr inż. Liliana Bujkiewicz. 8 listopada 2018

Geodezja fizyczna. Potencjał normalny. Potencjał zakłócajacy. Dr inż. Liliana Bujkiewicz. 8 listopada 2018 Geodezja fizyczna Potencjał normalny. Potencjał zakłócajacy. Dr inż. Liliana Bujkiewicz 8 listopada 2018 Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada 2018 1 / 24 Literatura 1 Geodezja współczesna

Bardziej szczegółowo

Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna

Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna G m m r F = r r F = F Schemat oddziaływania: m pole sił m Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna Masa M jest

Bardziej szczegółowo

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego. Astronomia M = masa ciała G = stała grawitacji (6,67 10-11 [N m 2 /kg 2 ]) R, r = odległość dwóch ciał/promień Fg = ciężar ciała g = przyspieszenie grawitacyjne ( 9,8 m/s²) V I = pierwsza prędkość kosmiczna

Bardziej szczegółowo

GRAWITACJA MODUŁ 6 SCENARIUSZ TEMATYCZNY LEKCJA NR 2 FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA.

GRAWITACJA MODUŁ 6 SCENARIUSZ TEMATYCZNY LEKCJA NR 2 FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. MODUŁ 6 SCENARIUSZ TEMATYCZNY GRAWITACJA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 10 Tomasz Kwiatkowski 8 grudzień 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 1/36 Plan wykładu Wyznaczanie mas ciał niebieskich Gwiazdy podwójne Optycznie

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,

Bardziej szczegółowo

Zmiany w czasie pola siły ciężkości mechanizmy, monitorowanie, zastosowania, perspektywy Jan Kryński

Zmiany w czasie pola siły ciężkości mechanizmy, monitorowanie, zastosowania, perspektywy Jan Kryński Zmiany w czasie pola siły ciężkości mechanizmy, monitorowanie, zastosowania, perspektywy Jan Kryński Instytut Geodezji i Kartografii Treść prezentacji 1. Mechanizmy zmian w czasie pola siły ciężkości 2.

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Grawitacja Grawitacja we Wszechświecie Planety przyciągają Księżyce Ziemia przyciąga Ciebie Słońce przyciąga Ziemię i inne planety Gwiazdy

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,

Bardziej szczegółowo

Jak zmieni się wartość siły oddziaływania między dwoma ciałami o masie m każde, jeżeli odległość między ich środkami zmniejszy się dwa razy.

Jak zmieni się wartość siły oddziaływania między dwoma ciałami o masie m każde, jeżeli odległość między ich środkami zmniejszy się dwa razy. I ABC FIZYKA 2018/2019 Tematyka kartkówek oraz zestaw zadań na sprawdzian - Dział I Grawitacja 1.1 1. Podaj główne założenia teorii geocentrycznej Ptolemeusza. 2. Podaj treść II prawa Keplera. 3. Odpowiedz

Bardziej szczegółowo

Monitoring poziomu wód gruntowych. Monika Biryło, Joanna Kuczyńska-Siehień, Jolanta Nastula, Zofia Rzepecka

Monitoring poziomu wód gruntowych. Monika Biryło, Joanna Kuczyńska-Siehień, Jolanta Nastula, Zofia Rzepecka Monitoring poziomu wód gruntowych Monika Biryło, Joanna Kuczyńska-Siehień, Jolanta Nastula, Zofia Rzepecka Streszczenie Znaczenie wód gruntowych (Ground Waters, GW) Ramowa Dyrektywa Wodna i potrzeba monitorowania

Bardziej szczegółowo

Geodezja i geodynamika - trendy nauki światowej (1)

Geodezja i geodynamika - trendy nauki światowej (1) - trendy nauki światowej (1) Glob ziemski z otaczającą go atmosferą jest skomplikowanym systemem dynamicznym stały monitoring tego systemu interdyscyplinarność zasięg globalny integracja i koordynacja

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Grawitacja Grawitacja we Wszechświecie Ziemia przyciąga Ciebie Planety przyciągają Księżyce Słońce przyciąga Ziemię i inne planety Gwiazdy

Bardziej szczegółowo

Sieci Satelitarne. Tomasz Kaszuba 2013 kaszubat@pjwstk.edu.pl

Sieci Satelitarne. Tomasz Kaszuba 2013 kaszubat@pjwstk.edu.pl Sieci Satelitarne Tomasz Kaszuba 2013 kaszubat@pjwstk.edu.pl Elementy systemu Moduł naziemny terminale abonenckie (ruchome lub stacjonarne), stacje bazowe (szkieletowa sieć naziemna), stacje kontrolne.

Bardziej szczegółowo

Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy

Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy 14. Kule (3 pkt) Dwie małe jednorodne kule A i B o jednakowych masach umieszczono w odległości 10 cm od siebie. Kule te oddziaływały wówczas

Bardziej szczegółowo

RUCH ORBITALNY SZTUCZNEGO SATELITY ZIEMI. Rola głównych perturbacji.

RUCH ORBITALNY SZTUCZNEGO SATELITY ZIEMI. Rola głównych perturbacji. RUCH ORBITALNY SZTUCZNEGO SATELITY ZIEMI Rola głównych perturbacji. Ruch nieperturbowany keplerowski Ruch nieperturbowany Ruch keplerowski Ruch perturbowany Ruch perturbowany Ruch perturbowany Rozwiązanie

Bardziej szczegółowo

Systemy nawigacji satelitarnej. Przemysław Bartczak

Systemy nawigacji satelitarnej. Przemysław Bartczak Systemy nawigacji satelitarnej Przemysław Bartczak 1957 Sztuczny satelita: 1958 Sputnik Explorer 1 Sztuczny satelita Ziemi Sztuczny satelita Ziemi, zwany w skrócie satelitą, jest skonstruowanym przez człowieka

Bardziej szczegółowo

Aktualizacja, maj 2008 rok

Aktualizacja, maj 2008 rok 1 00015 Mechanika nieba C Dane osobowe właściciela arkusza 00015 Mechanika nieba C Arkusz I i II Czas pracy 120/150 minut Instrukcja dla zdającego 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana

Bardziej szczegółowo

ODDZIAŁYWANIA W PRZYRODZIE ODDZIAŁYWANIA GRAWITACYJNE

ODDZIAŁYWANIA W PRZYRODZIE ODDZIAŁYWANIA GRAWITACYJNE ODDZIAŁYWANIA W PRZYRODZIE ODDZIAŁYWANIA GRAWITACYJNE 1. Ruch planet dookoła Słońca Najjaśniejszą gwiazdą na niebie jest Słońce. W przeszłości debatowano na temat związku Ziemi i Słońca, a także innych

Bardziej szczegółowo

WYBRANE ELEMENTY GEOFIZYKI

WYBRANE ELEMENTY GEOFIZYKI YBRANE ELEMENTY GEOFIZYKI Ćwiczenie 4: Grawimetria poszukiwawcza. Badanie zaburzenia grawitacyjnego oraz zmian drugich pochodnych gradientowych. prof. dr hab. inż. Janusz Bogusz Zakład Geodezji Satelitarnej

Bardziej szczegółowo

SPRAWDZIAN NR Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową.

SPRAWDZIAN NR Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową. SPRAWDZIAN NR 1 IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową. Zaznacz poprawne dokończenie zdania. Siłę powodującą ruch Merkurego wokół Słońca

Bardziej szczegółowo

Ruch pod wpływem sił zachowawczych

Ruch pod wpływem sił zachowawczych Ruch pod wpływem sił zachowawczych Fizyka I (B+C) Wykład XV: Energia potencjalna Siły centralne Ruch w polu grawitacyjnym Pole odpychajace Energia potencjalna Równania ruchu Znajomość energii potencjalnej

Bardziej szczegółowo

Anomalie gradientu pionowego przyspieszenia siły ciężkości jako narzędzie do badania zmian o charakterze hydrologicznym

Anomalie gradientu pionowego przyspieszenia siły ciężkości jako narzędzie do badania zmian o charakterze hydrologicznym Anomalie gradientu pionowego przyspieszenia siły ciężkości jako narzędzie do badania zmian o charakterze hydrologicznym Dawid Pruchnik Politechnika Warszawska 16 września 2016 Cel pracy Zbadanie możliwości

Bardziej szczegółowo

Obszar badawczy i zadania geodezji satelitarnej. dr hab. inż. Paweł Zalewski, prof. AM Centrum Inżynierii Ruchu Morskiego

Obszar badawczy i zadania geodezji satelitarnej. dr hab. inż. Paweł Zalewski, prof. AM Centrum Inżynierii Ruchu Morskiego Obszar badawczy i zadania geodezji satelitarnej dr hab. inż. Paweł Zalewski, prof. AM Centrum Inżynierii Ruchu Morskiego http://cirm.am.szczecin.pl Literatura: 1. Curtis H. : Orbital Mechanics for Engineering

Bardziej szczegółowo

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Potencjał normalny. Potencjał zakłócajacy. Podstawowe równanie geodezji fizycznej. Dr inż. Liliana Bujkiewicz 4 czerwca 2017 Dr inż. Liliana Bujkiewicz Geodezja fizyczna

Bardziej szczegółowo

Ruchy planet. Wykład 29 listopada 2005 roku

Ruchy planet. Wykład 29 listopada 2005 roku Ruchy planet planety wewnętrzne: Merkury, Wenus planety zewnętrzne: Mars, Jowisz, Saturn, Uran, Neptun, Pluton Ruch planet wewnętrznych zachodzi w cyklu: koniunkcja dolna, elongacja wschodnia, koniunkcja

Bardziej szczegółowo

Fizyka i Chemia Ziemi

Fizyka i Chemia Ziemi Fizyka i Chemia Ziemi Układ Ziemia - Księżyc T.J. Jopek jopek@amu.edu.pl IOA UAM 2013-01-24 T.J.Jopek, Fizyka i chemia Ziemi 1 Ruch orbitalny Księżyca Obserwowane tarcze Księżyca 2013-01-24 T.J.Jopek,

Bardziej szczegółowo

Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego

Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego 20.03.2013 Układ n ciał przyciągających się siłami grawitacji Mamy n ciał przyciągających się siłami grawitacji. Masy ciał oznaczamy

Bardziej szczegółowo

Treści dopełniające Uczeń potrafi:

Treści dopełniające Uczeń potrafi: P Lp. Temat lekcji Treści podstawowe 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać wektory, odjąć wektor od wektora, pomnożyć

Bardziej szczegółowo

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

OPIS MODUŁ KSZTAŁCENIA (SYLABUS) OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu kształcenia Geodezja satelitarna 2 Kod modułu kształcenia 04-ASTR1-GEOD45-3Z 3 Rodzaj modułu kształcenia do wyboru 4 Kierunek studiów

Bardziej szczegółowo

Alternatywne do GNSS metody obserwacji satelitarnych

Alternatywne do GNSS metody obserwacji satelitarnych Alternatywne do GNSS metody obserwacji satelitarnych [na podstawie Seeber G., Satellite Geodesy ] dr inż. Paweł Zalewski Akademia Morska w Szczecinie Przegląd operacyjnych technik obserwacji satelitarnych:

Bardziej szczegółowo

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Podstawowe równanie geodezji fizycznej, całka Stokesa, kogeoida Dr inż. Liliana Bujkiewicz 4 maja 2017 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 4 maja

Bardziej szczegółowo

GPS i nie tylko. O dynamice i zastosowaniach

GPS i nie tylko. O dynamice i zastosowaniach GPS i nie tylko. O dynamice i zastosowaniach sztucznych satelitów Wydział Fizyki i Astronomii Uniwersytetu Zielonogórskiego WFiA UZ 1 / 43 Prawo grawitacji i prawa Keplera Prawo powszechnego ciążenia Każde

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)

Bardziej szczegółowo

1.1. Kształt Ziemi. Powierzchnie odniesienia. Naukowe i praktyczne zadania geodezji. Podział geodezji wyższej... 18

1.1. Kształt Ziemi. Powierzchnie odniesienia. Naukowe i praktyczne zadania geodezji. Podział geodezji wyższej... 18 : Przedmowa...... 11 1. WPROWADZENIE DO GEODEZJI WYŻSZEJ Z historii geodezji... 13 1.1. Kształt Ziemi. Powierzchnie odniesienia. Naukowe i praktyczne zadania geodezji. Podział geodezji wyższej... 18 1.2.

Bardziej szczegółowo

Menu. Badające rozproszenie światła,

Menu. Badające rozproszenie światła, Menu Badające rozproszenie światła, Instrumenty badające pole magnetyczne Ziemi Pole magnetyczne Ziemi mierzy się za pomocą magnetometrów. Instrumenty badające pole magnetyczne Ziemi Rodzaje magnetometrów:»

Bardziej szczegółowo

Loty kosmiczne. dr inż. Romuald Kędzierski

Loty kosmiczne. dr inż. Romuald Kędzierski Loty kosmiczne dr inż. Romuald Kędzierski Trochę z historii astronautyki Pierwsza znana koncepcja wystrzelenia ciała, tak by okrążało Ziemię: Newton w 1666 roku przedstawił pomysł zbudowania ogromnego

Bardziej szczegółowo

Współczesne satelitarne systemy obserwacyjne w badaniu i zrozumieniu Ziemi

Współczesne satelitarne systemy obserwacyjne w badaniu i zrozumieniu Ziemi Współczesne satelitarne systemy obserwacyjne w badaniu i zrozumieniu Ziemi Janusz Bogusz Wydział Inżynierii Lądowej i Geodezji Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego janusz.bogusz@wat.edu.pl

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

Walidacja globalnych modeli geopotencjału pochodzących z misji satelitarnych w oparciu o naziemne dane grawimetryczne

Walidacja globalnych modeli geopotencjału pochodzących z misji satelitarnych w oparciu o naziemne dane grawimetryczne Walidacja globalnych modeli geopotencjału pochodzących z misji satelitarnych w oparciu o naziemne dane grawimetryczne Wydział Geodezji i Kartografii Politechniki Warszawskiej Katedra Geodezji i Astronomii

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

DYNAMIKA SIŁA I JEJ CECHY

DYNAMIKA SIŁA I JEJ CECHY DYNAMIKA SIŁA I JEJ CECHY Wielkość wektorowa to wielkość fizyczna mająca cztery cechy: wartość liczbowa punkt przyłożenia (jest początkiem wektora, zaznaczamy na rysunku np. kropką) kierunek (to linia

Bardziej szczegółowo

Orbita Hohmanna. Szkoła średnia Klasy I IV Doświadczenie konkursowe 1

Orbita Hohmanna. Szkoła średnia Klasy I IV Doświadczenie konkursowe 1 Szkoła średnia Klasy I IV Doświadczenie konkursowe 1 Rok 019 1. Wstęp teoretyczny Podróże kosmiczne znacznie różnią się od podróży ziemskich. Na Ziemi podróżujemy między punktami o ustalonym położeniu,

Bardziej szczegółowo

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów

Bardziej szczegółowo

Prawo to opisuje zarówno spadanie jabłka z drzewa jak i ruchy Księżyca i planet. Grawitacja jest opisywana przez jeden parametr, stałą Newtona:

Prawo to opisuje zarówno spadanie jabłka z drzewa jak i ruchy Księżyca i planet. Grawitacja jest opisywana przez jeden parametr, stałą Newtona: Grawitacja Prawo powszechnego ciążenia Prawo powszechnego ciążenia Newtona (1687) mówi, że siła przyciągania grawitacyjnego między dwoma ciałami jest proporcjonalna do iloczynu ich mas i odwrotnie proporcjonalna

Bardziej szczegółowo

Dwa podstawowe układy współrzędnych: prostokątny i sferyczny

Dwa podstawowe układy współrzędnych: prostokątny i sferyczny Lokalizacja ++ Dwa podstawowe układy współrzędnych: prostokątny i sferyczny r promień wodzący geocentrycznych współrzędnych prostokątnych //pl.wikipedia.org/ system geograficzny i matematyczny (w geograficznym

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Dynamika ruchu po okręgu siła dośrodkowa Prawa ruchu w układzie nieinercjalnym siły bezwładności Prawa ruchu w układzie obracajacym się siła odśrodkowa siła

Bardziej szczegółowo

ver grawitacja

ver grawitacja ver-7.11.11 grawitacja początki Galileusz 1564-164 układ słoneczny http://www.arachnoid.com/gravitation/small.html prawa Keplera 1. orbity planet krążących wokół słońca są elipsami ze słońcem w ognisku

Bardziej szczegółowo

14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji)

14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji) Włodzimierz Wolczyński 14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53

Bardziej szczegółowo

Nawigacja satelitarna

Nawigacja satelitarna Nawigacja satelitarna Warszawa, 17 lutego 2015 Udział systemów nawigacji w wybranych działach gospodarki - aspekty bezpieczeństwa i ekonomiczne efekty Ewa Dyner Jelonkiewicz ewa.dyner@agtes.com.pl Tel.607459637

Bardziej szczegółowo

Systemy odniesienia pozycji w odbiornikach nawigacyjnych. dr inż. Paweł Zalewski

Systemy odniesienia pozycji w odbiornikach nawigacyjnych. dr inż. Paweł Zalewski Systemy odniesienia pozycji w odbiornikach nawigacyjnych dr inż. Paweł Zalewski Wprowadzenie Terestryczne systemy odniesienia (terrestrial reference systems) lub systemy współrzędnych (coordinate systems)

Bardziej szczegółowo

KARTA MODUŁU / KARTA PRZEDMIOTU A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW B. OGÓLNA CHARAKTERYSTYKA PRZEDMIOTU

KARTA MODUŁU / KARTA PRZEDMIOTU A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW B. OGÓLNA CHARAKTERYSTYKA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Geodezja globalna i podstawy astronomii Nazwa modułu w języku angielskim

Bardziej szczegółowo

14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY

14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY Włodzimierz Wolczyński 14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY Obejmuje działy u mnie wyszczególnione w konspektach jako 10 RUCH JEDNOSTAJNY PO OKRĘGU 11 POWTÓRKA

Bardziej szczegółowo

Analiza spektralna widma gwiezdnego

Analiza spektralna widma gwiezdnego Analiza spektralna widma gwiezdnego JG &WJ 13 kwietnia 2007 Wprowadzenie Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe

Bardziej szczegółowo

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe

Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,

Bardziej szczegółowo

Podstawy fizyki wykład 5

Podstawy fizyki wykład 5 Podstawy fizyki wykład 5 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Grawitacja Pole grawitacyjne Prawo powszechnego ciążenia Pole sił zachowawczych Prawa Keplera Prędkości kosmiczne Czarne

Bardziej szczegółowo

Ćwiczenie: "Dynamika"

Ćwiczenie: Dynamika Ćwiczenie: "Dynamika" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Układy nieinercjalne

Bardziej szczegółowo

Nie tylko GPS. Nie tylko GPS. Wydział Fizyki i Astronomii Uniwersytetu Zielonogórskiego. WFiA UZ 1 / 34

Nie tylko GPS. Nie tylko GPS. Wydział Fizyki i Astronomii Uniwersytetu Zielonogórskiego. WFiA UZ 1 / 34 Nie tylko GPS Wydział Fizyki i Astronomii Uniwersytetu Zielonogórskiego WFiA UZ 1 / 34 Satelity Satelitą nazywamy ciało niebieskie krążące wokół planety (np. Ziemi) o masie o wiele mniejszej od masy planety.

Bardziej szczegółowo

Systemy nawigacji satelitarnej. Przemysław Bartczak

Systemy nawigacji satelitarnej. Przemysław Bartczak Systemy nawigacji satelitarnej Przemysław Bartczak Systemy nawigacji satelitarnej powinny spełniać następujące wymagania: system umożliwia określenie pozycji naziemnego użytkownika w każdym momencie, w

Bardziej szczegółowo

Sztuczne Satelity. PDF stworzony przez wersję demonstracyjną pdffactory

Sztuczne Satelity. PDF stworzony przez wersję demonstracyjną pdffactory Sztuczne Satelity Satelita to każde ciało o o małej masie obiegające ciało o o wielkiej masie. Tor ruchu tego ciała a nosi nazwę orbity. Satelity dzielą się na: -Sztuczne, takie jak np. Satelity komunikacyjne

Bardziej szczegółowo

Grawitacja. Wykład 7. Wrocław University of Technology

Grawitacja. Wykład 7. Wrocław University of Technology Wykład 7 Wrocław University of Technology 1 Droga mleczna Droga Mleczna galaktyka spiralna z poprzeczką, w której znajduje się m.in. nasz Układ Słoneczny. Galaktyka zawiera od 100 do 400 miliardów gwiazd.

Bardziej szczegółowo

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Anomalie grawimetryczne Redukcje i poprawki Liliana Bujkiewicz WPPT PWr Liliana Bujkiewicz (WPPT PWr) Geodezja fizyczna i geodynamika 1 / 10 Literatura 1 Geodezja współczesna

Bardziej szczegółowo

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),

Bardziej szczegółowo

Uniwersytet Warszawski, Wydział Fizyki

Uniwersytet Warszawski, Wydział Fizyki Na ciało poruszające się w polu grawitacyjnym działa siła skierowana od ciała w kierunku środka ziemi: F= mg gdzie: m masa ciała, g przespieszenie ziemskie. Jeśli ruch nie odbywa się wzdłuż tej prostej

Bardziej szczegółowo

Wykaz ćwiczeń laboratoryjnych z fizyki(stare ćwiczenia)

Wykaz ćwiczeń laboratoryjnych z fizyki(stare ćwiczenia) Wykaz ćwiczeń laboratoryjnych z fizyki(stare ćwiczenia) Nr ćw. w Temat ćwiczenia skrypcie 1 ćwiczenia 7 12 Badanie zależności temperatury wrzenia wody od ciśnienia 24 16 16 Wyznaczenie równoważnika elektrochemicznego

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Fizyka I. Kolokwium

Fizyka I. Kolokwium Fizyka I. Kolokwium 13.01.2014 Wersja A UWAGA: rozwiązania zadań powinny być czytelne, uporządkowane i opatrzone takimi komentarzami, by tok rozumowania był jasny dla sprawdzającego. Wynik należy przedstawić

Bardziej szczegółowo

Zadanie na egzamin 2011

Zadanie na egzamin 2011 Zadanie na egzamin 0 Zaproponował: Jacek Ciborowski. Wersja A dla medyków Na stacji kolejowej znajduje się peron, z którym wiążemy układ odniesienia U. Po szynach, z prędkością V = c/ względem peronu,

Bardziej szczegółowo

Globalny Nawigacyjny System Satelitarny GLONASS. dr inż. Paweł Zalewski

Globalny Nawigacyjny System Satelitarny GLONASS. dr inż. Paweł Zalewski Globalny Nawigacyjny System Satelitarny GLONASS dr inż. Paweł Zalewski Wprowadzenie System GLONASS (Global Navigation Satellite System lub Globalnaja Nawigacjonnaja Sputnikowaja Sistiema) został zaprojektowany

Bardziej szczegółowo

Energia wody. Mikołaj Szopa

Energia wody. Mikołaj Szopa Energia wody Mikołaj Szopa Fizyka pływów energia księżycowa uzasadnienie powstawania pływów oraz ich częstości rozmiary Ziemi są znacznie mniejsze od odległości między Ziemią a Księżycem wpływ

Bardziej szczegółowo

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące

Bardziej szczegółowo

Analiza współrzędnych środka mas Ziemi wyznaczanych technikami GNSS, SLR i DORIS oraz wpływ zmian tych współrzędnych na zmiany poziomu oceanu

Analiza współrzędnych środka mas Ziemi wyznaczanych technikami GNSS, SLR i DORIS oraz wpływ zmian tych współrzędnych na zmiany poziomu oceanu Analiza współrzędnych środka mas Ziemi wyznaczanych technikami GNSS, SLR i DORIS oraz wpływ zmian tych współrzędnych na zmiany poziomu oceanu Agnieszka Wnęk 1, Maria Zbylut 1, Wiesław Kosek 1,2 1 Wydział

Bardziej szczegółowo

VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1)

VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1) 1 VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1) 1. Opis ruchu postępowego 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać

Bardziej szczegółowo

ARKUSZ EGZAMINACYJNY Z FIZYKI i ASTRONOMII

ARKUSZ EGZAMINACYJNY Z FIZYKI i ASTRONOMII (Wypełnia kandydat przed rozpoczęciem pracy) KOD KANDYDATA ARKUSZ EGZAMINACYJNY Z FIZYKI i ASTRONOMII Instrukcja dla zdającego Czas pracy 120 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 12 stron.

Bardziej szczegółowo

Lp. Promotor Temat Dyplomant 1. Dr inż. A. Dumalski. Badanie dokładności użytkowej niwelatora cyfrowego 3. Dr inż. A. Dumalski

Lp. Promotor Temat Dyplomant 1. Dr inż. A. Dumalski. Badanie dokładności użytkowej niwelatora cyfrowego 3. Dr inż. A. Dumalski 2009/2010 propozycje tematów prac dyplomowych na studiach stacjonarnych magisterskich II stopnia realizowanych w Instytucie Geodezji Specjalność geodezja gospodarcza Olsztyn Limit 18 Lp. Promotor Temat

Bardziej szczegółowo

Modelowanie pola siły ciężkości oraz jego zmian w czasie na obszarze Polski

Modelowanie pola siły ciężkości oraz jego zmian w czasie na obszarze Polski Modelowanie pola siły ciężkości oraz jego zmian w czasie na obszarze Polski Jan Kryński Instytut Geodezji i Kartografii, Warszawa Centrum Geodezji i Geodynamiki Plan prezentacji 1) Wprowadzenie 2) Modele

Bardziej szczegółowo

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu Prowadzący: dr Krzysztof Polko Dynamiczne równania ruchu Druga zasada dynamiki zapisana w postaci: Jest dynamicznym wektorowym równaniem ruchu. Dynamiczne

Bardziej szczegółowo

Uniwersytet Warszawski, Wydział Fizyki. wzmocnienie. fale w fazie. fale w przeciw fazie zerowanie

Uniwersytet Warszawski, Wydział Fizyki. wzmocnienie. fale w fazie. fale w przeciw fazie zerowanie A źródło B oddziaływanie z atmosferą C obiekt, oddziaływanie z obiektem D detektor E zbieranie danych F analiza A D G zastosowania POWIERZCHNIA ZIEMI Satelity lub ich układy wykorzystywane są również do

Bardziej szczegółowo

ZAŁOŻENIA I STAN AKTUALNY REALIZACJI

ZAŁOŻENIA I STAN AKTUALNY REALIZACJI ZAŁOŻENIA I STAN AKTUALNY REALIZACJI PROJEKTU ASG+ Figurski M., Bosy J., Krankowski A., Bogusz J., Kontny B., Wielgosz P. Realizacja grantu badawczo-rozwojowego własnego pt.: "Budowa modułów wspomagania

Bardziej szczegółowo

Ćwiczenie: "Ruch po okręgu"

Ćwiczenie: Ruch po okręgu Ćwiczenie: "Ruch po okręgu" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Kinematyka

Bardziej szczegółowo

WYBRANE ELEMENTY GEOFIZYKI

WYBRANE ELEMENTY GEOFIZYKI WYBRANE ELEMENTY GEOFIZYKI Wykład 4: Geofizyka środowiskowa i poszukiwawcza. prof. dr hab. inż. Janusz Bogusz Zakład Geodezji Satelitarnej i Nawigacji Prawa autorskie do prezentacji Materiały te przeznaczone

Bardziej szczegółowo

Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Energia mechaniczna. Energia mechaniczna dzieli się na energię kinetyczną i potencjalną. Energia kinetyczna

Bardziej szczegółowo

Grawitacja zadanka 1. W jakiej odległości od środka Ziemi znajduje się ciało jeżeli jego pierwsza prędkość kosmiczna wynosiv 1 = 7,5 10 3m s

Grawitacja zadanka 1. W jakiej odległości od środka Ziemi znajduje się ciało jeżeli jego pierwsza prędkość kosmiczna wynosiv 1 = 7,5 10 3m s Grawitacja zadanka 1. W jakiej odległości od środka Ziemi znajduje się ciało jeżeli jego pierwsza prędkość kosmiczna wynosiv 1 = 7,5 10 3m s? Wartości stałych dla obliczeń: G = 6,7 10 11N m2 kg 2 M z =

Bardziej szczegółowo

PodziaŁ planet: Zewnętrzne: Wewnętrzne: Merkury. Jowisz. Wenus. Saturn. Ziemia. Uran. Mars. Neptun

PodziaŁ planet: Zewnętrzne: Wewnętrzne: Merkury. Jowisz. Wenus. Saturn. Ziemia. Uran. Mars. Neptun UKŁAD SŁONECZNY PodziaŁ planet: Wewnętrzne: Merkury Wenus Ziemia Mars Zewnętrzne: Jowisz Saturn Uran Neptun słońce Słońce jest zwyczajną gwiazdą. Ma około 5 mld lat. Jego temperatura na powierzchni osiąga

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo